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Abstract - The diversity of a set of breeds or species is defined in the Weitzman approach
by a recursion formula using the pairwise genetic distances between the elements of the
set. The algorithm for computing the diversity function of Weitzman is described. It also
provides a taxonomy of the set which is interpreted as the maximum likelihood phylogeny.
The theory is illustrated by an application to 19 European cattle breeds. The possible
uses of the method for defining optimal conservation strategies are briefly discussed.
&copy; Inra/Elsevier, Paris
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Résumé - Un aperçu sur l’approche de la diversité selon Weitzman. La diversité d’un
ensemble d’espèces, ou de races, est définie par Weitzman de façon récursive ; les données
de départ sont les distances génétiques entre les éléments de l’ensemble pris deux à deux.
L’algorithme de calcul de la diversité fournit, comme résultat intermédiaire, un arbre de
classement des espèces en présence, qui est interprété comme une phylogénie du maximum
de vraisemblance. La théorie est illustrée par un exemple d’application à 19 races bovines
européennes, et les utilisations possibles de la méthode pour définir des stratégies optimales
de conservation sont discutées brièvement. &copy; Inra/Elsevier, Paris
diversité / taxonomie / conservation / phylogénie / distance génétique

1. INTRODUCTION

The question of preserving biological diversity is currently attracting a great deal
of attention. Choices are necessary when it comes to deciding which endangered
species must be protected and which not. Conserving breeds of farm animals, or
domestic animal diversity, presents strong analogies with the more general question
of preserving biological diversity. In both cases, owing to the limited resources
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which can be devoted to conservation, the central question is ’what to preserve’ !6!.
The choices are difficult and it would be much easier if an operational theoretical
framework based on this concept of ’diversity’ were available. As noted by Solow
et al. !5!, this concept of diversity itself appears to have not so far been precisely
defined, apart from a few attempts which can be traced back to May !3!.
An analytical framework able to guide actual conservation policy in a diversity-

improving direction through the use of a diversity function has been provided by
Weitzman, an economist, who has given an example of application to the problem
of crane species conservation !8-10!. Since his theory is recent and almost unknown
to animal geneticists (see, however, Cunningham [1] and Ollivier !4!), and as it has
not yet been used in the context of livestock breed diversity, we found it useful to
describe it briefly and, as an illustration, to apply it to a set of cattle breeds.

2. THEORY

The method applies to ’elements’ which may represent species, breeds, subspecies
or any other operational taxonomic unit. Pairwise distances between elements are
given, presenting basic properties of positivity, symmetry and nil distance of an
element to itself. It is concerned with diversity between units; the theory ignores
diversity due to variation within units.

2.1. Computing diversity

Computing diversities is straightforward if one knows how much the addition of
one element, say j, increases the diversity of a given set Q. Intuitively, the magnitude
of the gain should be related to how different the new element is from the set Q;
the more different j is from Q, the greater the gain. This difference is measured
by the distance d(j, Q). Here, the distance from a point j to a set Q is defined, as
usual in set theory, by miniEQ d(i, j), in other words, the distance between j and
its closest neighbour in Q.

More precisely, the intuitive property of the diversity function (which will be
called V from now on) is the ’monotonicity in species’: the gain of one element
increases the diversity by at least d(j, Q)

However, this is too loose a property to define a unique function. In fact, we will
consider (1) as general conditions to satisfy for any member i withdrawn from the
whole set S, i.e.

where B is the complement set symbol, i.e. here SBi stands for S without i.
Let V’ be defined as Vi’ = V (SBi) + d(i, SBi). For a given set S, the value of V’

will depend on the element i chosen so that V(S) should verify:



If such a condition holds for the largest Vi’, it will also be true for all the other
ones since:

According to (2), all the functions having larger values than V’ also meet the
criterion; to make the definition of V(S) unique, it will be restricted to the lowest
one (minimum of V), i.e. precisely to that equal to V’. This leads to the recursive
definition of the Weitzman diversity function as:

with the initial conditions

The value of K is taken by Weitzman [8, 9] as a normalizing constant which
computationally can be set to zero.

Equation (4) provides a unique function having some interesting properties:
- the ’twin property’: the addition of an element which is identical to an element

of S does not increase V;
- the monotonicity in species [see (1)!;
- the continuity in distances: if the pairwise distances in set S are slightly

modified, the modification of diversity is slight too;
- the monotonicity in distances: if every pairwise distance in set S is increased,

the diversity of S increases too.
These properties are fundamental. They have the merit to remove ambiguity

and to lay down the definition of diversity on simple and rigorous principles. In
particular, the property of continuity in distances is of critical importance for any
utilization of the results, given that there is some uncertainty on the real values of
the pairwise distances.

2.2. The fundamental representation theorem

The dynamic programming recursion of equation (4) involves n! calculations,
n being the number of elements. Fortunately, the following property allows us to
reduce this computation to 2! calculations. The dynamic programming recursion
produces, as a secondary result, a graphical representation of the relations between
the elements.

2.2.1. Link property

By definition, and as shown previously, there exists an element i in any set S for
which the maximum of equation (4) is achieved:

Weitzman has shown that the element i in d(i, SBi) is one of the two closest

neighbours in S, i.e. d(i, SBi) = minu,vEs d(u, v). In other words, there exists an



element i in S the loss of which involves a minimal reduction of diversity equal to
d(i, SBi). This element is called the link.

2.2.2. Theorem

Having identified such a pair (i, j), how will we know which one is the link?
Remember from (3) that V(S) = max (V’, V! ). Now V’ = d(i, j) + V(SBi), and
Vj = d(i, j)+V (SB j) so that the link is the element satifying max {V (SBi), V (SB j) }.

The dynamic programming recursion becomes:

where, using Weitzman’s notations, the element g(S), satisfying max [V(SBg),
V(SBh)! is called the link, the other one, h(S), is the representative.
A proof of the theorem can easily be written by mathematical induction with

respect to the size of the set S.

2.2.3. Algorithm and graphical representation by a taxonomic tree

Applying equation (6) recursively generates a rooted directed tree whose twig-
tips are the elements of the set S and the nodes are the unknown ’ancestors’.

The different steps of the algorithm to be applied recursively are (beginning with
the value of diversity set to zero):

i) find the two closest neighbours i and j among the elements of S and add d(i, j)
to diversity;

ii) determine the link g and the representative h by using the property:

iii) given V(S) = d(g, h) + V(SBg), consider a new set without the link g,
i.e. SBg;

iv) return to i) until the size of the current set reaches 1; then add the constant
K defined in (4) to diversity and stop.

While drawing the tree, it is useful to place the link g between the representative
h and the closest neighbour of h in QBg, Q being the subset whose diversity
is computed at this step. Intuitively, it means that the loss of the link is less

consequential for the diversity than the loss of any other element. It presents the
advantage of allowing only one symmetry through the possible representations for
the tree, while most hierarchical clustering methods result in a number of possible
representations by rotation of the branches. The diversity of the set S can be read
on the tree as the sum of the branch lengths, or the sum of the ancestor ordinates.

Weitzman also showed that the particular tree generated by the dynamic
recursion algorithm in (6) and steps i-iv can be interpreted as the tree maximizing
the probability that all of elements of S exist at the current time (see Appendix).
An APL2 program has been written to run the computations on Unix and

Microsoft platforms. It is available upon request from the authors.



2.2.4. Example

Let us consider a set of four primate species. Pairwise distances are given in the
following matrix (data are provided by Weitzman !9!):

The closest neighbours to be found in the set {Go, Or, HyL, HyS} are HyL and
HyS.

V{Go, Or, HyL, HyS} = max [V{Go, Or, HyL}, V{Go, Or, HyS}] + d(HyS, HyL)

Now we need to know which element is the link in the couple (HyL, HyS).
The following matrices contain pairwise distances for the subsets {Go, Or, HyL}
and {Go, Or, HyS}:

V{Go, Or, HyL} = d(Go, Or) +max[V{Go, HyL}, V{Or, HyL}]
= d(Go, Or) + d(Go, HyL) (so Or is the link element in

{Go, Or, HyL})
= 889

V{Go, Or, HyS} = d(Go, Or) + max {V{Or, HyS}, V{Go, HyS}}
= d(Go, Or) + d(Go, HyS) (so Or is the link element in

{Go, Or, HyS})
= 855

V{Go, Or, HyL} > V{Go, Or, HyS}, thus we have determined that the link
element in the couple (HyL, HyS) is HyS, and consequently the representative is
HyL. Considering the remaining set after the suppression of the link element, i.e.
{Go, Or, HyL} we found that the closest neighbours are (Go, Or), with Or as the



link element. This information then makes it possible to compute the total diversity,
which is worth 1015 = d(Go, HyL) + d(Go, Or) + d(HyL, HyS), and to draw the
corresponding taxonomic tree (figure 1).

The link HyS in {Go, Or, HyL, HyS} is placed between the representative HyL
and the closest neighbour Or of HyL in {Go, Or, HyL}. The link Or in {Go, Or,
HyL} is then placed between the representative Go and the closest neighbour HyL
of Go in {Go, HyL}, resulting in a final order of Go, Or, HyS, HyL.

3. APPLICATION: EXAMPLE OF EUROPEAN CATTLE BREEDS

3.1. Evaluation of diversity

The Weitzman method has been applied to data collected by F. Grosclaude
[2] on biochemical polymorphisms (11 blood group loci and the locus of blood
serum transferrin and that of beta-casein) of 19 European cattle breeds, including
18 French breeds and the British Shorthorn. This latter was included because of
its Durham ancestor that has been introduced in some French regions during the
last century. The authors calculated the Nei standard distances considering the 13
polymorphic loci (table 1). Results of the different steps of the computations of
diversity are shown in table II.

The graphical representation of the result is shown in figure 2. A clear discrimi-
nation is observed between two groups i.e. i) a first group made of Northern dairy
breeds (Frisonne, Flamande, Maine Anjou, Shorthorn) and ii) another group involv-
ing beef and hardy breeds of the Center and West part of France (Salers, Aubrac,
Limousine, Charolais, Ferrandaise, Blonde d’Aquitaine) as well as Western and
Eastern dual purpose breeds (e.g. Pie Rouge, Abondance, Tarentaise, Brune des
Alpes, Bretonne Pie-Noire, Montb6liarde and Parthenaise); the original location of
the Normande breed between those two groups as already mentioned by Grosclaude
et al. [2] should also be noted.





Current population sizes in some of those breeds are so restricted that they
are said to be endangered: e.g. Bretonne Pie Noire, Ferrandaise, Vosgienne or the
Shorthorn.

The Weitzman method allows us to quantify the loss of diversity caused by the
extinction of any subset among the 19 original breeds. By looking at the tree it is
evident that the extinction of the Shorthorn causes a much greater loss of diversity
than the extinction of the Flamande, whose distance from its closest neighbour, the
Frisonne Pie Noire, is quite small.

By computing the diversities of the initial set of breeds and the set minus the
Flamande, or the Shorthorn, or both the Flamande and the Shorthorn, one finds
that the loss of the set Flamande + Shorthorn induces a reduction of diversity equal
to the sum of the reductions caused by the loss of each of these breeds. This property
of additivity is related to the degree of ’independence’ between the two breeds. On
the other hand, if the extinctions of the Montb6liarde and the Parthenaise were in



The loss of diversity caused by the extinction of a set of breeds can be estimated
by the sum of the ordinates of the nodes that would disappear from the tree if the
extinct breeds were to be removed, without any other change. Thus, just by looking
at the tree, it is obvious than the loss of the Normande would decrease the diversity
eight or nine times more than the loss of the Blonde d’Aquitaine, and even more
than the loss of a set including Charolaise, Ferrandaise and Blonde d’Aquitaine.



3.2. Further considerations on conservation strategies

The algorithm may be applied to evaluate the relative merit of breeds with small
or medium population sizes regarding diversity. Let us consider the whole set (say
Q) of the 18 French cattle breeds analysed in this study, and that (say L) of the
six largest dairy (Francaise Frisonne, Montb6liarde and Normande) and beef breeds
(Blonde d’Aquitaine, Charolaise and Limousine). The relative loss due to keeping
those six breeds only is 57.2 %. Now one may ask which is the most interesting breed
to select among the rest if any of them has to be preserved. This can be evaluated
by considering the relative loss of diversity between Q and L plus each of those 12
breeds. Results based on Nei and (Cavalli-Sforza) distances are the following:

The breed providing the lowest loss of diversity is the Salers breed followed by
the Aubrac. The ranking is consistent across the two distances used. Although this
is only an illustration which would deserve further analysis including additional
markers, this example is a significant one as those breeds have been recognized as
key hardy breeds for a long time [7].

4. DISCUSSION AND CONCLUSION

The method presented provides several results with different degrees of robust-
ness and different potential applications.

As indicated above, the value of diversity possesses a useful property of continuity
in distances. The results may be considered as relevant to support decisions affecting
the breeds or species to be preserved. The choice would be based only on objective
computations, without relying on such subjective characteristics as beauty, interest
for future or present generations or any other intrinsic criterium. Experience has
shown that it is difficult to base priorities on such criteria.

The Weitzman approach to diversity allows further developments. Weitzman
[10] suggests defining a diversity expected after a given period of time, based on
the extinction probability of each element of the set considered. If n elements are
endangered, 2 survival-extinction patterns may occur with given probabilities,
and for each pattern the resulting diversity may be calculated. Weitzman then
defines a ’marginal diversity’ of each element, obtained as the partial derivative of
the expected diversity with respect to the extinction probability of this element.
The marginal diversity of breed i measures the relative gain in expected diversity
(after 50 years say) from improving the survival probability of breed i. In a similar
fashion, one could assume that the extinction of a breed can be completely avoided
by using cryopreservation and calculate the gain in expected diversity obtained
by cryopreserving each endangered breed. Knowing the pairwise genetic distances



and the risk status of a given set of endangered breeds as expressed through their
respective probabilities of extinction, an order of priority for a cryopreservation
programme could thus be established.

Because diversity is computed recursively, it involves very long calculations when
the size n of the set is larger than 25. The approximation proposed in this study
relies on a random choice of the link at each stage of the recursive algorithm, i.e.
on sampling trees among the 2n-1 possible trees. The procedure can be applied as
follows: i) compute V among the elements of S by choosing at each step the link
not from the formula in (6), but at random out of the pair of closest neighbours,
ii) repeat i) m times such as to generate m different values of V, iii) take as the
estimated value of V(S) the maximum value of V over all values computed. This
can be performed by choosing at random m integers smaller than 2!!! , convert
them into their binary expression and use the convention that the link will be the
first element if the value is 0 and the second if it is 1. This procedure was tested
on a set of 29 cattle breeds using data from Moazami-Goudarzi (pers. comm.). For
m = 10 000, the estimated value of V was at least of 13 200 as compared to a real
value of 13 722, i.e. bias lower than 4 %. This approximation is quite good regarding
the time of computation required by this estimation (20 min) while the complete
algorithm needed more than 8 days.
On the other hand, the graphical representation might be sensitive to slight

modifications of the distance matrix if the values of diversity are close for cer-
tain subsets. Simulation procedures to evaluate the robustness of clades have been
proposed by Weitzman [8]. Although the clustering power looks satisfying on the
examples we considered, any phylogenetic interpretation of the results should be
used with caution. It should also be emphasized that the use made of genetic dis-
tances in this approach differs from their use in deriving genealogical trees. Though
trees are useful geometric representations of diversity - the diversity function de-
fined above is indeed equal to the total branch length of the corresponding tree -
they must be considered as telling the evolutionary story that best fits the diversity
observed, but not necessarily as telling the ’true’ story. In fact, as emphasized by
Weitzman [9], there is no need for the elements to have been generated by any
real evolutionary phylogeny. This has to be kept in mind particularly when sets of
domestic breeds are considered. Given the exchanges known to have occurred in
their past histories, domestic breeds are indeed not likely to have resulted from a
strict tree-like branching process. Whereas taxonomists are essentially interested in
finding the evolutionary story behind a given observed diversity, conservationists,
especially breed conservationists, do not need that type of information as they are
more concerned with the future evolution of diversity.

The main use of the Weitzman method is to determine preservation strategies. It
supposes, however, that the elements of the set considered are and remain distinct.
If this constraint can be removed, it may be suggested that certain endangered
breeds be amalgamated with other ones. The population size would increase, no
additional costs would be engaged, and the direct loss of alleles that results from
an extinction could be avoided. Of course, this implies that the breed standards
should be relaxed for a while, but it is a dynamic conception of preservation that
may offer interesting solutions in some cases.



Despite the criticisms which can be raised against the Weitzman approach,
including that it ignores the differences in within unit variation, it should be kept
in mind that it does satisfy certain basic properties which do not always hold with
traditional criteria. The principle (1) of ’monotonicity in species’ means that the
change in diversity V(SBi) - V(S) due to the loss of some population i is always
negative or nil (for i being a twin element). In contrast, this property does not
apply to variance, for it can be easily shown that the total variance of a mixture of
populations can increase after some of them are deleted.
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APPENDIX: the maximum likelihood tree

Weitzman [8] provides the following phylogenetic interpretation. Let us note
p(i, j) the conditional probability P(i! j) that a species i exists given that a species
j exists. Assume that this probability is a function of the genetic distance between
i and j. The hypothesis underlying this assumption is that the distance d(i, j)
between two species i and j measures the time since their separation. More precisely,
we will suppose that p(i, j) = exp !-ad(i, j)] where A is a ’universal extinction rate’.

The maximum likelihood tree is the evolution scheme (i.e. the set of unknown
ancestors) which maximizes the probability that every element of S exists at the
current time.

Let P( j !i) be the conditional probability that species j exists given i exists.

Assuming that the evolution scheme is known, it can be shown that, for any subset
Q E S, and J E SBQ, the conditional probability P(jlQ) that j survived given Q
exists satisfies

Note p(j, Q) = m! P(j!i). Now, from basic probability theory, P(jlQ) -t&euro;Q

P(Q U j)/P(Q), and combining this with (A.1) leads to:

Let us note 11(8), the largest probability that S exists, i.e. the probability of
existence under the most favourable evolution scheme. Equation (A.2) applied for
Q = SBi, and j = i implies

Any evolution scheme that would induce a value of P(S) = II* would be identified
as the scheme under which the probability that S exists is maximal, ie the maximum
likelihood tree. Taking the logarithm of equation (A.3) and normalizing A to 1, it
becomes:

Since (A.5) has been studied above and solved by algorithm (6), we are able
to exhibit such an evolution scheme. The tree generated by the Weitzman method
can be interpreted as the maximum likelihood tree, i.e. the tree that maximizes the
likelihood of the current survival pattern of the species.
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