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Abstract - Canalising selection is handled by a heteroscedastic model involving a
genotypic value for the mean and a genotypic value for the log variance, associated
with a single phenotypic value. A selection objective is proposed as the expected
squared deviation of the phenotype from the optimum, of a progeny of any candidate
for selection. Indices and approximate expressions of parent-offspring regression
are derived. Simulations are performed to check the accuracy of the analytical
approximation. Examples of fat to protein ratio in goat milk yield and muscle pH data
in pig breeding are provided in order to investigate the ability of these populations
to be canalised towards an economic optimum. &copy; Inra/Elsevier, Paris
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Résumé - Prédiction de la réponse à une sélection canalisante d’un caractère
continu en génétique animale. Le problème de la sélection canalisante est traité grâce
à un modèle hétéroscédastique mettant en jeu une valeur génétique pour la moyenne
et une valeur génétique pour le logarithme de la variance, toutes deux associées à une
seule valeur phénotypique. Pour un objectif de sélection visant à minimiser l’espérance
des carrés des différences entre le phénotype et l’optimum, pour un descendant
d’un candidat à la sélection, des index sont estimés et des expressions approchées
de la régression parent-descendant sont calculées. La précision de ces expressions
analytiques est mesurée à l’aide de simulations. Afin d’appréhender la capacité de



ces populations à être canalisées vers un optimum économique, des exemples sont
donnés : le rapport entre matière grasse et matière protéique du lait de chèvre, et le
pH d’un muscle chez le porc. &copy; Inra/Elsevier, Paris

sélection canalisante / hétéroscédasticité / index de sélection

1. INTRODUCTION

Production homogeneity is an important factor of economic efficiency in
animal breeding. For instance, optimal weights and ages at slaughtering exist
for broilers, lambs and pigs, and the breeder’s profit depends on his ability
to send large homogeneous groups to the abattoir; optimal characteristics of
meat such as its pH 24 h after slaughtering exist but depend on the type
of transformation; ewes lambing twins have the maximum profitability while
single litters are not sufficiently productive and triplets or larger litters are
too difficult to raise; with extensive conditions where food is determined by
climatic situations, genotypes able to maintain the level of production would
be of interest.

Hohenboken [22] listed different types of matings (inbreeding, outbreeding,
top crossing and assortative matings) and selection (normalising, directional
and canalising) which can lead to a reduction in trait variability.

Stabilisation of phenotypes towards a dominant expression has been known
for a long time as a major determinant of species evolution, similarly to muta-
tions and genetic drift (e.g. [4] for a review). Different hypotheses explaining
these natural stabilising selection forces have been proposed (2, 3, 8, 15, 16, 19,
27, 38, 45-47, 49, 52!. A number of models assume that trait stabilisation is
controlled by fitness genes (e.g. [9] for a review), which keeps the mean phe-
notype at a fixed ’optimal’ level, without a necessary reduction of the trait
variability. Alternative hypotheses were proposed for canalisation; for instance
Rendel et al. [32, 33] assumed that the development of a given organ is under
the control of a set of genes, while a major gene controls the effects of these
genes within bounds to keep the phenotype roughly constant.

Whatever its origin stabilisation is to be related to the environment(s) in
which it is observed, which makes it essential [48] to distinguish stabilisation
of a trait in a precise environment (normalising selection) from the aptitude
to maintain a constant phenotype in fluctuating environments (canalising
selection).

Various artificial stabilising selection experiments have been carried out with
laboratory animals: drosophila [17, 23, 29, 30, 34, 40, 41, 44, 48], tribolium
[5, 6, 24, 43] and mice [32]. Most often, selection was of a normalising type
with a culling of extreme individuals, this selection being applied globally [5,
29, 30, 41, 43, 44], within family [24] or between family [6, 34]. Canalising
selection was experimentally applied by Waddington [48] and by Sheiner and
Lyman !40!, their rule being the selection of individuals less sensitive to breeding
temperature and by Gibson and Bradley [17] who applied a culling of extremes
in a population bred in unstable environment (fluctuating temperature).

Some general conclusions from these experiments may be proposed: 1) very
generally, stabilising selection is efficient, leading to a strong diminution of



phenotypic variance; 2) heritability estimations during and at the end of the
selection experiments often showed that the selected trait genetic variance
decreased, this conclusion not being general; 3) in many cases it was possible
to prove that the environmental variance, or the sensitivity of individuals to
environmental fluctuation, was reduced by selection.

In this paper we investigate mathematical tools for the evaluation of the pos-
sibility and efficiency of organising canalising selection in animal populations.
Existence of a genetic component in variance heterogeneity between groups is
a prerequisite for such a selection goal to be feasible. Statistical modelling and
estimation procedures have been developed to take account of variance hetero-
geneity (e.g. [10, 11, 35, 36!), in particular using a logarithmic link between
variances and predictive parameters [12, 13, 39!.

In the following, we extend such models by introducing a genetic value
among these parameters, consider the possibility of estimating this new genetic
value, then discuss the efficiency of selection based on this model. Although our
objective is to apply such methodologies to continuous and discrete traits, we
first concentrate here on continuous traits. Applications to artificial canalising
selection towards an economic optimum in goat and pig breeding are given.

2. GENETIC MODEL

2.1. Building of a model

Our approach was motivated by the extensive literature mentioned in the
Introduction, and in particular the paper of Rendel and Sheldon [34] shows
that artificial canalising selection does work, in the sense that the population
mean reaches the optimum and, more importantly, the environmental variance
is reduced. Some individuals are less susceptible to environment than others,
this particularity being genetically controlled, since it responds to selection.
Some genes are now known to control variability, e.g. the Apolipoprotein E
locus [31] in humans, the Ubx locus in Drosophila [18], the dwarfism locus
in chickens (Tixier-Boichard, pers. comm.), and some (aTLs with effects on
variance are already suspected !1!.

Like Wagner et al. [50] in their equation 7, the effect of polymorphism at a
given locus on the environmental variance may be expressed by a genotype-
dependent multiplicative factor for this variance. The same hypotheses (in
particular no interactions between genes) and reasoning as in the Fisher
model allow the previous one-locus model to be extended to a polygenic or
infinitesimal model, in which each individual has a genetic value governing a
multiplicative factor for the environmental variance.

Since the analysis needs the evaluation of phenotypic variances associated
with genetic values, it must be based on experimental designs allowing for the
repeated expression of the same or of closely related genetic values. Although
not necessarily efficient, any population scheme might be considered, but
we focus here on two simple situations, repeated measurements on a single
individual, and evaluation of one individual from the performances of its

offspring.



2.2. Animal model: basic model

A model linking a phenotype yj of a given animal (from repeated phenotypes
y = (!1, ..., yj , ... , yn ) ) with two genetic values u and v is considered. According
to the infinitesimal model of quantitative genetics, these genetic values u and
v, possibly correlated, are assumed to be continuous normally distributed
variables, and contribute to the mean and to the logarithm of the environmental
variance. The simplest version of the model can be written as:

where p is the population mean and the population log variance mean, while:

and the Ejs are independent identically distributed N(0, 1) Gaussian variables,
independent of u and v. Additive genetic variances are denoted by afl and a V ’ 2
and r is the correlation coefficient between u and v. The distribution of the
conditional random variable Ylu, v is Gaussian ./1!(! + u, exp(! + v)), but the
unconditional distribution of Y is not. The unconditional mean and variance

(the phenotypic variance or y 2 of the random variable Y are equal to

Note that the v genetic value and its variance o, are dimensionless; exp(77)
has the same units as the phenotypic variance, and exp(w/2) is the average
(genetic) scale factor of the environmental variance.

2.3. Animal model: extensions

More general formulations of the model are needed to cope with real
situations. First, introducing permanent environmental effects (denoted by p
and t) common to several performances of the same individual is necessary to
take account of non-genetically controlled correlations, both on the mean value
- as it is usual to deal with repeatability - and on the log variance of the within
performance environmental effect. Thus, the jth performance of an individual
is modelled as:

where (u, v), (p, t) and follow independent Gaussian distributions: the bivari-
ate normal (2), a similar bivariate distribution with components o, 2, at and
correlation p, and A!(0,1), respectively.



When q individuals are measured in several environments, a more general
heteroscedastic model can be stated as:

,-/

where yg is the jth performance of a particular animal in a particular (animal
x environment) combination i. This full model (6) is a generalisation of
model (1) introducing environmental and genetic parameters to be estimated:
location parameters ({3, u, p) and dispersion parameters (6, v, t) with incidence
matrices (xi, zi, zi) and (qi, zi, zi), respectively. Vectors u, p, v and t have the
same length q. !3 and 6 denote fixed effects, while u, v and p, t are random

genetic and random permanent environmental effects attached to individuals,
respectively. The vectors of genetic values u and v have then a joint normal
distribution:

where &copy; denotes the Kronecker product and A is the relationship matrix
between the animals present in the analysis. Permanent environmental effects
p and t are similarly distributed as:

where I is the identity matrix, independently of (u, v).
This general way of setting up the model needs, however, some caution when

applied to actual data, to assess which parameters are estimable, taking account
of the structure of the experimental design. Specifically, analysing a possible
genetic determinism of heteroscedasticity needs a sufficient number of repeated
measures to be available for the same (or related) genotypes.

2.4. Sire model

In a progeny test scheme, the phenotypic values attached to an individual
are the performances of its offspring. From the previous animal model, the
performance y2! of the jth offspring of sire i can be written as follows,
conditional on the genetic values ui and vi of the sire and assuming unrelated
dams:

It is assumed here that the terms aZ! and {3ij include the genetic effects in
offspring not accounted for by the part transmitted by the sire. Permanent
environmental effects in the offspring (the p and t variables of model 5 are
possible.



This can be rewritten as

with E’(Etj) = 0, Var(e!) = 1. The distribution of e! is only approximately
normal N(0,1). Models (9) and (10) are not strictly equivalent, but, since the
first two moments of yj are equal under both models, they are equivalent in
the sense of Henderson [21] (see e.g. [37] for an application of this concept). For
example, for large numbers of offspring per sire, the mean sire’s performances
and sample within sire variances have asymptotically the same structure of
variances and covariances between relatives under both models.

The corresponding generalised approximate sire model is written as

with the joint densities (7) for u and v, and (8) for p and t.
Methods needed to estimate parameters are outlined in Appendix A. In

particular, they allow the genetic values of individuals to be estimated, as
the conditional expectations of genetic values, given observed phenotypes y:
h = E(u!y) and v = E(vly), if variance components are known. Estimation
of variance components was similarly developed to make the method possible
to apply.

In the following we first focus on developments of the basic model, which is
simple enough to derive approximate analytical predictions of the response to
selection and to compare several selection criteria. In a second step we check the
validity of the theoretical approach by means of simulations and test the ability
of the extended models and corresponding numerical procedures to tackle actual
data and evaluate the potential for canalising selection.

3. SELECTION OBJECTIVE AND CRITERION

3.1. Objective and criterion

One objective that summarises the breeding goal (progeny performances
close to the optimum and with low variability around it) is the minimisation of
the expected squared deviation of offspring performances from the optimum
yo. This is the one we have chosen. For an individual characterised by a
set y of performances (on itself and on its relatives), a selection criterion
is defined as the expectation of the squared deviation E !(Yd - yo)2lyJ of

offspring performance Yd, conditional on y, and selection will proceed by
keeping individuals with minimal values of this index, such that:

is lower than a threshold t(z) depending on the chosen selection intensity t.



In classical linear theory, it is equivalent to giving an individual a merit with
respect to the selection objective, defined as the expectation of its offspring
performance, or to consider its genetic value u, since the former is just equal
to half the latter. Breeding animals are ranked according to their estimated
genetic value.

In the present context, due to the non-linearity of the model, we define, for a
candidate to selection with given genetic values u and v, its merit for canalising
selection as the expected squared deviation of an offspring performance:

Its conditional expectation E(M* ly) is equal to the index

With complications due to the non-linear setting of our model, we derive in
the following the mean and variance of an individual’s phenotype distribution,
conditional on the performances of a relative.

3.2. Conditional mean and variance

We need the distribution of a phenotype Yd of a progeny d, given perfor-
mances y of a relative F. Let ud, vd be the genetic values of d, y = fyj 1,
j = 1, ...n, u and v the phenotypic and genetic values of animal F. Perfor-
mances of animals F and d follow model (1), with:

where a is the relationship coefficient between animals F and d (a = 0.5 if d is
the progeny of F).

The density f (yd!y) describing the distribution of Yd, conditional on y can-
not be explicitly derived, but its moments are calculable or can be approxi-
mated. We have:

This is first integrated over yd, owing to

then with respect to ud and vd with



and finally the distribution of u and v conditional on y is approximated as:

where u = E(u!Y)! v = E(v!Y), Cuu = Var(!!Y)! Cvv = Var(vly),
Cw = Cov (u, v ly), are the estimated first and second moments of the genetic
values (see Appendix A for the estimation method).

It follows that

and that

These expressions are given numerical values after estimates of genetic values
and of variance components are available.

General formulae can be derived that take into account all performances
of the whole pedigree, not only performances of a single relative. The explicit
forms of the extensions of equations (18) and (19) are given in Appendix B.

The combination of equations (18) and (19) gives the index I*(y) in

equation (14), equal to the conditional expectation E(M*!y) of the genetic
merit M*, as in Goffinet and Elsen !20!.

3.3. Approximate criteria

When the conditional variance terms (C) can be neglected, for instance when
n is large, I* is approximately equal to the maximum likelihood estimate of
the merit M*:

where hats denote, in this case, modes of the density of v,, v!y. This is to be
related to the work of Wilton et al. !51!, who developed a quadratic index for
a quadratic merit, by &dquo;minimising the expectation of the squared difference
between total merit and index, both expressed as deviations from their expec-
tations&dquo; . In their setting, normality was assumed for the distributions of genetic
values and of performances, so that this criterion was equal to the maximum
likelihood estimate of the merit.

The previous calculations make it numerically possible to set up a selection
scheme, but do not allow analytical predictions of the efficiency of selection
according to the values of variance components o’!, or2and r. Some insight can
be obtained using a simpler selection criterion, as follows.



In the individual model (1), assuming that repeated measures are available
for the candidates for selection, we consider the following selection index I

which is equal to the sample mean square deviation, y denoting the sample
mean and S’y the sample variance of the performance set of an individual,

1 
n

6! ! - !(!j - y)2. Note, however, that this index measures the value of anj=1 i

candidate, not directly the expected value of its future offspring. Truncation
selection would be accordingly characterised by a step fitness function wt
defined as:

Instead, we consider a continuous fitness function

where s is a selection coefficient which can be adjusted to obtain the same
selection differential as equation (22). The positivity of w(y) in equation (23)
necessitates a small s value. Hence we assume that selection is weak, allowing
first-order approximation of the response to selection.

For progeny test selection the model for y is equation (10), but without p
and t, and yields a similar selection index, y values being made up of the
performances of the offspring of the candidate for selection. The selection
criterion (21) is then a true measure of the candidate’s value, and can be
considered as an approximation of the criterion (12) for this simple population
structure.

4. RESPONSE TO CANALISING SELECTION

We seek the responses to selection for the genotypic values u and v, the
genetic merit, and the performance (Y - YO)2. We quantify the effects of
selection by the regression of offspring on the selected parent (e.g. !9)), in a
general way as:

where X is any trait of interest, E!(X) its expectation in the selected part in
the candidate population, and Ed (X ) the expectation of phenotypes among
the offspring of the w-selected parents. The numerator is the response R(w, X)
to selection based on the fitness function w in the trait X of interest, measured
in the next generation. The denominator is the selection differential S’(w, X),
measured among parents. As a rule, we restrict the following derivations to
selection in one sex only in the parent population.



4.1. Analytical approximations

4.1.1. Animal model

We first derive the distribution of u and v in the parent population after
selection according to the fitness function w, then calculate the corresponding
distribution in the offspring population.

Let f (y) be the unconditional distribution of Y, and f (u, v) the joint density
of u and v. The density of Y in the selected parental population is

Following Gavrilets and Hastings !14!, we introduce the mean fitness of the
genotype (u, v):

As with M*(u,v) in equation (13), this function M(u,v) = E(I(Y)!u,v)
can be considered as a genetic merit referring to a candidate’s own value and
not as in equation (13) to that of a future offspring. The mean fitness of the
population is the proportion of selected individuals:

where

We obtain the distribution of genetic values among selected parents:

4.1.1.1. Genetic response

Since genetic values are transmitted linearly to the offspring, the genetic
responses to selection, R(w,u) and R(w,v), are the differences of expected
genotypic values u and v, respectively, between candidates and selected indi-
viduals (assuming that selection occurs in a single sex, only half of this progress
is transmitted to the next generation):



where wg refers to equation (26). The effects of non-linearity are seen in the
above equations.

Note that if genotypes are correlated (if r is not zero), the efficiency of
selection is reduced if r and (M - yo) are of opposite signs.

4.1.1.!. Parent-offspring regression

The efficiency of individual canalising selection towards yo is evaluated by the
regression coefficient (24) calculated for the trait X = II(Y) _ (Y - yo)2. The
fact that the expectation of the trait II of interest is equal to the expectation
of the index I involved in the fitness function w defined in equation (23) makes
the following derivations feasible. Summarising the detailed calculations given
in Appendix C, we state that the numerator of equation (24) is equal to the
w-selection response in the genetic merit M:

since M = E(II!u, v). The denominator of equation (24) is the selection
differential:

This leads to, if r = 0,

where V stands for exp(?l + a!j2). If genotypes are correlated, an extra term
2rauav V (p, - yo + 4 rauav) is added to the numerator, and 4(l + n)rOUUVV 2
1-t - yo + ! 2 rauav ) is added to the denominator.

The response to selection can be written as:



i.e. as the product of selection intensity (1 = ! ) , of a realized heritability, theB tf7
ratio b(w, II) defined in equation (34), and of the standard deviation Qn of the
selection index.

4.1.2. Sire model

As for the individual model, the genetic merit for the sire model is defined as:

and the fitness

The expectation E(M) = E[I(Y)] is the same as given in equation (27).
The response to selection in the trait II(Y) among male parents is

and the selection differential is

The regression coefficient b giving the response to canalising selection in a
progeny test scheme is equal to the ratio of (36) to (37). Figure 1 plots the
response given in equation (36) in units of selection intensity and phenotypic
variance, from an equation similar to equation (35).

4.1.3. Extensions

The previous exact results, obtained using the fitness function (23) and
analogous for the sire model, hold for weak selection, and their expressions
as ratios of a covariance to a variance indicate that they can also be obtained
from a linear approximation. This comment makes it possible to extend easily
the approximate prediction of response in cases when different weights are given
to the variance of performances and to their deviation from the optimum.

Considering the animal model with repeated measurements (5), let us denote
II1(Y) = (y - YO)2, II2(Y) = Sy, the two components of II = (IIl(y),II2(Y))&dquo;
s = (81, S2)’ a vector of selective values, a = (crl, cr2)’ a vector of weights. We
are interested in the response for the trait a’II, when using the index s’ll as
selection criterion. The parent-offspring regression is equal to

where G and P are 2 x 2 symmetric matrices of elements





introducing the following notations h2 = or2 2 , c2 - (or2 + 2 2
A = (y - yo)lay. From equation (38), parent-offspring regressions for the mean
and for the variance can be written separately. With si = 0 and a1 = 0 for

instance, b tends to

as n tends to infinity and if at’ = 0. This parent-offspring regression is lower
than a half, and tends to 1/2 as afl tends to zero.

Note that the parent-offspring regression for y is

which tends to 1/2 as n tends to infinity and if Qp = 0.

1 
n

If the unbiased estimate of variance H[ = ! 1 1 !(yj - y)2 is used in the
n - I!’ 

j-i

index, then the variance term P!2 = Var(II22) is proportional to

When o, = 0, the response in IIZ is null and the selection differential is
equal to 2/(n - 1), taking into account n - 1 degrees of freedom. For n = 2, it



corresponds to the variance of the trait (Y - y)2 (squared deviation from the
mean), up to a multiplicative term. When afl = 0, the response in Y is null
and the selection differential is equal to V/n,

More generally, this extension shows that a selection index (weights s =
(sl, s2)’) can be adjusted to optimise the response in a given objective specified
by weights a = (al, a2)’.

4.2. Simulations

Simulations were used to check the accuracy of previous analytical expres-
sions of response as proposed in equations (34) and (36)/(37), in more general
situations:

- intermediate selection intensity, since the analysis assumes only weak
selection;

- behaviour of the population parameters (mean, variance) during several
generations of selection;

- comparison of the relative efficiencies of different selection criteria, re-

placing in the simulation the theoretical continuous selection scheme (23) by
truncation selection according to the simplified index (22) and by the likelihood
based index 1 (20).

Simulations were restricted to the case of the sire model with no genetic
correlation (r = 0).

4.2.1. Selection scheme

The selection scheme was as follows.

1) Genetic values of sires and dams of the base population were ran-

domly drawn from the joint distribution (7) with no relationships (A is
the identity matrix), giving the sets {(ui, vi), i = 1, ... , ,S} for the sires, and
(uj, vj), j = 1, ... , D} for the dams.

2) Sires and dams were mated at random.

3) For each couple (i,j), the performance y2! of a daughter was generated
according to:

where Etj, aZ! and {3ij were drawn from the Gaussian distributions N(0,1),
jV(0,o’!/2) and N(0, a!/2), respectively. The terms a2! and {3ij represent
Mendelian sampling.

4) An index for each sire was computed and elite sires were selected.
5) The elite sires produced S sons with the same female cohort used in steps

1-2.

Step 2 (with sons of step 5 and daughters of step 3) to step 5 were repeated
until the 10th generation.

The sire selection of step 4 was a truncation selection based either on the
simplified index I(y2) _ (y2 - !Jo)2 + Si2 or on the maximum likelihood estimate



of the merit I(Yi) = M(Ûi, Vi) = 3!! + exp(!7 + vZ + 3w) + (p, - yo + ii 2 )2,
_ _ 

428 8 2
with ui and vi maximum likelihood estimates of ui and vi respectively,
according to model (10), but allowing for no permanent environmental effect,
and assuming that variance components were known.

4.2.2. Simulation experiments

For a constant phenotypic standard deviation for the base population, several
values of variance components were tested: or = 0.033 and 0.114, corresponding
to a ’low’ (hu = 0.10) and a ’high’ heritability (h! = 0.3); a ’low’ variability
variance Qv = 0.03 and a ’high’ or2 = 0.15 (corresponding to ratios of maximum
to minimum variance equal to 3 and 10, respectively). Three base phenotypic
means were considered: pt=o = 1, 1.8 and 2, for an optimum equal to yo = 2

(giving discrepancies At=o = (ut=o - yo)/QY,c=o between population mean and
optimum, expressed in phenotypic standard deviations, equal to 1.75, 0.35
and 0).

For given values of the set a!, a!, /1 and y, of the numbers of sires and
dams and of selection intensity, 100 selection experiments were performed,
and statistics averaged over the runs. The evolution of phenotypic mean
and variance, estimated merit over the ten generations and parent-offspring
regression are highlighted.

4.2.3. Results

Figure 2 displays the curves given by the analytical approximation of the
response, with point estimates and confidence intervals obtained with 100
simulated selection experiments, showing good agreement of the approximation
with truncation selection on the simplified index I (not shown), but also with
the likelihood based index I, except for intermediate values of A for which the
theory provides underestimates.

Figure 3 plots the evolution of phenotypic means and standard deviations
over generations of canalising selection. Several aspects appear:

- with a high heritability h!, the population mean tends in a linear manner
towards the optimum in a very efficient way;

- the convergence of the mean is slightly better if w is low;
- the decrease in phenotypic variance has a linear tendency, although more

fluctuating than the evolution of the mean;
- this decrease is even more evident as Qv is higher and h2 is lower.
This general balance was encountered throughout the simulation experi-

ments: a particular aspect was maximally improved when the other aspects
were not under selection pressure. Variances are best reduced when the popu-
lation mean is at the optimum. The optimum is more rapidly reached when no
genetic variability of the variances is present.

Figure 4 compares the performances of the two indices I and T. The likeli-
hood based index gives more efficient results for the trait mean pt, probably
because heterogeneous variances were taken into account in the evaluation of
the animal genetic values u, giving less biased estimates. On the contrary, the



phenotypic variance QY is best reduced with the simplified index, presum-
ably due to the lack of robustness of v estimation by maximum likelihood.
A full Bayesian estimation procedure with marginal posterior expectation of
parameters might be more appropriate. It was nevertheless not performed be-
cause of the heaviness of the algorithm, since numerical integrations are then
needed. The two indices give, however, equal values of the global criterion
(p’t - yo)2 + 0,2 ylt at any time t.

The phenotypic variance and squared difference between mean and optimum
are lowered more and more as selection intensity is increased, while the parent-
offspring regression remains constant in the simulations as in the approximate
theory (not shown).

5. DISCUSSION

5.1. Model for the variance

The introduction of a log linear model is an easy way to handle a mul-
tiplicative model on the variance. It is known that the distribution of InS2,
the logarithm of the sample variance estimator, is approximately normal (e.g.
!25!). Similarly, Bayesian considerations on prior/posterior densities show that
the Gaussian distribution is a good approximation to a log inverted chi-square

1





(see [13]). This led us to focus all analytical derivations on the first two
moments of distributions, assimilating when needed any distribution to the
Gaussian distribution sharing these same moments. Although this may be a
crude approximation if it is used for prediction of genetic response over several
generations, it allows first order solutions to be derived, and makes it possible
to build statistical evaluation procedures.

The model allows estimation of the importance of genetic determinism in
the heterogeneity of variances, and hence prediction of how the population
may respond to selection against variability. For example, the proportion of the
selection response due to the genetic variability in the v-component is given by
the ratio

where the Gs are given in equation (40). It is all the more important as the
population mean is closer to the optimum, the u-genetic variance is lower, and
the v-genetic variance is larger.

Estimation of genetic parameters (or u 2, r, av 2) may be somewhat imprecise,
especially for u2 and r. Hence it may be worth considering the robustness
of predictions with respect to badly known parameters. As far as a simple
global criterion is used, the question can be dealt with easily, considering the
expected responses as functions of parameter values. The situation would be
more difficult to handle for selection schemes that would rely on the knowledge



of parameter values, for example if a balance between selection for the mean
or for the variance were adjusted each generation.

5.2. Data

The generalised version of the sire model (11), including fixed and random
permanent environmental effects, was applied to actual data in goats (dairy
production) and in pigs (pH of muscles after slaughtering).

5.2.1. Milk data

Protein and fat contents were measured on milk from 2 383 first lactation

goats between 1992 and 1995. The goats were daughters of 54 artificial
insemination sires, with 20 observations at least in the data set. The trait of
interest is the ratio of fat to protein contents, with a desired optimum equal to
1.3. This objective would be complementary to yield traits such as milk yield or
protein yield. The phenotypic mean and variance are equal to 1.1 and 0.0135,
respectively, i.e. the population mean is 1.7 phenotypic standard deviations
away from the optimum. Data are normally distributed. For computational
ease, data were pre-corrected with the additive model including herd, season,
lactation length and age, on a much larger data set including all lactations of
all herds where the 2 383 kept daughters had been producing. The variance
components were estimated, leading to a null correlation coefficient (r - 0)
and zero variability variance (Qv - 0), and a heritability h! = 0.44 of the same
order as those for the protein and fat.
A canalising selection experiment is expected to drive the population mean

rapidly towards the optimum, but without change in environmental variance.
For example, assuming selection of the best 10 % of sires, a reduction of 1.5
phenotypic standard deviations of the population quadratic deviation (!c-yo)2 2
would be expected in one generation.

5.2.2. pH data

pH values of semi-membranous muscle were measured on 947 piglets from
25 Large White sires. Data were normally distributed. Each sire had at least
20 piglets. Data were pre-corrected by the usual linear model accounting for
sex, line, year and slaughtering date effects on the trait mean, on a much larger
data set, in order to simplify further computations. Thereafter, a sire model
for the residuals of the previous model was fitted.

Estimated values of variance components under model (11) with ’perma-
nent environmental effects’ (non-genetic-sire effects) were equal to a2 = 0.15,
hu = 0.26 (with a2 y = 0.037), r = 0.79, QP = 0.00045, Qt = 0.046 and p = 0.79.

With an optimum value yo = 5.7 not different from the overall mean p = 5.75,
the estimated variance components should allow a high response to canalising
selection to be obtained through a strong reduction of the genetically controlled
part of environmental variance: assuming that selection sorts out the best 10 %
of male parents, a reduction of about 12 % of the initial phenotypic variance
in one generation. A null correlation would give a reduction of 11 % (figure 1).



It must be stressed that predictions derived from the above analysis of fat
to protein ratio in goats and of pig pH muscle data are only indicative. For
example, the effect of a wrongly estimated correlation value r remains to be
assessed, even if - in the goat example - no significant genetic component of
variance was found for variances. Also, although precision of the previous early
estimates was not evaluated, larger data sets are probably needed. A proper
prediction of expected response to selection cannot be proposed until these
analyses are carried out.

So far we do not have results from an actual selection experiment, based on
our index selection rules, which would be necessary to completely validate the
approach through the comparison of observed realised heritabilities with our
predictions. It is one of the perspectives of the current work to organise such
selection experiments.

5.3. Selection criteria .

We have considered a single global criterion that combines selection for the
mean and selection against the variance of the trait.

Shnol and Kondrashov [42] considered the action of selection with fitness
w(y) on a quantitative trait y. They concluded that truncation selection min-
imises the genetic load and the variance of the trait after selection. Linear selec-
tion (corresponding to our continuous fitness with low selection) gives minimal
variance of the relative fitness and is less efficient than truncation selection.

However, linear selection gave us the opportunity for robust analytical approx-
imations of realised heritability. Calculations were impossible for truncation
selection, even with the simpler index. Within the limits of the present com-
parisons with simulations, the fitness approximation proved useful, even in
cases with strong departure from linearity, and with a rather strong selection
intensity (proportion of selected individuals equal to 20 %).

More sophisticated selection criteria may be defined, allowing selection to be
differentially directed towards changing the mean value of the trait or reducing
the environmental variance. In fact using a global genetic merit to be maximised
in the next generation is a way to distribute selection intensity between both
parameters. It is possible that a higher multi-generation response could be ob-
tained if selection were controlled each generation in view of the objective. For
example, the index (y - YO)2 + S; can be generalised into 81(Y - YO)2 + S2’S’!,
allowing a greater selection pressure either on the location near the optimum,
or on the dispersion, as illustrated in the above theoretical section. The same
remark is available for the index (.E(y!y) &mdash; yo)z + Var(Yd!y). More generally,
the selection criterion might be based on the economic worth of offspring. The
criterion would then be defined as the expected economic value of offspring,
a function depending on the distribution of expected phenotypes and on the
economic value of phenotypic values. But of course other types of indices and
mating systems are potentially interesting to consider, for instance a linear
index when Qv is small, mate selection or group selection.

Managing the balance between location and scale could be interesting in a
long-term selection process, provided some analytical approximation is avail-
able in order to include one-generation expected response in a dynamic pro-
gramming approach. Evaluation of the approximation for mid-term objectives



remains, however, to be considered. While the present paper focused on short-
term selection (one generation), such developments would require some analyt-
ical approximation of the response during several generations. At variance with
the present work, changes in genetic variances and covariances should be taken
into account. Further research is needed in this area, keeping in mind that the
approach used, according to which most distributions are approximated by the
Gaussian ones that share the same first and second moments, is known to be a
rather poor approximation in genetic models as soon as multi-generation prob-
lems are considered. It may be, however, a useful approach for predictions over
five to ten generations ( !7! ).

Another extension of this work concerns discrete characters. For example, a
concrete demand of sheep breeders is obtaining exactly two lambs per lambing,
with reduced variability around this economic optimum (SanCristobal-Gaudy
et al., in prep.). More generally, the innovation of this work - the introduction
of two groups of polygenes, possibly not independent, acting respectively on
the trait mean and log variance - could be useful in other areas of applied
quantitative genetics in which heterogeneities of variance arise. Also, while the
two sources of genetic variability were studied within the framework of the
infinitesimal model, extensions might include major genes which control either
the mean or the variability of a trait. For example, using the present setting,
a segregation analysis could be conducted to decide whether polygenes and/or
major genes act on the log variance, as was carried out for the mean [26].
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APPENDIX A: Parameter estimation

The genetic evaluation of the animals needs the expectation of u and v
given performances y of relatives, namely u = E(u!y) and v = E(v!y), which
depend on the variance components. Approximations are obtained by replacing
expectations by modes, since u and v are Gaussian, and y is nearly so, and
using a Newton-Raphson iterative scheme, which involves first (w) and second
(C-1) derivatives of the log likelihood. At iteration t, the current estimate of
T= (/3B u’, p’, 6’, v’, t’)’ is equal to

Most derivatives involved in C and w can be found in e.g. !13!. The extension
to permanent environmental effects presents no difficulties. Note that in the

present context, dispersion parameters v are of prime interest, as well as
location parameters u, and so are estimated together.
When the variance components are unknown, they can be estimated by

their conditional expectation Û2 = E(0’2Iy), with a2 = (afl, ol 2, r,2(T2 p).
An EM algorithm can be proposed for the estimation of variance components
ol 2, which are replaced by their current estimates Û2[t-1] in ib[,-J] and l3l!!U
in the iterative system (42). Equations relative to the animal model (6)-(7)
have known forms:

where û[t] (resp. vM) are the current estimates of u (resp. v),

and



EM equations for variance components in a sire model need numerical

integration and are now presented.
The log likelihood of the sire model (11) is written as

where

and

If there is an overall mean effect in 6, the term3 8 a! is part of the constant
term. We consider this parameterisation in the following.

Variance components are estimated by maximisation of the marginal log
likelihood lm (or the marginal posterior distribution p( u2ly) in a Bayesian
setting):

Because explicit integration with respect to 6 and v is not analytically
feasible (to our knowledge), we chose the implementation of an iterative

algorithm involving first !m and second lm derivatives of lm (e.g. !12!):

where Ec and V ar denote expectation and variance, respectively, with respect
to Tly, 0’2. Let us denote l&dquo;,,a2 (resp. !0-2 !!2) the element of the vector L.&dquo;,
(resp. matrix !!) pertaining to a2 (resp. Q2 and Q’2), with a2 = 0’2, u or2 or r:

As for the animal model, the estimation procedure proceeds in two steps: at
each iteration, a current estimate rft] ofris obtained in solving the linear system
(42), in which variance components are replaced by their current estimates Û2[t]. I .
Then, variance component estimates are updated, as detailed in the following.
At convergence, iT2 maximises the marginal log likelihood (45), and maximum
a posteriori estimates of T are obtained as a by-product.



At iteration t, the current estimate !t+11 of the correlation r satisfies the
equation l.&dquo;,,T = 0. It is the solution, lying in !-1,1!, of the third order equation

The current standard deviation 8tH is also obtained directly from the
equation lm !2 = 0. It is the positive solution of a second order equation:

where

No explicit solution is found for the equation im ’ a2 = 0. So second derivatives

lm are used to provide an iterative solution. More exactly, we chose to

implement an EM-type algorithm involving only the E!-part of the Hessian
matrix. The current . !2[t+1] . is equal tomatrix. The current variance u is equal to

with

! 

! _

Numerical integration is performed for the expectations in lm (72 and ! 0.2 !.2
indexed by i: vectors -rs are randomly drawn from a N(Tlt], ¿.[!) (which has
an asymptotic justification) and these expectations are approximated by

, j-i .

When permanent environment effects are present in the model, the estima-
tion equations are the same as those in the animal model (equation 43).
A Fortran 77 program was written, using the NAG library [28], and is

available on request.



APPENDIX B: Conditional mean and variance of progeny
phenotypes

u and v denote k-vectors of genotypic values of all animals considered,
related by the relationship matrix A. Future offspring of these animals have Ud
and vd genotypic values, and are related by Add. Genotypic values of parents
and offsprings are related via Ad.

It can be shown that the conditional expectation of a performance Yd,i of a
future offspring of some animal i of the parent population is equal to

and the variance given the performances of all the animals is

where us and vs are parts of equation (42), and Cs are submatrices of equation
(44). Note that all the individuals in the analysis are involved in these formulae.

APPENDIX C: Derivations of R(w, II)
and S(w, II) (equations (31)-(34) in the text)

First, we write

Now,

with ill = 1 - s E(I) = 1 - s E(M). Furthermore,



so

This covariance is equal to

plus covariances that are null if r = 0. The above three covariances are

respectively equal to

leading to the numerator of equation (34).
The selection differential is equal to

This variance is calculated from the two terms

with

and Yj following the Gaussian model (1). One has E(7!M,f) = M(u, v) , then

on one hand, and on the other hand

then the expectation of the above expression equals

Putting these terms together leads to the denominator of equation (34).
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