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Abstract - In this paper, a full Bayesian analysis is carried out in a semiparametric
log normal frailty model for survival data using Gibbs sampling. The full conditional
posterior distributions describing the Gibbs sampler are either known distributions or
shown to be log concave, so that adaptive rejection sampling can be used. Using data
augmentation, marginal posterior distributions of breeding values of animals with
and without records are obtained. As an example, disease data on future AI-bulls
from the Danish performance testing programme were analysed. The trait considered
was ’time from entering test until first time a respiratory disease occurred’. Bulls
without a respiratory disease during the test and those tested without disease at
date of analysing data had right censored records. The results showed that the
hazard decreased with increasing age at entering test and with increasing degree
of heterozygosity due to crossbreeding. Additive effects of gene importation had no
influence. There was genetic variation in log frailty as well as variation due to herd
of origin by period and year by season. &copy; Inra/Elsevier, Paris
survival analysis / semiparametric log normal frailty model / Gibbs sampling /
animal model / disease data on performance tested bulls
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Résumé - Inférence Bayésienne dans un modèle de survie semiparamétrique
log-normal à partir de l’échantillonnage de Gibbs. Une analyse complètement
Bayésienne utilisant l’échantillonnage de Gibbs a été effectuée dans un modèle de
survie semiparamétrique log-normal. Les distributions conditionnelles a posteriori
mises à profit par l’échantillonnage de Gibbs ont été, soit des distributions connues,
soit des distributions log-concaves de telle sorte que l’échantillonnage avec rejet
adaptatif a pu être utilisé. En utilisant la simulation des données manquantes, on
a obtenu les distributions marginales a posteriori des valeurs génétiques des animaux



avec ou sans données. Un exemple analysé a concerné les données de santé des futurs
taureaux d’insémination dans les stations danoises de contrôle de performance. Les
taureaux sans maladie respiratoire ou n’en ayant pas encore eu à la date de l’analyse
ont été considérés comme porteurs d’une information censurée à droite. Les résultats
ont montré que le risque instantané décroissait quant l’âge à l’entrée en station ou le
degré d’hétérozygotie lié au croisement croissaient. Les effets additifs des différentes
sources de gènes importés n’ont pas eu d’influence. Le risque instantané de maladie
a été trouvé soumis à des influences génétiques et non génétiques (troupeau d’origine
et année-saison). &copy; Inra/Elsevier, Paris

analyse de survie / modèle semi-paramétrique / échantillonnage de Gibbs /
modèle animal / résistance aux maladies

1. INTRODUCTION

When survival data, the time until a certain event happens, is analysed, very
often the hazard function is modelled. The hazard function, Ai(t), of an animal
i, denotes the instantaneous probability of failing at time t, if risk exists.

In Cox’s proportional hazards model [5] it is assumed that Ai(t) = Ao(t)
exp{x!,6}, where, in semiparametric models, AO(t) is any arbitrary baseline
hazard function common to all animals. Covariates of animal i, xi, are supposed
to act multiplicatively on the hazard function by exp{x!,6}, where ,Q is a
vector of regression parameters. In fully parametric models the baseline hazard
function is also parameterized. The proportional hazard model assumes that
conditional on covariates, the event times are independent and attention is
focused on the effects of the explanatory variables. The baseline hazard function
is then regarded as a nuisance factor.

Frailty models are mixed models for survival data. In frailty models it is
assumed that there is an unobserved random variable, a frailty variable, which
is assumed to act multiplicatively on the hazard function. Sometimes a frailty
variable is introduced to make correct inference on regression parameters. In
other situations the parameters of the frailty distribution are of major interest.

In shared frailty models, introduced by Vaupel et al. (32), groups of individ-
uals (or several survival times on the same individual) share the same frailty
variable. Frailties of two individuals have a correlation equal to 1 if they come
from the same group and equal to 0 if they come from different groups. Mainly
for reasons of mathematical convenience, the frailty variable is often assumed
to follow a gamma distribution. In the animal breeding literature, this method
has been used to fit sire models for survival data using fully parametric models
(e.g. [8, 10]).

Several papers deal with correlated gamma frailty models (e.g. [22, 26, 30,
31!). In these models individual frailties are linear combinations of independent
gamma distributed random variables constructed to give the desired variance
covariance matrix among frailties. From a mathematical point of view these
models are convenient because the EM algorithm [7] can be used to estimate the
parameters. Because of the infinitesimal model often assumed in quantitative
genetics, frailties may be log normally distributed; thereby conditional random
effects act multiplicatively on the baseline hazard as do covariates. It is not



immediate to use the EM algorithm in log normally distributed frailty models
as stated by several authors and shown in Korsgaard !21!.

In this paper we show how a full Bayesian analysis can be carried out in
a semiparametric log normal frailty model using Gibbs sampling and adap-
tive rejection sampling. It is shown that by using data augmentation, marginal
posterior distributions of breeding values of animals without records can be ob-
tained. The work is very much inspired by the works of Kalbfleisch !19!, Clayton
!4!, Gauderman and Thomas !11! and Dellaportas and Smith !6!. Kalbfleisch [19]
presented a Bayesian analysis of the semiparametric regression model. Gibbs
sampling was used by Clayton [4] for Bayesian inference in the semiparamet-
ric gamma frailty model and by Gauderman and Thomas [11] for inference in
a related semiparametric log normal frailty model with emphasis on applica-
tions in genetic epidemiology. Finally Dellaportas and Smith [6] demonstrated
that Gibbs sampling in conjunction with adaptive rejection sampling gives a
straightforward computational procedure for Bayesian inferences in the Weibull
proportional hazards model.

The semiparametric log normal frailty model is defined in section 2 of this
paper. In this part we show how a full Bayesian analysis is carried out in the
special case of the log normal frailty model, where the model of log frailty is a
variance component model. The full conditional posterior distributions required
for using Gibbs sampling are derived for a given set of prior distributions. In
section 3, we analyse disease data on performance tested bulls as an example
and section 4 contains a discussion.

2. BAYESIAN INFERENCE IN THE SEMIPARAMETRIC LOG
NORMAL FRAILTY MODEL - USING GIBBS SAMPLING

Let Ti and Ci be the random variables representing the survival time and
the censoring time of animal i, respectively. Then data on animal i are (y2, 6i),
where y2 is the observed value of Y = min{Ti, Cd and 6i is an indicator random

variable, equal to 1 if Ti < Ci, and 0 if Ci < Ti. In the semiparametric frailty
model, it is assumed that, conditional on frailty Zi = zi, the hazard function,
Ài(t), of Ti; i = 1, ... , n, is given by

where Ah(t) is the common baseline hazard function of animals that belong to
the hth stratum, h = 1, ... , H, where H is the number of strata. xi (t) is a vector
of possible time-dependent covariates of animal i and is the corresponding
vector of regression parameters. Zi is the frailty variable of animal i. This is
an unobserved random variable assumed to act multiplicatively on the hazard
function. A large value, zi, of Zi increases the hazard of animal i throughout
the whole time period.

Definition: let w = (wl, ... , wn)’; if w I E - Nn(0, E) and the frailty variable Zi
in equation (1) be given by Zi = exp f w2}, i.e. ZZ is log normally distributed;
i = 1, ... , n. Then the model given by equation (1) is called a semiparametric
log normal frailty model.



This is the definition of a semiparametric log normal frailty model in broad
generality. However, special attention is given to a subclass of models where
the distribution of log frailty is given by a variance component model:

or in scalar form, wi = Uj + ai + ei where j is the class of the random effect,
u, that animal i belongs to; j E {1, ... , q}. ai is the random additive genetic
value and ei the random value of environmental effect not already taken
into account. It is assumed that ula’ - Nq(O, IqU’), a[a§ - NN(0, Aa!) and
e!er! !!(0,In.cr!). Qu and Qa. Q! and Qa are known design matrices of
dimension n x q and n x N, respectively, where N is the total number of
animals defining the additive genetic relationship matrix, A, and n is the
number of animals with records. Here, (u, a’), (a, or’) and (e, U2 ) are assumed
to be mutually independent. Generalizations will be discussed later. From

equation (2), the hazard of Ti is:

assuming that the covariates are time independent and that there is no
stratification. The vector of parameters and hyperparameters of the model

is aJ = (AoO,;3, u,a!,a,a!,e,a!), where Ao(t) = It Ao(u)du is the integrated
hazard function.

Note that log frailty, wi, of animal i, is an unobserved quantity which
is modelled. This is analogous to the threshold model (e.g. [28]), where an
unobserved quantity, the liability, is modelled. In the threshold model, a
categorical trait is considered, but heritability is defined for the liability of
the trait. In the semiparametric log normal frailty model the trait is a survival
time, but heritability is defined for log frailty of the trait. The semiparametric
log normal frailty model is not a log linear model for the survival times Ti,
i = 1, ... , n. The only log linear models that are also proportional hazards
models are the Weibull regression models (including exponential regression
models), where the error term is e/p, with p being a parameter of the Weibull
distribution and having the extreme value distribution !20!. Without restriction
on the baseline hazard, the proportional hazard model postulates no direct
relationship between covariates (and frailty) and time itself. This is unlike the
threshold model, where the observed value is determined by a grouping on the
underlying scale.

2.1. Prior distributions

In order to carry out a full Bayesian analysis, the prior distributions of all
parameters and hyperparameters in the model must be specified. A priori, it is
assumed (by definition of the log normal frailty model) that u, given the hyper-
parameter (7 u 2, follows a multivariate normal distribution: UIU2 u - Nq(O,I9Qu).
Similarly, it is assumed that ala 2 - NN (0, AO,2 ) and e 10,2 _ N,,(o,l,,a2) A



priori elements in /3 are assumed to be independent and each is assumed to fol-
low an improper uniform distribution over the real numbers; i.e. p({3b) oc 1;
b = 1,...,.B, where B is the dimension of !3. The hyperparameters a£, a§ a
and Qe are assumed to follow independent inverse gamma distributions; i.e.

a! ’&dquo; IG(¡.¿u, lIu), a! ’&dquo; IG(¡’¿a, va) and or2 - IG(¡’¿e, ve), where ¡’¿u, lIu, pa, va,
and,a,, ve, are values assigned according to prior belief. The convention used for
inverse gamma distributions is given in the Appendix. The baseline hazard func-
tion >’0 (t) will be approximated by a step function on a set of intervals defined
by the different ordered survival times, 0 < t(1) < ... < t(M) < oo: >’o(t) = Aom
for t(,!_1) < t:=:; t(!,); m = 1,..., M, with t<o> = 0 and M the number of dif
ferent uncensored survival times. The integrated hazard function is then con-
tinuous and piecewise linear. A priori it is assumed that !oi, ... , AOM are in-

dependent and that the prior distribution of Aom is given by p(Aom) oc >’0’;’;
m = 1, ... , M. The prior distribution of Aom = Ao (t<m> ) - Ao(t(.-,)) -

M

Aom(t(m) - t(m-,)) is then p(Aom) a (Ao,)-’ and p(Aoi, ... , AoM) oc II Aom,
m=1 1

by having assumed independence of !ol, ... , >’OM a priori. Based on these as-
sumptions and, assuming furthermore that a priori (Aol, ... , Ao,!,l), !3, (u, u u 2),
(a, a’) and (e, Qe) are mutually independent, the prior distribution of V) can
be written

2.2. Likelihood and joint posterior distribution

The usual convention that survival times tied to censoring times, pre-
cede the censoring times is adopted. Furthermore, as in Breslow [3], it is as-

sumed that censoring occurring in the interval [t(m- 1) t(m)) occurs at t(,,,- 1);
m = 1,..., M + 1, with t(M+i) = oo.

Under the assumption, where, conditional on u, a and e, censoring is

independent (e.g. [1, 2]), the partial conditional (censoring omitted) likelihood
is given by



(e.g. (15!). Under the assumptions given above, equation (5) becomes
_ _ r _ _ i

where D(t(m») is the set of animals that failed at time t!&dquo;,!, d(t(m») is the
number of animals that failed at time t!&dquo;,!, and R(t!&dquo;,!) is the set of animals
at risk of failing at time t(m)’ Furthermore assuming that, conditional on u, a
and e, censoring is non-informative for !, then the joint posterior distribution
of o is, using Bayes’ theorem, obtained up to proportionality by multiplying
the conditional likelihood and the prior distribution of 0

where p((y, 8) 11/i) is the conditional likelihood given by equation (6) and p(qp) is
the prior distribution of parameters and hyperparameters given by equation (4).

2.3. Marginal posterior distributions and Gibbs sampling

If cp is a parameter or a subset of parameters of interest from 1/i, the marginal
posterior distribution of cp is obtained by integrating out the remaining param-
eters from the joint posterior distribution. If this can not be performed ana-
lytically for one or more parameters of interest, Gibbs sampling [12, 14] can
be used to obtain samples from the joint posterior distribution, and thereby
also from any marginal posterior distribution of interest. Gibbs sampling is
an iterative method for generation of samples from a multivariate distribution
which has its roots in the Metropolis-Hastings algorithm [17, 24!. The Gibbs
sampler produces realizations from a joint posterior distribution by sampling
repeatedly from the full conditional posterior distributions of the parameters
in the model. Geman and Geman [14] showed that, under mild conditions, and
after a large number of iterations, samples obtained are from the joint posterior
distribution.

2.4. Full conditional posterior distributions

In order to implement the Gibbs sampler, the full conditional posterior
distributions of all the parameters in 1/i must be derived. The following
notation is used: that 1/iB<p denotes 1/i except cp; e.g. if cp = {3, then 1/iV3 is

(A01’ ... , Aom , u, o’!, a, <r!, e, o, e 2) The full conditional posterior distribution of
cp given data and all the remaining parameters, 1/iB<p’ is proportional to the joint
posterior distribution of 1/i given by equation (7).

From equation (7) it then follows that the full conditional posterior distri-
bution of uj, j = 1, ... , q up to proportionality is given by



where Of = !! exp{ai+ei+x!,8}Aom and d(uj) is the number of animals
!n,a!.&dquo;,,! < y;,

that failed from the jth class of u and S( Uj) is the set of animals belonging to
the jth class of u. For i, an animal with records, the full conditional posterior
distribution of ai is given by

where Of = L exp{uj+et+x!}Aomand{!4’’-’}aretheelementsofA !.
m:t!m! Yi

For an animal, i, without record, the full conditional posterior distribution of
ai follows a normal distribution according to

/ B

The full conditional posterior distribution of ei, i = 1, ... , n, is, up to propor-
tionality, given by

where Of = L exp{ Uj + ai -f- xi/3!Ao!&dquo;, and the full conditional poste-
ma!&dquo;,! < y;

rior distribution of each regression parameter ,!6, b = 1, ... , B is given by

The full conditional posterior distribution of each of the hyperparameters
<7!, <r! and afl is inverse gamma, according to:

and

and the full conditional posterior distribution of Aom, m = 1, ... , M, is gamma:



Sampling from gamma, inverse gamma and normalely distributed random
variables is straightforward. The full conditional posterior distribution of u!,
of ai, for i, an animal with records, of ei and of regression parameters, given
by equations (8), (9), (11) and (12), respectively, can all be shown [21] to
be log concave, and therefore adaptive rejection sampling [16] can be used
to sample from these distributions. Adaptive rejection sampling is useful in
order to sample efficiently from densities of complicated algebraic form. It is
a method for rejection sampling from any univariate log-concave probability
density function, which need only be specified up to proportionality.

3. AN EXAMPLE

3.1. Data

As an example, disease data on future AI-bulls from the Danish performance
testing programme for beef traits of dairy and dual purpose breeds were
analysed. The trait considered was ’time from entering test until first time
a respiratory disease occurred’. The bulls of the Danish Red breed were all
performance tested in the 15-year period 1982-1996 and entered the Aalestrup
test station between 23 and 74 days of age. Bulls which did not experience a
respiratory disease during the test period or which were still undergoing testing,
on the date of data analysis have right censored records. For these animals, it
is only known that the time at first occurrence of a respiratory disease, Ti, will
be greater than the time at censoring, Ci, that is, either the time at the end
of the test (336 days of age) or the time at the date of data analysis or the
time at being culled before end of test (a very rare event). Data on animal i;
i = 1, ... , n is (y; , 6i), where yi is the observed value of Y = min{Ti, Ci} and
6i is a random indicator variable, equal to 1 if a respiratory disease occurred
during test, and 0 otherwise. Data on all animals is (y, 6).

3.2. Model

It is assumed that the hazard function, Ai(t), of Ti, is given by

where t is time (in days) from entering test. In (17), Ao (t) is the baseline hazard
function; x’ = (Xil, Xi2, Xi3, !i4) is a vector of covariates of animal i; xil ranges
between 23 and 74 days of age in the data and is the animal’s age at entering
test; xiz ranges between 0.0 and 1.0 and xi3 ranges between 0.0 and 0.78125
and are proportions of genes from foreign populations (American Brown Swiss
and Red Holstein cattle) and xi4 (which ranges between 0.0 and 1.0) is the

degree of heterozygosity due to crossbreeding. xii is included in order to take
into account that bulls are entering test at different ages; Xi2 and x23 in order to
take additive effects of gene importation into account and xi4 in order to take
account of heterosis due to dominance. {3’ _ (01, ... , Q4) is the corresponding
vector of regression parameters. Zi = exp{h! + sk + ai + ei is the log normally
distributed frailty variable of animal i. hj is the effect of the jth herd of origin
by period combination (one period is 5 years), j = 1, ... , J, where J is the



number of herd of origin by period combination, and sk is the effect of entering
test in the kth yearseason (one season is 1 month), k = 1,..., K, where K is
the number of yearseasons. ai is an additive genetic effect of animal i and ei
is an effect of environment not already taken into account; i = 1, ... , n, where
n is the number of animals with records. In this example J is 540, K is 170
and n is 1 635. The relationship among the test bulls was traced back as far as
possible, leading to a total of N = 5 083 animals defining the additive genetic
relationship matrix.

3.3 Implementation of the Gibbs sampler and results

The Gibbs sampler was implemented with prior distributions according to
the previous section. The prior distributions of the hyperparameters a 2, as, or 2
and or2 were given by inverse gamma distributions with parameters

and

That is, the prior means were of afl and Qa were 0.1 and the prior means of 0’; s 2
and Qe were 0.8. The prior variance of all the hyperparameters is 10 000. The
following starting values were assigned to the parameters h!°! _ (0, ... , 0)’,
2(0) = 0.1, s!°> = (0, ... , 0)’, as !°! = 0.8, a(°) = (0, ... , 0)’, 2(0)- 0.1,
e!°! _ (0, ... , 0)’, u 2(0) = 0.8, !3!°> = (0,0,0,0)’. Sampling was carried out from
the respective full conditional posterior distributions in the following order,
describing one round of the Gibbs sampler:

1) sample 11°r&dquo;,; m = 1,..., M from the gamma distribution given by
equation (16);

2) sample h!; j = 1, ... , J from equation (8) with uj = hj and

using adaptive rejection sampling;
3) sample afl from the inverse gamma distribution given by equation (13)

with, a2 = Oh, q = J, u = h and (pu, 1/u) = (ph, Vh);
4) sample ai from the normal distribution given by equation (10) if i is

an animal without records; if i is an animal with records, ai is sampled from
equation (9) with hj + s,! substituted for uj in Of and using adaptive rejection
sampling;

5) sample Qa from the inverse gamma distribution given by equation (14);
6) sample ei; i = 1, ... , n from equation (11) with hj + sk substituted for

Uj in Of using adaptive rejection sampling;
7) sample Qe from the inverse gamma distribution given by equation (15);
8) sample (3b; b = 1, 2, 3, from equation (12) with hj + Sk substituted for

Uj using adaptive rejection sampling;



9) sample sk k = 1, ... , K from equation (8) with uj = sk and

using adaptive rejection sampling;
10) sample u2 from the inverse gamma distribution given by (13) with

a£ = 0’;, q = K, u = s and (Mu, vu) = (us, vs).
After 40 000 rounds of the Gibbs sampler, 8 000 samples of model parameters

were saved with a sampling interval of 20; i.e. a total chain length of 200 000.
After each round of the Gibbs sampler, the following standardized parameters,
of log frailty, were computed

where Qz = cr! + a/ + a§ + ae is the variance of log frailty (not of survival
time). Summary statistics of selected parameters are shown in table 1.

The rate of mixing of the Gibbs sampler was investigated by estimating lag-
correlations in a standard time series analysis. Lag 1 and lag 10 correlations
(lag 1 corresponds to 20 rounds of the Gibbs sampler) are given in table I. Ne
is the effective sample size, derived from the method of batching (e.g. !13!).
The chain of samples from the marginal posterior distribution of Qa has very
slow mixing properties. This is reflected in the standardized parameters as well,
whereas all regression parameters have good mixing properties.



The marginal posterior density of a and the standardized parameters h2,
c2, c2 and e2 (of log frailty) are shown in figure 1. The densities were estimated

by the methodology of Scott !27!. The mean of the marginal posterior density
of h2 is 0.14 where h2 is heritability of log frailty. If herd of origin by period
and year by season had been considered as fixed effects rather than random
effects, then heritability of log frailty would have been higher.

The marginal posterior densities of {31, /?2, Q3 and are shown in figure 2.
Because the marginal posterior mean of (31, the effect of age at entering test, is
negative (-0.0061), the hazard is decreased by increasing age at entering test.
That is, for a bull entering test at 23 days of age, the conditional hazard is
always exp{-0.0061 x 23}/exp{-0.0061 x 74} = 0.87/0.64 = 1.36 higher, than
that of a bull entering test at 74 days of age; conditional on frailty and other
covariates being the same for the two bulls. Similarly, because the marginal
posterior mean of (34, the effect of heterozygosity, is negative (-0.22), the
hazard is decreased by increasing the degree of heterozygosity. The marginal
posterior means of additive effects of gene immigration from American Brown
Swiss and Red Holstein cattle are close to 0.0. The marginal posterior mean of
h2, the heritability of log frailty, is 0.1406; of c!, the proportion of variation in
log frailty due to herd of origin by period combination is 0.0913 and of c!, the
proportion of variation in log frailty caused by a year by season effect is 0.2766.

4. DISCUSSION

This paper illustrates how a Bayesian analysis can be carried out in the
semiparametric log normal frailty model using Gibbs sampling. In the version
of the Gibbs sampler implemented here, samples were repeatedly taken from
univariate full conditional posterior distributions. This is only one possible
implementation. With highly correlated univariate components it could be

preferable to sample from the joint conditional posterior distribution of these
components. The advantage of this method is its greater speed of convergence to
the joint posterior distribution [23). The methodology is quite general and could
obviously be used in full parametric models and in models with stratification
and/or time-dependent covariates. It is time consuming to sample thousands
of observations from thousands of distributions; but, analysing the relatively
small dataset in section 3 left us optimistic about possibilities for analysing
larger datasets.

Another possibility is to perform a Bayesian analysis using Laplace integra-
tion. This was carried out by Ducrocq and Casella [9] with special emphasis
on obtaining the marginal posterior distribution of parameters, T, of the dis-
tribution of frailty terms. Their prior distributions of frailty terms were either
gamma or log normal. They point out that the computations may quickly be-
come too heavy and propose to summarize the approximate marginal posterior
of T through its first 3 moments using the Gram-Charlier series expansion
of a function. The moments are found using numerical integration based on
Gauss-Hermite quadrature followed by an iterative strategy to obtain precise
estimates. When frailty terms are gamma distributed, these can be integrated
out algebraically to obtain the marginal posterior distribution of the remaining
parameters. From a likelihood point of view, gamma distributed frailties can
be integrated out algebraically to obtain a likelihood based on observed data.





This is so in correlated gamma frailty models as well (e.g. !22!) but not with log
normally distributed frailty terms. If T is a vector of variance components of
log frailty terms from a log normal frailty model such as equation (2), Laplace
integration may be considered too costly (9!. These authors suggested letting
some frailty terms be gamma distributed and others log normally distributed in
order to integrate out algebraically some frailty terms. Implementation of the
Gibbs sampler in a log normal frailty model avoids making the mathematically
tractable but somewhat artificial choice of a gamma distribution of frailty
terms.

In this paper some of the parameters are modelled with improper prior
distributions. The joint posterior distribution is unavailable in closed form and,



as pointed out by Hobert and Casella !18!, the mathematical intractability that
necessitates use of the Gibbs sampler also makes demonstrating the propriety
of the posterior distribution a difficult task. The fact that the full conditional
posterior distributions defining the Gibbs sampler are all proper distributions
does not guarantee that the joint posterior distribution will be proper. The
question of which improper prior distributions will yield proper joint posterior
distributions in hierarchical linear mixed models was addressed by Hobert and
Casella (18!. The important question of propriety of the posterior distribution
using improper prior distributions must be dealt with in a Bayesian analysis
using a Laplace integration as well. One way to avoid improper posteriors is to
use proper prior distributions.

The analysis could have been carried out without augmenting [29] by
additive genetic values of animals without records. The number of animals
defining the additive genetic relationship matrix A was 5 083, but only 1635
had records. Let a be the vector of additive genetic values of animals with
records, then taking the part A of A relating to animals with records, the
analysis could have been carried out using the prior £[a§ - N.!(0, AQa). The
number of distributions needing sampling from would have been 5 083-1635
lower at the expense of obtaining marginal posterior distributions of breeding
values on animals without records. However A-1, is much denser than A-1,
and is more difficult to compute.

The model of log frailty, specified by equation (2), can easily be generalized
to include more independent variance components and/or the assumption of
independence can be relaxed; for example in equation (2), u could represent a
maternal effect. Assuming that (u’, a’)’1 G rv N2N (0, G Q9 A), where G is the
2 x 2 matrix of additive genetic covariances, and that the prior distribution of G
is inverse Wishart distributed, then the full conditional posterior distribution
of G, required for Gibbs sampling, will also be inverse Wishart distributed.
Furthermore, it should be possible to carry out a multivariate analysis of a
survival trait, a quantitative trait and a categorical trait, by assuming that
the log frailty of the survival trait, the quantitative trait and the liability of
the categorical trait follow a multivariate normal distribution. It should also
be possible to generalize to an arbitrary number of survival traits, quantitative
traits and categorical traits.

By definition, the trait considered in the example: ’time until first occurrence
of a respiratory disease during test’ can occur at most once for each animal.
These data are, however, only a subset of the data being collected on bulls
during the test period. Each repeated occurrence of a respiratory disease is
recorded, as well as other categories of diseases and several quantitative traits
and other traits of interest. Oakes [25] gives a survey of frailty models for
multiple event time data, and it would be interesting to extend the log normal
frailty models to allow for multiple survival times for each animal as well as a
multivariate analysis of censored survival time data and other traits of interest.
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APPENDIX: Convention used for gamma, inverse gamma and log
normal distributions

The following convention is used for gamma and inverse gamma distri-

butions: let X - r(a, 0), with density p(x) = xa-le-x/(3 [f(a),8ar1. Then
E(X) = a,8 and V(X) = a,02 = ,8E(X). Y = X-’ has an inverse or inverted
gamma distribution Y - IG(a,,8) with density p(y) = yW&dquo;+le-(ya)-1
[f(a),8ar1 and E(Y) _ [(a - 1),8]-1 for a > 1 and V(Y) = [(a - 1)2
(a - 2)02]-l = (E(I’))2(a - 2) for a > 2.

If X - N(p,, a2), then Y = exp{X} is said to have a log normal distribution;
the density of Y is given by
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