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Abstract — Restricted best linear unbiased prediction (restricted BLUP) is derived by
imposing restrictions directly within a multiple trait mixed model. As a result, the
restricted BLUP procedure requires the solution of high order simultaneous equations.
In the present paper, a simple method for computing restricted BLUP of breeding values
is presented. The technique is valuable, particularly when a large number of restrictions
are imposed in a multiple trait mixed model such as constraints of achieving predetermined
relative rates of genetic improvement for all traits. © Inra/Elsevier, Paris

mixed model method / restricted BLUP

Résumé — Méthode simple de calcul d’un BLUP restreint. Le BLUP restreint est calculé
directement en posant les contraintes en sus des équations correspondantes & un modele
linéaire mixte multivariate. En conséquence, la procédure du BLUP restreint demande la
résolution d’un plus grand nombre d’équations que dans le cas habituel. Dans cet article,
on présente un reparamétrage qui permet d’aboutir & un systéme plus simple et de taille
réduite. Cette technique est particulierement intéressante quand un grand nombre de
restrictions est imposé dans un modeéle mixte multivariate, comme quand on cherche a
obtenir des rapport prédéterminés de progres génétiques pour tous les caracteres.

© Inra/Elsevier, Paris

modéle mixte multivariate / BLUP restreint

1. INTRODUCTION

Kempthorne and Nordskog [9] gave the basic derivation of restricted selection
indices. The model assumed was that the observation vector y,isy=f+u+e, u
and e are multivariates normally distributed with E(u) = F(e) =0, and f is fixed
and assumed known. Var(u) = I® Gy, var(e) = I® Ry, and cov(u, €’) = 0, where
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Gy is the genetic variance—covariance matrix, Rg¢ is the environmental variance—
covariance matrix, and ® is the direct product operation. They were interested in
maximizing improvement in m’u;, but at the same time not altering the expected
Cgu;, in the candidate for selection, where m is a vector of relative weights, u; is
the subvector of u pertaining to the ith animal, and C’0 has r linearly independent
rows. They proved that such a restricted selection index is b’y;, where y; is the
subvector of y pertaining to the ¢th animal, and b is the solution to

Go+ Ry GoCy b _ Gom
CiGy 0 8] | o

Index theory was further extended to include various restrictions by Mallard [11],
Harville [3, 4], among others. In practical applications, however, large data sets with
unknown means and related animals render restricted selection index predictors of
breeding values impossible to compute. Quaas and Henderson [13, 14] extended the
BLUP procedure of Henderson [5] to allow estimation of breeding values including
restrictions for no genetic change among correlated traits (restricted BLUP).

Restricted BLUP was derived by imposing restrictions directly on the multiple
trait mixed model equations. Consequently, the restricted BLUP procedure requires
solutions of high order simultaneous equations, particularly when a large number
of animals are evaluated for many traits. For this reason, computational techniques
have been studied for computing restricted BLUP. Lin [10] showed how restricted
BLUP of breeding values can be estimated not only for zero change but also for
proportional change in restricted traits. It was, however, assumed that the variance-
covariance matrix among predicted breeding values was the same as that among
true breeding values. This approach adds bias when estimates of genetic variances
and covariances are used instead of the true parameters. The assumption ignores
the effect of differing accuracies of prediction of individual breeding values for each
animal, particularly when animal models are fitted to large unbalanced field data
sets [15]. Itoh and Iwaisaki [7] found that a canonical transformation of the traits
to new independent variables was possible and, consequently, only mixed model
equations of relatively smaller order for each trait need to be solved. However, this
is applicable only to an animal model with identical models for all traits and no
partially missing observations.

The objectives of the present paper are to show a simple procedure for computing
restricted BLUP of breeding values and to discuss its application.

2. THEORETICAL APPROACH
2.1. Theoretical background

An additive genetic mixed animal model for ¢ traits is assumed. The model for
the ith trait is written as:

yi = Xibi + Ziu; +e;

where y; is a vector of observations for the ith trait; b; is a vector of unknown
fixed effects; X; is a known incidence matrix relating elements of b; to y;, u; is a
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vector of unknown random additive genetic effects, Z; is a known incidence matrix
relating elements of u; to y;, and e; is a vector of random errors. Let n; be the
number of records on the jth animal; j = 1,2,...,n and 0 < n; < g. The model
for all traits is written as:

y=Xb+Zu+e (1)
where records are ordered by animals within traits. It is assumed that u and e
are multivariates normally distributed with E(u) = 0, E(e) = v0, var(u) = G,
var(e) = R, and cov(u,e’) = 0; G = Go ® A, where Gy is a ¢ x ¢ additive genetic
variance—covariance matrix for the ¢ traits, A is the additive relationship matrix
for the n animals, and R is an n x n(n = ¥Xn;) error variance-covariance matrix for
the ¢ traits for the n animals.

Let the set of restrictions on u be C’'u. If the same constraints are imposed
on the additive genetic values of all animals, C = Cy ® I,, where Cy is a
g X r matrix with full column rank; m is the number of animals represented
in u. The number of columns of Cgy, r, depends on the number and type of
constraints imposed: no change and/or proportional change. This will be illustrated
subsequently. Kempthorne and Nordskog [9] defined Cy for no change constraints.
For example, if the restriction is no change for the first two traits, Cy might be

, [Tt 00 ... 0
CO‘[010...0

Here r is the number of traits constrained. For the case of proportional con-
straints (involving 2 < p < g traits), define:

¢ 0 ... 0 —C
0 C N 0 —C2
Co=|. * (2)
0 0 ... ¢ —cp1
Then let C}, = [C; 0(p—1)x(q—p)]
where ¢; is a predetermined proportional change for traits 1, 2, ..., p [8, 11]. Note

that r = p — 1. Furthermore, if constraints include no change and proportional
change, Cy is z columns whose elements are unity or zero in addition to C,, and
then r = z + p — 1. For example, if we want no change in trait 1 but proportional
change in traits 2, 3 and 4 is desired based on proportional constraints in the ratio
2:3:4, Cy is expressed as

100 0 0 ... 0
Co=10 40 -20 ... 0
0 04 -3 0 ...0
The restricted BULP of u, 1, is obtained by solving the following equations [13]:
X'RIX X'R™1Z X'R1ZGC B X'Rly
ZR X ZR'Z+G! ZR'ZGC a|=|ZRy (3)
C'GZR !X CGZR'Z CGZR!'ZGC] [W C'GZ'R™ 'y

where B is a vector of some solution to b and W is a vector of Lagrange multipliers.
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2.2. Restriction for general case

Premultiplying the second equation in (3) by C'G and then subtracting from
this product the third equation gives

Ca=0 (4)

This implies that some 1is are null and/or there are simple linear dependencies
among them. These can be exploited to reduce the size of the problem. Now we
consider imposing the same restrictions on the predicted breeding values of all
animals, however, it is possible to relax the situation. When constraints are imposed
on some traits, model (1) can be rewritten as

Yz Xz 0 0 bz Zz 0 0 uz ez
Yr| = 0 Xg O br|+| 0 Zgr O ur | + | er
YN 0 0 Xn bn 0 0 Z, un eN

where subscripts Z, R and N correspond to z characters with no change, p characters
with proportional constraints and ¢-z-p characters without constraint, respectively.
From (4),

az
ca=(ChoLya== % %er, || =0 (5)
0 C, 0 .
un
Then,
uz =0 (6)
and from (2) and (5),
g =k®a, = (k®L,)a, (M
where k’ —[cl/cp ca/cp ... Ccp-1/cp 1=k ko ... kp] and
g = [@] @) ).
Using (6) and (7),
=g | =| k®L,G, | =]k 0 ®Im[f’} = (Ko®I,)a=Ki (8)
a
N (Ix ® Ly )iy 0 Iy N
’ 0 ¥ ~ YRR : : :
where Kj, = 0 0 I and G = [, Gy]. Substituting (8) into (3) and
premultiplying both sides appropriately to maintain symmetry, we obtain
X'R™IX X'R™1ZK X'R-1ZGC B X'R 1y
K'ZR'X KZR1ZK+K'G'K K'ZR!ZGC a|=|KZR 'y
C'GZ'R'X C'GZ'R'ZK C'GZR'ZGC| | w C'GZ'R 'y

(9)
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There are fewer @s in (9) than Gs in (3). Equations (9) show that computation
for formulating BLUP equations is relatively simpler than (3).

2.3. Constraints with change in some traits restricted to zero

If constraints only include no change in some traits, then Kg is simpler and to
form (9) one just deletes rows and columns from (3) corresponding to @,. Ko is
g x (g — z) can then be taken as

0=1[0 InJ

and

=1y
2.4. Constraints for desired changes

If constraints are for proportional changes (predetermined relative changes) for
all traits, then

Ko=k
and
=1,
The size of restricted BLUP equations corresponding to random additive effects

is reduced to that of single trait BLUP.

2.5. Animal model without repeated records

If we denote the equations (9) as Wh = h, an equivalent set of equations for B
and u is

QWQQ 'h=Qv

where
I, 0 0
Q=0 Ing-n 0

0 0 I, @ A1

where t is the number of the columns of X. Then because (I, ® A~1)C'G =
C,Go ® I, equations (9) are represented as in (10)

X'R™1X X'R™1ZK X'R™1ZP B X'R-ly
K'ZR'X KZR-1ZK+K'G'K K'ZR'ZP| |u | = |K'ZR 1y
P'ZR™X P'ZR'ZK P'ZR-1ZP 8§ P'ZR 1y

(10)
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where p’ = C{Go ®1,, and § = (I, ® A~!)W (see Quaas and Henderson [13]). If
C = Cy ®1,,, then we have ZZ' =T and eliminating § from (10), we obtain

_ [X'zZ8Z'y
- I:Klszly ] (11)

where S = ZR™!Z - Z’R™!ZP(P'Z’R~'ZP) - P'Z'R~'Z [13] and Z is rows of I
corresponding to missing records are deleted if there are missing records. Matrix S
has simple forms and the calculation of their elements is easy. For example, S has
the form

a

X'ZSZ'X X'ZSK B
K'SZ’X K/'(S+G 1)K

Dy Dy ... qu
S < D.12 D'22 D.Zq
Dy, Dy, ... Dy

where each D;; is a m x m diagonal matrix. Suppose that d;jx is the kth element
of Dj;j;, then dijx is the ijth element of Sy, that is, a matrix peculiar to the kth
animal, and

Si = Hy, — HyGCo(C}GoH,G(Co) — CyGoHy

where Hy, is a ¢ X ¢ matrix peculiar to the kth animal. As shown by Quaas and
Henderson [13], it is computed as follows:

1) if the animal has no records missing, Hy = Rq 1. where Ry is the g x ¢ error
variance—covariance matrix;

2) if the animal has all records missing, H;, = 0;

3) otherwise, find the inverse of the elements of Ry pertaining to records that

are present and fill out the remaining elements with zeros for the other elements of
H;.

3. NUMERICAL EXAMPLE

A numerical example obtained from the study of Henderson and Quaas [6] is
used to illustrate the method. Data on five animals for birth weight (BW), weaning
weight (WW) and feedlot gain (FG) are used and are as follows:

Season
Animal of birth BW WwW FG
1 1 61 362 1.96
2 1 72 401 2.05
3 2 68 350 . 1.81
4 2 78 410 2.01
5 2 65 340 1.74
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The genetic and error variance-covariance matrices are

28.60 73.77 0.50
Go = | 73.77 566.0 2.29

0.50 2.29 0.0276

and Ro=|6743 14540 —-0.53

006 —0.53 0.0254

36.3 67.43 0.06 :'

respectively. The fixed effects in the model are a common mean for BW, and season
of birth for WW and FG. Consequently,

X{=[11111)

1 1.0 00

and X’2=X§=
0 0111

Because all animals are assumed to have all records for the three traits, then
Z2,=2Z,=23=1;
The additive genetic relationship matrix is

1.0 025 025 0.0 0.0
025 1.0 025 00 0.0
A=1(025 025 1.0 00 0.0
00 00 00 10 025
00 00 00 025 10

Suppose that the restrictions are for no genetic change in BW and for desired
changes in WW and FG which are one genetic standard deviation unit, namely
23.79:0.1661. Then
, _|0.1661 0.0 0.0

Co = 0.0 0.1661 —23.79

First, the direct solution of restricted BLUP will be shown. Matrices X'R~!X,
X'R7'Z, X'R"'ZGC, ZR'Z + G™!, ZZR"'ZGC and C'GZ'R!ZGC of
equations (3) become (12a), (12b), (12¢), (12d), (12¢) and (12f), respectively.

0.1520 -.0029 -—.0043 —.2040 —.3061
—.0029 0.0015 0.0000 0.0386 0.0000
X'R7'X = | —.0043 0.0000 0.0023  0.0000 0.0580 (12a)
—.2040 0.0386 0.0000 80.0283 0.0000
—.3061 0.0000 0.0580 0.0000 120.0424
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Vectors X'R~'y, Z’R~!Z and C'GZ'R ™'y of equations (3) are
X'Rly = [6.7868 0.4663 0.6401 161.6266 22.2007,

Z'R~'y =[1.1309 1.3997 1.3764 1.5732 1.3068 0.2254 0.2409 0.2032 0.2383

0.1986 79.1971 82.4295 72.2491 80.3907 69.5610],

C'GZ'R™1ly = [143.7809 137.3768 124.4704 112.4962 — 18.6050 — 18.7419
—17.7570 —14.9453 —13.9514]".

Because rank (X'ZSZ'X) = 2, solving the equations requires finding a general-
ized inverse of (4) which may be obtained by setting appropriate columns of Z'X
to O to remove all linear dependencies and then inverting the non-null portion. For
this example, X; and X, are assumed to be 0. From these equations, solutions are
as shown in table I

Next, the technique developed here will be shown. From (9),
K =K, ®I;=[0.0 143.2035 1.0]®Ts = [0.0®I5 143.2035Q1; 1.0®Is),

then matrices X’R-1ZK, K'Z’R!ZK + K'G™'K and K'Z’R™!ZGC of equa-
tions [9] become (12a), (12b) and (12c), respectively.

—0.3093 0.3093 -0.3093 -0.3093 —0.3093
0.1284 0.1284  0.0000  0.0006  0.0000
X'R!ZK = 0.0000 0.0000 0.1284 0.1284  0.1284 (13a)
42.7804 42.7804  0.0000  0.0000  0.0000
0.0000 0.0000 42.7804 42.7804 42.7804

K'ZR 1ZK +K'G™'K =
148.0820 —17.3821 —17.3821 0.0000 0.0000 T
—17.3821 148.0820 —17.3821 0.0000 0.0000
~17.3821 —17.3821 148.0820 0.0000 0.0000 |  (13b)
0.0000 0.0000 0.0000 144.6056 —20.8585
0.0000 0.0000 0.0000 —20.8585 144.6056

and
[ 22.0190 5.5047  5.5047 0.0000  0.0000 T
5.5047 22.0190  5.5047 0.0000 0.0000
5.5047  5.5047 22.0190 0.0000  0.0000
0.0000  0.0000 0.0000 22.0190  5.5047
K'ZR-ZGC = 0.0000  0.0000 0.0000 5.5047  22.0190 (13¢)

—6.8511 —1.7128 —1.7128 0.0000  0.0000
—-1.7128 —-6.8511 -1.7128 0.0000  0.0000
-1.7128 —-1.7128 -6.8511 0.0000  0.0000

0.0000 0.0000 0.0000 —6.8511 -—1.7128
L 0.0000 0.0000 0.0000 -1.7128 —6.8511 ]
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The solutions for FG give the predicted breeding values which are identical to
table I. From (6) and (7), & of BW = 0 and ¢ of WW = 143.227 x @ of FG., which

are identical to table 1.

Table I. Solutions of each animal.

Animal BW WwW FG

1 0.000 —0.2227 —0.0016
2 0.000 -0.708 —0.0049
3 0.000 —1.870 -0.0131
4 0.000 4.203 0.0293
5 0.000 —1.866 0.0130

In this example, equations [11] are useful.

S=5®I, =

0.0128 —0.0026 —0.3522

—-0.0026  0.0005  0.0709 | ® Is,

—0.3522  0.0709  9.6875

then, the matrix on the left hand side of equations (11) presented in (14) were
obtained by removing rows and columns of all linear dependencies.

[19.3749
0.0000
19.8395
19.8395
0.0000
0.0000

L 0.0000

0.0000
29.0624
0.0000
0.0000
19.8395
19.8395
19.8395

19.8395
0.0000

127.5556 —17.3850 —17.3850 0.0000 0.0000

—17.3850

—17.3850 —17.3850 127.5556 0.0000 0.0000

0.0000
0.0000

19.8395 0.0000 0.0000 0.0000 7
0.0000 19.8395 19.8395 19.8395

127.5556 —17.3850 0.0000 0.0000

0.0000 0.0000 124.0786 —20.8620
0.0000 0.0000 -—-20.8620 124.0786

We also obtain the expected breeding values which are identical to (13) from the
solutions using (14).

4. DISCUSSION

Henderson and Quaas [6] derived BLUP of breeding values for multiple traits
using records on a large number of relatives. Restricted BLUP was derived by
imposing restrictions on multiple trait BLUP [13]. Hence, in restricted BLUP, the
computing load to obtain estimates of breeding values can be huge.

Itoh and Iwaisaki [7] showed that a canonical transformation technique was
applicable to restricted BLUP in order to reduce the number of equations for
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an animal model. However, the method has a limitation in that models must
be identical for all traits and there must be no partially missing observations.
Hence, the canonical transformation technique can be used only if models and
data structure conform to the above conditions.

Various restricted selection index theories have been presented since Kempthorne
and Nordskog [9]. However, only two types of constraints have been used practically
for selection, i.e. zero changes in one or a few traits and proportional changes for
all traits (e.g. Hagger [2]). Now if all constraints are zero-change for some traits
and m is several millions even removing a @ equation for a set of constraints might
be useful. If proportional changes are imposed for all traits, the size of equations
corresponding to random additive genetic effects is much reduced. The technique
developed here needs no conditions to be applied and reduced the number of sets of
equations corresponding to random additive effects from ¢ to g-rank(Cy). Hence, if a
large number of restrictions is imposed in a model such as a constraint of achieving
predetermined relative changes for all traits [1, 12, 16], the size of equations for
random additive effects is the same as that of a single trait model.
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