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Abstract - In animal breeding, Markov chain Monte Carlo algorithms are increasingly
used to draw statistical inferences about marginal posterior distributions of parameters
in genetic models. The Gibbs sampling algorithm is most commonly used and requires
full conditional densities to be of a standard form. In this study, we describe a Bayesian
method for the statistical mapping of quantitative trait loci ((aTL), where the application
of a reduced animal model leads to non-standard densities for dispersion parameters.
The Metropolis Hastings algorithm is used to obtain samples from these non-standard
densities. The flexibility of the Metropolis Hastings algorithm also allows us change the
parameterization of the genetic model. Alternatively to the usual variance components,
we use one variance component (= residual) and two ratios of variance components, i.e.
heritability and proportion of genetic variance due to the (aTL, to parameterize the genetic
model. Prior knowledge on ratios can more easily be implemented, partly by absence of
scale effects. Three sets of simulated data are used to study performance of the reduced
animal model, parameterization of the genetic model, and testing the presence of the QTL
at a fixed position. &copy; Inra/Elsevier, Paris
reduced animal model / dispersion parameters / Markov chain Monte Carlo /
quantitative trait loci
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Résumé - Estimation Bayésienne des paramètres de dispersion dans un modèle
animal réduit comprenant un effet polygénique et l’effet d’un QTL. En génétique
animale, les algorithmes de Monte-Carlo par chaînes de Markov sont utilisés de plus en
plus souvent pour en inférer aux distributions marginales a posteriori des paramètres



du modèle génétique. L’algorithme d’échantillonnage de Gibbs est utilisé largement et
demande la connaissance des densités conditionnelles, dans une forme standard. Dans
cette étude, on décrit une méthode Bayésienne pour la cartographie statistique d’un locus
à effet quantitatif ((aTL), où l’application d’un modèle animal réduit conduit à des densités
de paramètres de dispersion, qui n’ont pas de forme standard. On utilise l’algorithme de
Metropolis-Hastings pour l’échantillonnage de ces densités non standard. La souplesse
de l’algorithme de Metropolis-Hastings permet également de changer la paramétrisation
du modèle génétique : au lieu des composantes de variances habituelles, on peut utiliser
une composante de variance (résiduelle) et deux rapports de composantes de variance :
l’héritabilité et la proportion de la variance génétique dûe au QTL. Il est plus facile de
spécifier l’information a priori sur des proportions, en partie parce qu’elle ne dépend pas
de l’échelle. Trois fichiers de données simulées sont utilisés pour étudier la performance du
modèle animal réduit, par rapport au modèle animal strict, l’effet de paramétrisation du
modèle génétique et la qualité du test de la présence d’un QTL à une position donnée.
&copy; Inra/Elsevier, Paris
modèle animal réduit / paramètres de dispersion / méthode de Monte-Carlo par
chaînes de Markov / locus quantitatif

1. INTRODUCTION

The wide availability of high-speed computing and the advent of methods based
on Monte Carlo simulation, particularly those using Markov chain algorithms, have
opened powerful pathways to tackle complicated tasks in (Bayesian) statistics [9,
10]. Markov chain Monte Carlo (MCMC) methods provide means for obtaining
marginal distributions from a complex non-standard joint density of all unknown
parameters (which is not feasible analytically). There are a variety of techniques for
implementation [9] of which Gibbs sampling [11] is most commonly used in animal
breeding. The applications include univariate models, threshold models, multi-trait
analysis, segregation analysis and QTL mapping [15, 17, 29, 31, 33].

Because Gibbs sampling requires direct sampling from full conditional distribu-
tions, data augmentation [22] is often used so that ’standard’ sampling densities are
obtained. Often, however, this is at the expense of a substantial increase in num-
ber of parameters to be sampled. For example, the full conditional density for a
genetic variance component becomes standard (inverted gamma distribution) when
a genetic effect is sampled for each animal in the pedigree, as in a (full) animal
model (FAM). The dimensionality increases even more rapidly when the FAM is
applied to the analysis of granddaughter designs [34] in QTL mapping experiments,
i.e. marker genotypes on granddaughters are not known and need to be sampled as
well. In addition, absence of marker data hampers accurate estimation of genetic
effects within granddaughters, which form the majority in a granddaughter design.
This might lead to very slow mixing properties of the dispersion parameters (see
also Sorensen et al. !21!).

The reduced animal model (RAM, Quaas and Pollak, [19]) is equivalent to the
FAM, but can greatly reduce the dimensionality of a problem by eliminating effects
of animals with no descendants. With a RAM, however, full conditional densities for
dispersion parameters are not standard. Intuitively, RAM, used to eliminate genetic
effects and concentrate information, is the antithesis of data augmentation, used to
arrive at simple standard densities. For the Metropolis-Hastings (MH) algorithm



[14, 18!, however, a standard density is not required, in fact, the sampling density
needs to be known only up to proportionality. Another alternative for the FAM is
the application of a sire model which implies that only sires are evaluated based
on progeny records. With a sire model, the genetic merit of the dam of progeny is
not accounted for and only the phenotypic information on offspring is used. The
RAM offers the opportunity to include maternal relationships, offspring with known
marker genotypes and information on grandoffspring. As a result the RAM is better
suited for the analysis of data with a complex pedigree structure.

The flexibility of the MH algorithm also allows for a greater choice of the param-
eterization (variance components or ratios thereof) of the genetic model. If Gibbs
sampling is to be employed, the parameterization is often dictated by mathemat-
ical tractability to obtain the simple sampling density. The MH algorithm readily
admits much flexibility in modelling prior belief regarding dispersion parameters,
which is an advantageous property in Bayesian analysis !16!.

In this paper, we present MCMC algorithms that allow Bayesian linkage analysis
with a RAM. We study two alternative parameterizations of the genetic model and
use a test statistic to postulate presence of a QTL at a fixed position relative
to an informative marker bracket. Three sets of simulation data using a typical
granddaughter design are used.

2. METHOD

2.1. Genetic model

The additive genetic variance (o,2) underlying a quantitative trait is assumed to
be due to two independent random effects, due to a putative QTL and residual
independent polygenes. The QTL effects (v) are assumed to have a N(0, GO,2)
prior distribution where G is the gametic relationship matrix [2, 8], and ui is
the variance due to a single allelic effect at the QTL. Matrix G depends upon one
unknown parameter, the map position of the QTL relative to the (known) positions
of bracketing (informative) markers. Here we consider the location of the QTL to
be known. The polygenic effects (u) have a N(0, Au u 2) prior distribution, where A
is the numerator relationship matrix. The genetic model underlying the phenotype
of an animal is

where b is the vector with fixed effects, vi and v? are the two (allelic) QTL effects for
animal i, and ei ! N(0, lo,2). e (QTL effects within individual are assigned according
to marker alleles, as proposed by Wang et al. [32]). The sum of the three genetic
effects is the animal’s breeding value (a). In addition to genetic effects, location
parameters comprise fixed effects that are, a priori, assumed to follow the proper
uniform distribution: f (b) - U[bn,;n, bmax! ! where bmin and bmax are the minimum
and maximum values for elements in b.

2.2. Reduced animal model (RAM)

The RAM is used to reduce the number of location parameters that need to
be sampled. The RAM eliminates the need to sample genetic effects of animals



with neither descendants nor marker genotypes, i.e. ungenotyped non-parents. The
phenotypic information on these animals can easily be absorbed into their parents
without loss of information. Absorption of non-parents that have marker genotypes
becomes more complex when position of QTL is unknown; it is therefore better to
include them explicitly in the analysis. In the remainder of the paper, it is assumed
that marker genotypes on non-parents are not available. The genetic effects of non-
parents can be expressed as linear functions of the parental genetic effects by the
following equations [4],

and

where each row in P contains at most two non-zero elements (= 0.5), and each
row in Q has at most four non-zero elements [32], the terms wnon-parcnts and

§non-parents pertain to remaining genetic variance due to Mendelian segregation
of alleles. In a granddaughter design, the P and Q for granddaughters, not having
marker genotypes observed nor augmented, have similar structures,

where Q9 denotes the Kronecker product, and J is a unity matrix [20]. This

equality does not hold if marker genotypes are augmented, since phenotypes contain
information that can alter the marker genotype probabilities for ungenotyped non-
parents [2].

The phenotypes for a quantitative trait can now be expressed as,

for row vectors Pi and Qi (possibly null), and

where u)i reflects the amount of total additive genetic variance that is present in
E . 2 Based on the pedigree, four categories of animals are distinguished in the
RAM (table 1). The vectors Pi and Qi contain partial regression coefficients. For
parents, the only non-zero coefficients pertain to the individual’s own genetic effects
(ones); for non-parents, the individual’s parents’ genetic effects (halves). Note
that Pi and GZi are null for a non-parent with unknown parents, and that non-
parents’ phenotypes in this category contribute to the estimation of fixed effects
and phenotypic (residual) variance only.

2.3. Parameterization

Let B denote the set of location parameters (b, u and v) and dispersion
parameters.



We consider the following two parameterizations for the dispersion parameters

where

and

In the first, 0vc , the parameters are the variance components (VC). This is the
usual parameterization. A difficulty with this is that it is problematic for an animal
breeder to elicit a reasonable prior of the genetic VC. Animal breeders, it seems
to us, are much more likely to have, and be able to state, prior opinions about
such things as heritabilities. Consequently, in ORT, parameter h2 is the heritability
of a trait, and parameter &dquo;( is the proportion of additive genetic variance due to
the putative QTL. This parameterization allows more flexible modelling of prior
knowledge because h2 and -y do not depend on scale. Theobald et al. [23] used
a variance ratio, a u/Ue 2 2, parameterization but noted that the animal breeder may
prefer to think in terms of heritability. We prefer the part-whole ratios h2 and y.
The components or2 and <7! can be expressed in terms of Qe, h2 2 and

and

2.4. Priors

We now present the prior knowledge on dispersion parameters, priors for location
parameters having been given earlier. In earlier studies, two different priors are often



used to describe uncertainty on VC. The inverted gamma (IG) distribution, or its
special case the inverted chi-square distribution, is common because it is often the
conjugate prior for the VC if the FAM (or sire model) is applied. Hence, the full
conditional distribution for VC will then be a posterior updating of a standard prior
!9!. This simplifies Gibbs sampling. We will use the IG as the prior for 0’; - though
with a RAM it is not conjugate,

where x = e, u, or v. The rhs of (10) constitutes the kernel of the distribu-

tion. The mean (p) of an IG(o:, (3) is ((a - 1)(3)-1, and the variance equals
((a- 1)!-2)/!)’B Van Tassell et al. [29] suggest setting a = 2.000001 and
/3 ! (!)-1 for an ’almost flat’ prior with a mean corresponding to prior expectation
(p,). The IG distributions for three different prior expectations are given in figure 1.
When the prior expectation is close to zero (p, = 5.0), the distribution is more
peaked and has less variance because mass accumulates near zero. When the prior
expectation is relatively high (p, = 60), the probability of or2 being equal to zero
is very small, which might be undesirable and/or unrealistic for ui. An alternative
prior distribution for or2 is

which is a proper prior for ufl with a uniform density over a pre-defined large, finite
interval, for example from zero to 200 (figure 1). These prior distributions for VC
are used mainly to represent prior uncertainty !21, 30, 31!.

Corresponding to (10) (11) there is an equivalent prior distribution for A(!y).
However, because neither (10) nor (11) were chosen for any intrinsic ’rightness’

we prefer a simpler alternative of using Beta distributions for the ratio parameters
A and -y to represent prior knowledge,

where x = h2 or -y. When prior distribution parameters ax and /3x are both
set equal to 1, the prior is a uniform density between 0 and 1 (figure 2), i.e.
flat prior. Alternatively, ax and !3! can be specified to represent prior expecta-
tions for parameters of interest (figure 2). For example, one can centre the den-
sity for heritability of a yield trait in dairy cattle around the prior expectation
(= 0.40), with a relatively flat (Beta (2.5, 3.75)) or peaked (Beta (30.0, 45.0))
distribution when prior certainty is moderate or strong, respectively. Furthermore,
prior knowledge on !y, proportion of additive genetic variance due to a putative
QTL, can be modelled to give relatively high probabilities of values close to zero,
e.g. (Beta (0.9, 2.7)). Another option, suggested by a reviewer, would be to put
vague priors on ox and /3x as in Berger [1].



2.5. Joint posterior density

The joint posterior density of B is the product of likelihood and prior densi-
ties of elements in 0, described above. Let ni denote the number of observations on



animals of category i (table 1), the total number of observations being given as N,
and let q denote the number animals with offspring, i.e. parents. Then, 2q is the
number of QTL effects (two allelic effects per animal). With Ovc,

Under BRT, dispersion parameters, and priors thereof, are different from 0vc the

joint posterior density is



2.6. Full conditional densities

From the joint posterior densities (13) and (14), the full conditional density for
each element in B can be derived by treating all other elements in 0 as constants and
selecting the terms involving the parameter of interest. When this leads to the kernel
of a standard density, e.g. Normal for location parameters or an IG distribution,
e.g. variance components with FAM, Gibbs sampling is applied to draw samples
for that element in 0. Otherwise, the full conditional density is non-standard and
sampling needs to be done by other techniques. (All full conditional densities are
given in the Appendix).

2.7. Sampling non-standard densities by Metropolis-Hastings
algorithm

Sampling a non-standard density can be carried out a variety of ways, including
various rejection sampling techniques [6, 7, 12, 13!, and Metropolis-Hastings sam-
pling within Gibbs sampling !6!. We use the Metropolis-Hastings algorithm (MH).
Let !r(x) denote the target density, the non-standard density of a particular element
in 0, and let q(x, y) be the candidate generating density. Then, the probability of
move from current value x to candidate value y for Oi is,

When y is not accepted, the value for 0z remains equal to x, at least until the
next update for 0z . Chib and Greenberg [6] described several candidate generating
densities for MH. We use the random walk approach in which candidate y is drawn
from a distribution centred around the current value x. To ensure that all sampled
parameters are within the parameter space the sampling distribution, q(x, y), was
U(BL, Bu) with

where t is a positive constant determined empirically for each parameter to give
acceptance rates between 25 and 50 % [6, 24]. For each of the non-standard densities,
a univariate MH was used. We perform univariate MH iterations (ten times) within
a MCMC cycle to enhance mixing in the MCMC chain, as suggested by Uimari et
al. [26].

2.8. Comparison to a full animal model (FAM)

From the conditional densities presented, two hybrid MCMC chains can be used
to obtain samples of all unknown parameters (Ovc or BRT ) using a RAM. For
comparison, the equivalent FAM can be used with similar parameterization (Ovc



and BRT). The conditional densities for the FAM are a special case of RAM (see
table I ): all animals are in category 4 and wz = 0. In case of Ovc the conditional
densities for o, 2, ol 2, and <7! are now recognizable IG distributions and Gibbs
sampling can be used to draw samples from these densities directly. In the case
of ORT the conditional densities for h2 and q remain non-standard and MH is used
to draw samples. Table II gives the four constructed MCMC sampling schemes.

2.9. Post MCMC analysis

Depending on the dispersion parameterization (Ovc or qRT), three of five

parameters were sampled (table II). In each MCMC cycle, however, the remaining
two were computed, using (6) and (7) or (8) and (9), to allow comparison of results
of different parameterizations. For parameter X, the auto-correlation of a sequence

m-l
of samples was calculated as - 1: [(a! &mdash; /!)(.E,+i &mdash; jiz )] /s! where m = number

m 
i=l 

’ 

x

of samples, jiz and Ax are posterior mean and standard deviation, respectively.
The correlation among samples for parameters x and z, within MCMC cycles, was

I 
rn

computed as - E [(xi - [Lc)(Zi - [Lz)] 1[(!xg,]. For each parameter an effective
m 

z=i i

sample size (ESS) was computed which estimates the number of independent
samples with information content equal to that of the dependent samples !21!.

The null hypothesis that -y = 0 - the QTL explains no genetic variance - was
.. 

mode {p(r)} } .

tested via an odds ratio p(! - 0) > 20 following Janss et al. (17!. They suggestP(-! = 0)
that this criterion, however, may be quite stringent. The 90 % highest posterior
density regions (HPD90) !5!, were also computed for parameter y.



3. SIMULATION

In this study, granddaughter designs were generated by Monte Carlo simulation.
The unrelated grandsire families each contained 40 sires that were half sibs. The
number of families was 20 except in simulation III where designs with 50 families
were simulated as well (table IIB. Polygenic and QTL effects for grandsires were
sampled from N(0, Qu) and N(0, er!), respectively. The polygenic effect for sires
was simulated as US = !(UGs) 2 + 4lz , where UGS is the grandsire’s polygenic effect,
and *!t, Mendelian sampling, is distributed independently as N(0, Var (4lj)) with
Var(4lz) = 0.75 x Qu (no inbreeding). Each sire inherited one QTL at random
from its (grand) sire. The maternally inherited QTL effect for a sire was drawn
from N(0, er!). Each sire had 100 daughters with phenotypes observed, that were
generated as

where p is a 0/1 variable. In all simulations the phenotypic variance and the
heritability of the trait were 100 and 0.40, respectively. The proportion of genetic
variance due to the QTL (= 1’) was by default 0.25, or 0.10 in simulation III
(table 777). Two genetic markers bracketing the QTL position at lOcM (Haldane
mapping function) were simulated with five alleles at each marker, with equal
frequencies over alleles per marker. For grandsires, the marker genotypes were
fully informative, i.e. heterozygous, and the linkage phase between marker alleles
is assumed to be known a priori. The uncertainty on linkage phase in sires can
be included in 0, but we did not. All possible linkage phases within sires were
weighted by their probability of occurrence and one average relationship matrix
between grandsires’ and sires’ QTL effects was used.



4. RESULTS AND DISCUSSION

4.1. Simulation I: comparison RAM versus FAM

For each of the four MCMC algorithms that are given in table II, a single
MCMC chain was run and 2 000 thinned samples were used for post-MCMC analysis
(table III). In the case of 0vc , prior distributions for Qe, Qu and a2were ’flat’ IGs
(figure 1) with expected means equal to 60, 30 and 5 (values used for simulation),
respectively. In the case of BRT, the prior for a was again an IG and priors for h2 2
and -y were Beta (2.5, 3.75) and Beta (0.9, 2.7), respectively. Figure 3 presents the
mixing properties for parameter ui within the chains for the RAM-0vc and RAM-
0vc alternatives and points to slower mixing when using the FAM. This slow mixing
is also indicated by high auto-correlation (! 1) among samples for parameters ui 2
and when the FAM was used (table IV). With the same thinning, the auto-
correlation among samples in the RAM is x 0.70. The estimates for posterior
mean and coefficient of variation, derived from samples of the four chains, are
given in table V. These estimates are very similar over models (RAM and FAM)
and parameterizations (0vc and BRT). The coefficients of variation for ui and ’Y
are relatively large and indicate that a posteriori knowledge on these parameters
remains small, while estimates for oe and h2 are accurate. The magnitude of the
sampling correlation among parameters within MCMC cycles was very similar for
both models and parameterizations. The samples for o, and ufl showed a moderately
high negative correlation (-0.7), while the sampling correlation between h2 and 7
was relatively low and positive (0.2). The correlation among samples for u£ and h2
was very high but apparently did not adversely affect the auto-correlation of these
parameters. Taking 100 ESS as a minimum [26] the MCMC chain was rather short
for statistical inferences for -y in FAM-BRT. However, running a longer MCMC chain
was not practical since the FAM-0vc MCMC chain needed 68 593 min CPU (47
days) on a HP 9000-735 (125Hz) workstation. This was almost 100 times the 11 h
that were needed to run the RAM with similar chain length.

The slow mixing of parameters for a FAM was likely to be due to the lack of
marker data on granddaughters. Distinction between polygenic and QTL effects
within these animals is hardly possible. Consequently, they provide little informa-
tion regarding dispersion but because they are so numerous they dominate the
distribution from which the next sample for the dispersion parameter is drawn.

Heuristically, one first generates u and v with variances reflecting current a 2. Sub-
sequently one samples a new o2 from a peaked distribution with a mean near the
sample variance of the u and v. Not surprisingly one gets back a a2 very similar to
the previous one, as a result of which the chain is slowly mixing.

The data from simulation I were also used to examine the effect of priors on
posterior inferences on the proportion of QTL when eRT was used. Four different

priors for 7 were used, ranging from a ’flat’ (but not a ’non-informative’) uniform
prior to a density peaked at zero. The latter reflects the prior expectation that the
genetic variance due to the QTL is small or equal to zero. Figure 4 presents both
prior and posterior densities. The uniform and the ’peaked-at-zero’ prior resulted in
the highest (0.20) and lowest posterior mean estimate (0.10), respectively. For this
design, the information from the data is not overwhelming the prior knowledge.







All priors studied, however, showed consistency for the posterior probability of
y = 0, i.e. the data supported the presence of a QTL at the studied position of the
chromosome.

4.2. Simulation II: parameterization of the genetic model

In simulation II, five replicates of data were used to study the effects of
alternative parameterizations of the genetic model, for the RAM only. Genetic
and population parameters were similar to those in simulation I (table III). Based
on the results for ESS from the initial MCMC chains (table I!, the MCMC
chains were run for 250 000 cycles and every 250th was sample used for analysis
(m = 1000). Now, uniform priors for all dispersion parameters were used. The
sampling correlations were averaged over the five replicates and are presented in
table VI. These correlations are consistent with those from the initial MCMC chains

(table IV); i.e. auto-correlations were highest among samples for 0&dquo; (in Ovc) and
q (in ORT), i.e. around 0.68. These parameters also had lowest and similar ESS
(! 230). These results indicate that sampling efficiency is similar for the two
studied parameterizations (0vc and ORT) of the genetic model and shorter chains
may suffice. The posterior mean estimates, averaged over five replicates, for all
dispersion parameters were in close agreement with the values used for simulation
(not shown).



4.3. Simulation III: presence of the QTL

In simulation III, two different designs (20 or 50 grandsire families) were studied
in combination with two different sizes of the QTL (explaining either 10 or 25 %
of the genetic variance). Two different priors for were studied with the ORT
parameterization. For each combination of design and -y, test runs preceding the 25
replicates were used to empirically determine values for t in the MH algorithm, in
order to achieve the desired acceptance rates. From the marginal posterior density
an odds ratio was computed and the presence of the QTL was accepted only if this
ratio exceeded a critical value of 20. Using this test statistic we postulated the power
of detecting the QTL for specific designs and using different priors (table V77). The
small design (20 x 40) has low power of QTL detection, i.e. only 25 %, for a QTL
that explains 10 % of the genetic variance. Power increased when either the QTL
explained more genetic variance or when a large design (50 x 40) was used. For
the large design with a relatively large QTL, power of detection is 100 %, for both
priors considered. The use of the ’peaked-at-zero’ prior reduced power in the two
intermediate cases but increased power in the small design with the small QTL.
Estimates for posterior mode, mean and HPD90 were averaged over the 25 replicates
and these averages are presented in figure 5. When the ’peaked-at-zero’ prior was
used, point estimates were lower compared to using the uniform prior. This prior
also led to shorter - and closer to zero - HPD90 region in all combinations of design
and 7 but the impact was more noticeable for the small design.



5. CONCLUSIONS

We presented MCMC algorithms, using the Gibbs sampler and the MH algo-
rithm, which facilitate Bayesian estimation of location and dispersion parame-
ters with a RAM. The RAM proved to be superior to the FAM; RAM required
much less computational time because of the greatly reduced number of location



parameters and also better mixing of the dispersion parameters. Information on
individual phenotypes led to accurate estimation of both residual variance and
heritability, as was similar to Van Arendonk et al. !27!. On the contrary, daughter
yield deviations [28] may result in poor estimation of polygenic and residual
variances [25]. The use of BRT allows a better representation of prior belief about
dispersion parameters while sampling efficiency was similar to the usual 0vc
parameterization.

Considering ratios of variance components rather than variance components
themselves in sampling procedures has been previously proposed !23!. However, our
ratios can be interpreted directly and have implicit boundaries (zero and one), where
Theobald et al. [23] needed a specific restriction on their ratio. The representations
of prior knowledge in the two parameterizations were not equivalent and differences
in posterior estimates can be expected. However, the use of vague priors (absence
of prior knowledge) in the two parameterizations lead to very similar results.

In this study, position of the QTL was assumed known. Extension of the MCMC
algorithm to allow estimation of QTL position has been studied and implemented
(3!. Currently, the method of Bink et al. [2] to sample genotypes for a single marker
is being extended to multiple markers linked to a normally distributed QTL. Then, a
robust MCMC method becomes available for linkage analysis in multiple generation
pedigrees allowing incomplete information on both trait phenotypes and marker
genotypes.
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A1. APPENDIX: !11 conditional densities

Al.l. Location parameters

The conditional densities for location parameters are the same with either set
of dispersion parameters (0vc or ORT). When sampling genetic effects, the ratios

a2
of VC needed can be computed from either parameterization, i.e. au 1 = 2 =u 

or2 e

( h2 a2 1 h2 
ae

C ( 1 - y) x I - h2 and a-1 v 1 = - 92 e = C 2 ! x 1 - h2 In this study we consideredB 1 - h ) o! B!2 2 1 - n//
only one fixed effect, an overall mean m, for which the conditional density becomes

where jir equals yk corrected for genetic effects, following the categorization in table
L The conditional variance of this overall mean is a weighted average over categories.
Again, for phenotypes on animals in categories 1 to 3, the residual variance, 0’2 ei7
contains parts of the genetic variances. The conditional density for the polygenic
effect of animal j can be given as



where

where y2 is the ith phenotype for animal j, corrected for all effects, other than

polygenic, yl. is the average of phenotypes on non-parent l, also corrected for all
effects other than polygenic, op(j) represents the offspring of animal j, which are
parents themselves, onp(j) represents the offspring of animal j, which are non-
parents. Furthermore, UM,k is the polygenic effect of the other (if known) parent
(mate of animal j) of offspring k, nj is the number of phenotypes for animal j,
6j, = 1, 4/3, 2 when 0, 1, or 2 parents of j are identified (with no inbreeding). (8;1 1

is the fraction Qu term 4>j.) Finally, wi is the reciprocal of the amount of variance
present in the residuals of phenotypes on animal l, and can be calculated as

where n, is the number of observations on animal l, and D¡ = I2 - Ql x QT (with
no inbreeding, see also Bink et al. [2]). The conditional density for the xth QTL
effect of animal j can be given as

where

and



yz is the ith phenotype for animal j, corrected for all effects other than QTL, Wl.
is the average of phenotypes on non-parent l, also corrected for all effects other than
QTL, dq!’1 is the first element of the xth row of D7’QT for animal j, and corrects
for the covariance at the QTL between parent and offspring. Similarly, dqd!’1 is

the first element of the xth row of f!!D! 1Q! for animal j, and corrects for the
covariance between parent and the mate belonging to a particular offspring of that
parent j.

A1.2. Dispersion parameters

In the RAM, the residuals (e) have different variances over the categories of
animals (table 1). Hence, conditional densities for VC in 0vc are not standard
densities. For example, when deriving the full conditional density for o,,2, the term
Wi (a2+ 2a2) is known in the likelihood part of the joint posterior density (13). It
can thus be treated as a constant, but it does not drop out of the equation. With
BRT, the conditional density of u2 is standard, but those for h2 2 and -y are not. With
0vc , the conditional density of variance component x, for x = e, u or v, is

where

and

With ORT, the conditional density for or,2, is an IG (r, s) distribution with



where N is the total number of phenotypes
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