
Original article

Blocking Gibbs sampling in the mixed
inheritance model using graph theory

Mogens Sandø Lund Claus Skaanning Jensen

a DIAS, Department of Breeding and Genetics, Research Centre Foulum,
P.O. Box 50, 8830 Tjele, Denmark

b AUC, Department of Computer Science, Fredrik Bajers Vej 7E.,
’

9220 Aalborg 0, Denmark

(Received 10 February 1998; accepted 18 November 1998)

Abstract - For the mixed inheritance model (MIM), including both a single locus
and a polygenic effect, we present a Markov chain Monte Carlo (MCMC) algorithm
in which discrete genotypes of the single locus are sampled in large blocks from their
joint conditional distribution. This requires exact calculation of the joint distribution
of a given block, which can be very complicated. Calculations of the joint distributions
were obtained using graph theoretic methods for Bayesian networks. An example of a
simulated pedigree suggests that this algorithm is more efficient than algorithms with
univariate updating or algorithms using blocking of sires with their final offspring.
The algorithm can be extended to models utilising genetic marker information, in
which case it holds the potential to solve the critical reducibility problem of MCMC
methods often associated with such models. © Inra/Elsevier, Paris

blocking / Gibbs sampling / mixed inheritance model / graph theory / Bayesian
network

Résumé - Échantillonnage de Gibbs par bloc dans le modèle à hérédité mixte
en utilisant la théorie des graphes. Pour le cas de l’hérédité mixte (un seul locus
avec un fond polygénique), on présente un algorithme de Monte-Carlo par chaînes
de Markov (MCMC) dans lequel les génotypes au locus unique sont échantillonnés
en blocs importants à partir de leur distribution jointe conditionnelle. Ceci exige le
calcul exact de distribution conjointe d’un bloc donné qui peut être très compliquée.
Le calcul des distributions jointes est obtenu en utilisant des méthodes graphiques
théoriques pour les réseaux bayésiens. Un exemple de pedigree simulé suggère que
cet algorithme est plus efficace que les algorithmes à mise à jour univariants ou par
groupes de descendance issue de même père. Cet algorithme peut être étendu à des

*

Correspondence and reprints
E-mail: mogens.lund@agrsci.dk

modèles utilisant l’information de marqueurs génétiques ce qui permet d’éliminer
le risque de réductibilité souvent associé à de tels modèles quand on applique des
méthodes MCMC. © Inra/Elsevier, Paris
blocage / échantillonnage de Gibbs / modèle à hérédité mixte / théorie des
graphes / réseau bayésien

1. INTRODUCTION

In mixed inheritance models (MIM), it is assumed that phenotypes are
influenced by the genotypes at a single locus and a polygenic component
[19]. Unfortunately, it is not feasible to maximise the likelihood function
associated with such models using analytical techniques. Even in the case of
single gene models without polygenic effects, the need to marginalise over the
distribution of the unknown single genotypes results in computations which
are not feasible. For this reason, Sheehan [20] used the local independence
structure of genotypes to derive a Gibbs sampling algorithm for a one-locus
model. This technique circumvented the need for exact calculations in complex
joint genotypic distributions as the Gibbs sampler only requires knowledge of
the full conditional distributions.

Algorithms for the more complex MIMs were later implemented using either
a Monte Carlo EM algorithm [8], or a fully Bayesian approach [9] with the Gibbs
sampler. However, Janss et al. [9] found that the Gibbs sampler had very poor
mixing properties owing to a strong dependency between genotypes of related
individuals. They also noticed that the sample space was effectively partitioned
into subspaces between which movement occurred with low probability. This
occurred because some discrete genotypes rarely changed states. This is known
as practical reducibility. Both the mixing and reducibility properties are vastly
improved by sampling genotypes jointly. Consequently, Janss et al. [9] applied
a blocking strategy with the Gibbs sampler, in which genotypes of sires and
their final offspring (non-parents), were sampled simultaneously from their joint
distribution (sire blocking). This blocking strategy made it simple to obtain
exact calculations of the joint distribution and improved the mixing properties
in data structures with many final offspring. However, the blocking strategy
of Janss and co-workers is not a general solution to the problem because final
offspring may constitute only a small fraction of all individuals in a pedigree.
An extension of another blocking Gibbs sampler developed by Jensen

et al. [13] could provide a general solution to MIMs. Their sampler was for one-
locus models, and sampled genotypes of many individuals jointly, even when the
pedigree was complex. The method relied on a graphical model representation
and treated genotypes as variables in a Bayesian network. This results in a
graphical representation of the joint probability distribution for which efficient
algorithms to perform exact inference exist (e.g. [16]). However, a constraint of
the blocking Gibbs sampler developed by Jensen and co-workers is that it only
handles discrete variables, and in turn cannot be used in MIMs.

The objective of this study is to extend the blocking Gibbs sampler of Jensen
et al. [13] such that it can be used in MIMs. A simulated example is presented to
illustrate the practicality of the proposed method. The data from the example
were also analysed by the method proposed by Janss et al. [9], for comparison.

2. MATERIALS AND METHODS

2.1. Mixed inheritance model

In the MIM, phenotypes are assumed to be influenced by the genotype at a
single major locus and a polygenic effect. The polygenic effect is the combined
effect of many additive and unlinked loci, each with a small effect. Classification
effects (e.g. herd, year or other covariates) can easily be included in the model.

The statistical model for a MIM is defined as:

where y is a (n*1) vector of n observations, b is a (p*1) vector of p classification
effects, u is a (q*1) vector of q random polygenic effects, m is a (3*1) vector
of genotype effects and e is a (n* 1) vector of n random residuals. X is a

(n*r) design matrix associating data with the ’fixed’ effects, and Z a (n*q)
design matrix associating data with polygenic and single gene effects. W is an
unknown (q*3) random design matrix of genotypes at the single locus.

Given location and scale parameters, the data are assumed to be normally
distributed as

where 6e is the residual variance. For polygenic effects, we invoke the infinites-
imal additive genetic model [1], resulting in normally distributed polygenic
effects, such that

where A is the known additive relationship matrix describing the family
relations between individuals, and 6u is the additive variance of polygenic
effects.

The single locus was assumed to have two alleles (A1 and Az), such that each
individual had one of the three possible genotypes: AlAI, AlA2 and AZA2. For
each individual in the pedigree, these genotypes were represented as a random
vector, w;, taking values (100), (O10) or (001). The vectors w; form the
rows of W and will for notational convenience be referred to as col, w2 and

0)3. For individuals which do not have known parents (i.e. founder individuals)
the probability distribution of genotype w; was assumed to be P(Wi If). The
distribution for genotype frequency of the base population (f), was assumed to
follow Hardy-Weinberg proportions. For individuals with known parents, the
genotype distribution is denoted as p(w;!ws;re(;), waan,(;)). This distribution
describes the probability of alleles constituting genotype w;, being transmitted
from parents with genotypes Wsire(i) and Wdam(i) when segregation of alleles
follows Mendelian transmission probabilities. For individuals with only one
known parent, a dummy individual is inserted for the missing parent.

Due to the local independence structure of the genotypes, recursive factori-
sation can be used to write the joint genotypic distribution as:

where W = (wl, ... , wn), F is the set of founders, and NF is the set of non-
founders.

To fully specify the Bayesian model, improper uniform priors were used
for the fixed and genotypic effects [i.e. p(b) oc constant, p(m) oc constant].
Variance components (i.e. 6e and au) were assumed a priori to be independent
and to follow the conjugate inverted gamma distribution (i.e. 1/62 has the

prior distribution of a gamma random variable with parameters a; and (3i).
The parameters a; and (3i can be chosen so that the prior distribution has
any desired mean and variance. The conjugate Beta prior was used for allele
frequency (p(f) - Beta(af, (3f)).

The joint posterior density of all model parameters is proportional to the
product of the prior distributions and the conditional distribution of the data,
given the parameters:

2.2. Gibbs sampling

For Bayesian inference, the marginal posterior distribution for the param-
eters of the model is of interest. With MIMs this requires high dimensional
integration and summation of the joint posterior distribution (1), with cannot
be expressed in closed form. To perform the integration numerically using the
Gibbs sampler requires the construction of a Markov chain which has (1) (nor-
malised) as its stationary distribution. This can be accomplished by defining
the transition probabilities of the Markov chain as the full conditional distribu-
tions of each model parameter. Samples are then taken from these distributions
in an iterative scheme. Each time a full conditional distribution is visited, it is
used to sample the corresponding variable, and the realised value is substituted
into the conditional distribution of all other variables (see, e.g. [5]).

Instead of updating all variables univariately it is also possible to sample
several variables from their joint conditional posterior distribution. Variables
that are sampled jointly will be referred to as a ’block’. As long as all variables
are sampled, the new Markov chain will still have equation (1) as its stationary
distribution.

2.2.1. Full conditional posterior distributions

Full conditional distributions were derived from the joint posterior distri-
bution (1). The resulting distributions are presented later. These distributions
were also presented by Janss et al. [9], using a slightly different notation.

2.2.2. Location parameters

Hereafter, the restricted additive major gene model will be assumed, such
that m’ = (-a, 0, a) or m = la, where 1’ = (-1, 0, 1) and a is the additive effect
of the major locus gene. Allowing for genotypic means to vary independently
or including a dominance effect entails no difficulty.

The gene effect (a) is considered a classification effect when conditioning
on major genotypes (W) and the genetic model at the locus. Consequently,
the location parameters in the model are 6’ = [b’, a, u’]. Let, H = [X:ZWI:Zj,

Q = 0 A !i, , k = (y2/(y2, C = [H’H + S2], and m = la. The posterior dis-10 A-lk I I e u

tribution of location effects (0), given the variance components, major geno-
types (W) and data (y) is (following [17]):

Then, using standard results from multivariate normal theory (e.g. [18] or
[22]), the full conditional distributions of the parameters in 0 can be written
as:

Cii is the ith diagonal element of C, C-i is the ith row of C excluding Cii, and
Hi is the ith column of H.

2.2.3. Major genotypes

The full conditional distribution of a given genotype, w;, is found by
extracting from equation (1) the terms in which w; is present. The probabilities
are here given up to a constant of proportionality and must be normalised to

3

ensure that LP(Wi = Mj) = 1. The full conditional distribution of genotype
j=l

Wi is:

where lief and liENF are indicator functions, which are 1 if individual i is

contained in the set of founders (F) or non-founders (NF), respectively, and
0 otherwise. Off(i) is the set of offspring of individual i, such that i(k) is

the kth offspring of i resulting from a mating with mate (i(k)). The terms,
P(Wi = Wi IP1)’IEF + P(Wi = ú.!jIWsire(i), W’dam(i))ItENF represent the probability

of individual i receiving alleles corresponding to genotypes WI, W2 or W3, and the

product over offspring represents the probability of individual i transmitting
alleles in the genotypes of the offspring, which are conditioned upon. If

individual i has a phenotypic record, the adjusted record j, = y; - X;b - Z;u
contributes the penetrance function:

where X; and Zi are the ith rows of the matrices X and Z.

2.2.4. Allele frequency

Conditioning on the sampled genotypes of founder individuals results in con-
tributions of f for each Al sampled and (1- f) for each A2 sampled. This is be-
cause the sampled genotypes are realisations of the 2n independent Bernoulli(f)
random variables used as priors for base population alleles. Multiplying these
contributions by the prior Beta(af, (3f) gives

where nA, and nA2 are the numbers of A1 and A2 alleles in the base population.
The specified distribution is proportional to a Beta(af + nA&dquo; (3f + nA2) distri-
bution. Taking af = (3f = 1, the prior on this parameter is a proper uniform
distribution.

2.2.5. Variance components

The full conditional distribution of the variance component au is

which is proportional to the inverted gamma distribution:

Similarly, the full conditional distribution of the variance component 6e is

which is proportional to the inverted gamma distribution:

The algorithm based on univariate updating can be summarised as follows:
I. initiate 0, W, f, 6u, ae, with legal starting values;
II. sample major genotypes w; from equation (3) for i = { 1, ... , q};
III. sample allele frequency from equation (4);
IV. sample location parameters 6; (classification effects and polygenic effects)

univariately from equation (2), for i = {1, dimensionS};
V. sample 6u from equation (5);
VI. sample 6e from equation (6);
VII. repeat II-VI.

Steps II-VI constitute one iteration. The system is initially monitored until
sufficient evidence for convergence is observed. Subsequently, iterations are
continued, and the sampled values saved, until the desired precision of features
of the posterior distribution has been achieved. The mixing diagnostic used is
described in a later section.

2.3. Blocking strategies

A more efficient alternative to the univariate updating of variables is to

update a set of variables multivariately. Variables updated jointly will be
referred to as a ’block’. In this implementation, variables must be sampled
from the full conditional distribution of the block. In the present model
blocking major genotypes of several individuals alleviates the problems of poor
convergence and mixing properties caused by the covariance structure between
these variables.

Janss et al. [9] constructed a block for each sire, containing genotypes of the
sire and its final offspring. All other individuals were sampled from their full
conditional distributions. Janss and co-workers showed that exact calculations
needed for these blocks are simple, and this is the first approach we apply
in the analysis of the simulated data. However, this blocking strategy only
improves the algorithm in pedigree structures with several final offspring. In
many applications only a few final offspring exist (e.g. dairy cattle pedigrees),
and the blocking calculations become more complicated. Therefore, the second
approach applied to the simulated data was to extend the bocking Gibbs
sampling algorithm of Jensen et al. [13], using a graphical model representation
of genotypes. Here, the conditional distributions of all parameters, other than
the major genotypes, are the same regardless of whether blocking is used or
not.

2.3.1. Sire blocking

In the sire blocking approach, a block is constructed for each sire having final
offspring. The blocks contain genotypes of the sire and its final offspring. This
requires an exact calculation of the joint conditional genotypic distribution,
p(w;, 7 Wi(l) i ...) Wi(n(i)) IW -(i,i(l)), 0, y), where i is the index of a sire, ni denotes
the number of final offspring of sire i, and the final offspring are indexed by
i(1), i(2)’ ... , i(n;) or simply i(1). By definition, this distribution is proportional
to p(w;!W-(;,;(1)), 6, Y) x p(wi(1),I,Wi(n(i))lwi,W-(i,i(l)),S,y). Here, the first
term is the genotypic distribution of the sire, marginalised with respect to the

genotypes of the final offspring. In calculating the distribution of the sire’s
genotype, the three possible genotypes of each offspring are summed over, af-
ter weighting each genotype by its relative probability. In this expression, we
condition on the mates and the final offspring do not have offspring themselves.
Therefore, neighbourhood individuals that contribute to the genotype distri-
bution of the sire are still the same as those in the full conditional distribution.

Consequently, the amount of exact calculation needed is linear in the size of
the block. The second term is the joint distribution of final offspring genotypes
conditional on the sire’s genotype. This is equivalent to a product of full condi-
tional distributions of final offspring genotypes because these are conditionally
independent, given genotypes of parents.

Even though the final offspring with a common sire are sampled jointly with
this sire, the previous discussion shows that this is equivalent to sampling final
offspring from their full conditional distributions. Dams and sires with no final
offspring are also sampled from their full conditional distributions. This leads
to the algorithm proposed by Janss and colleagues which will be referred to as
’sire blocking’.

Sires are sampled according to probabilities:

where Final(i) is the set of final offspring of sire i, and NonFinal(i) is the set of
non-final offspring.

Dams are sampled according to equation (3), and final offspring according
to:

Again, the probabilities must be normalised. The sire blocking strategy is
then constructed as in the previous algorithm, except that step II is replaced
by the following: if individual i is a sire, sample genotype from equation (7),
followed by sampling of final offspring i(l) from equation (8). If individual i is
a dam, sample genotype from equation (3).

2.3.2. General blocking using graph theory

This approach involves a more general blocking strategy by representing
major genotypes in a graphical model. This representation enables the forma-
tion of optimal blocks, each containing the majority of genotypes. The blocks
are formed so that exact calculations in each block are possible. These exact
calculations can be used to obtain a random sample from the full conditional
distribution of the block.

In general, the methods described later can be used to perform exact
calculations in a posterior distribution, denoted here by p(Vle), where V

denotes the variables of the Bayesian network, and e is called ’evidence’.
The evidence can contain both the data (y), on which V has a causal effect,
and other known parameters. In turn, the posterior distribution is written
as the joint prior of V multiplied by the conditional distribution of evidence
[p(Vle) (x p(V)p(eIV)].

Jensen et al. [13] used the Bayesian network representation as the basis
of their blocking Gibbs sampling algorithm for a single locus model. In their
model, V contained the discrete genotypes and e the data, which were assumed
to be completely determined by the genotypes. However, MIMs are more com-
plex, as they contain several variables in addition to the major genotypes (e.g.
systematic and random environmental effects as well as correlated polygenic ef-
fects affect phenotypes). Consequently, the representation of Jensen et al. [13]
cannot be used directly for MIMs.

To incorporate the extra parameters of the model, a Gibbs sampling algo-
rithm is constructed in which the continuous variables pertaining to the MIM
are sampled from their full conditional densities. In each round the sampled
realisations can then be inserted as evidence in the Bayesian network. This
algorithm requires the Bayesian network representation of major genotypes
(V - W), with data and continuous variables as evidence (e = b, u, m, f, ae,
6u, y). However, because an exact calculation of the joint distribution of all
genotypes is not possible, a small number of blocks (e.g. B1, B2, ... , B5) are
constructed, and for each block a Bayesian network BN; is defined. For each

BN;, let the variables be the genotypes in the block V - B¡. Further, let the ev-
idence be genotypes in the complementary set (Bi = WBB;), realised values of
other variables, and the data [i.e. e = (Bi , b, u, m, ae, 6u, f, y)]. These Bayesian
networks are a graphical representation of the joint conditional distribution of
all major genotypes within a block, given the complementary set, all other con-
tinuous variables, and the data (p(B; !B°, b, u, m, f, 6e, u y)). This is equiva-
lent to a Bayesian network, where data corrected for the current values of all
continuous variables are inserted as evidence [i.e. P(Bi IBi, b, u, m, f, ae, (F 2, y) oc
p(Bi) * p(ylw, b, u, m, f, (y2, e (y2) u = p(Bi) * p(y!Bi , f)!. The last term is de-
scribed as the penetrance function underneath equation (3).

In the following sections, some details of the graphical model representation
are described. This is not intended to be a complete description of graphical
models, which is a very comprehensive area of which more details can be found
in, e.g. [14-16]. The following is rather meant to focus on operations used in
the current work.

2.3.3. Bayesian networks

A Bayesian network is a graphical representation of a set of random variables,
V, which can be organised, in a directed acyclic graph (e.g. [14]) (figure la). A
graph is directed when for each pair of neighbouring variables, one variable is
causally dependent on the other, but not vice versa. These causal dependencies
between variables are represented by directed links which connect them. The
graph is acyclic if, following the direction of the directed links, it is not possible
to return to the same variable. Variables with causal links pointing to v;
are denoted as parents of v; [pa(v;)]. Should v; have parents, the conditional
probability distribution p(vilpa(vi)) is associated with it. However, should v;

have no parents, this reduces to the unconditional prior distribution p(v;). The
joint distribution is written p(V) = n p(Vi Ipa(Vi)).

i

In this study the variables in the network represent a major genotype, Wi.
The links pointing from parents to offspring represent probabilities of alleles
being transmitted from parents to offspring. Therefore, the conditional distri-
butions associated with variables are the Mendelian segregation probabilities
(P(Wi IW,;, Wd)). A simple pedigree is depicted in figure la as a Bayesian net-
work. From this, it is apparent that a pedigree of genotypes is a special case of
a Bayesian network.

In general, exact computations among the genotypes are required. For

example, in figure la should it be required to calculate p(wl, wz, w5), this can
be carried out as: p(WI, W2, W5) = E p(wi,W2,WgW4,W5,W6W7,wg).

W3,W4,W6,W7,W8

The size of the probability table increases exponentially with the number of
genotypes. Therefore, it rapidly increases to sizes that are not manageable.
However, by using the local independence structure, recursive factorisation
allows us to write the desired distribution as:

This is much more efficient in terms of storage requirements and describes
the general idea underlying methods for exact computations of posterior
distributions in Bayesian networks. When the Bayesian network contains loops,
it is difficult to set the order of summations such that the sizes of the probability

tables are minimised. Therefore, an algorithm is required. The method of
’peeling’ by Elston and Stewart [4], and generalised by Cannings et al. [2],
provides algorithms for performing such calculations with genetic applications.
However, for other operations needed in the blocked Gibbs sampling algorithm,
peeling cannot be used. Instead, we use the algorithm of Lauritzen and

Spiegelhalter [16], which also is based on the above ideas. This algorithm
transforms the Bayesian network into a so-called junction tree.

2.3.4. The junction tree

The junction tree is a secondary structure of the Bayesian network. This
structure generates a posterior distribution that is mathematically identical to
the posterior distribution in the Bayesian network. However, properties of the
junction tree greatly reduce the required computations. The desired properties
are fulfilled by any structure that satisfies the following definition.

Definition 1 (junction tree). A junction tree is a graph of clusters. The
clusters, also called cliques, (Ci, i = 1, n;) are subsets of V, and the union of
all cliques is V: (Cl U C2U, ... , U G, = V). The cliques are organised into a
graph with no loops (cycles), and by following the path between neighbouring
cliques it is not possible to return to the same clique. Between each pair of
neighbouring cliques is a separator, S, which contains the intersection of the
two cliques (S12 = Cl U CZ). Finally, the intersection of any two cliques, C; and
Cj, is present in all cliques and separators on the unique path between C; and
Cj.

2.3.5. Transformation of a Bayesian network into a junction tree

In general, there is no unique junction tree for a given Bayesian network.
However, the algorithm of Lauritzen and Spiegelhalter [16] generates a junction
tree for any Bayesian network with the property that the cliques generally be-
come as small as possible. This is important as small cliques make calculations
more efficient. In the following section, we introduce some basic operations of
that algorithm, transforming the Bayesian network shown in figure la into a
junction tree.

The network is first turned into an undirected graph, by removing the
directions of the links. Links are then added between parents. The added
links (seen in figure 1 b as the dashed links) are denoted ’moral links’, and the
resulting graph is called the ’moral graph’. The next step is to ’triangulate’ the
graph. If cycles of length greater than three exist, and no other links connect
variables in that cycle, extra ’fill-in links’ must be added until no such cycles
exist. After links are added between parents, as shown in figure 1, there is a
cycle of length four which contains the variables w2, w5, W7 and w6. An extra
fill-in link must be added either between w2 and W7 or as shown with the thick
link between W5 and ws. Finally, from the triangulated graph, the junction tree
is established by identifying all ’cliques’. These are defined as maximal sets of
variables that are all pairwise linked. In other words, a set of variables that
are all pairwise connected by links must be in the same clique. These cliques
must be arranged into a graph with no loops, in such a way, that for each pair
of cliques C;, Cj, all cliques and separators on the unique path between C; and

Cj contain the intersection C; f1 Cj. This requirement ensures that variables in
C; and Cj are conditionally independent, given variables on the path between
them.

2.3.6. Exact computations in a junction tree

To perform exact calculations, the junction tree is initialised by con-

structing belief tables for all cliques (B(Ci),...,B(C’n(c))) and separators
(B(5*i),... ,-B(6n(s)))- Each belief table conforms to the joint probability dis-
tribution of variables in that clique or separator, and contains the current
belief of the joint posterior distribution of these variables. This is also called
the belief potential of these cliques/separators. For example, B(Cl) represents
p(clly) in figure 2a. In the following we assume that individual 8 in figure 1 a
has a phenotypic record. Then, the belief tables are initialised by first setting
all entries in each belief table to one. Prior probabilities of variables with-
out parents are then multiplied onto exactly one arbitrarily chosen clique in
which the variable is present. Finally, the conditional probabilities of variables
with parents are multiplied onto the unique clique which contains that vari-
able and its parents. Following this procedure, the junction tree in figure Ic c
could be initialised as follows: Cl = (Wl, W2, W5) is initialised with B(cI) =
p(wi)p(w2)p(w5Wi,W2),C*2 = (w2,W5,we) is initialised with all ones for

B(c2), c3 = (w2,wg,we) is initialised with B(C3) = p(w3)p(we!w2,wg),
C4 = (w4,Wg,W7) is initialised with B(C4) # P(W4)P(W7lW4,W5),C5 =

(W5, W6, W7) is initialised with all ones for B(C5), C6 = (ws, w7, ws) is ini-
tialised with B(C6) = P(WSIW6, W7)p(Yslws), and separators are initialised
with all ones. After having initialised the junction tree in this way, we note
that the product of the belief potentials for all cliques is equal to the joint
posterior distribution of all variables:

The general rule of this property is given by:

2.3.7. Junction tree propagation

The initialisation described in the previous section is arbitrary in the sense
that p(w2) could have been multiplied onto B(C2) instead of B (Ci) . Therefore,
the belief tables do not at this point reflect the knowledge of variables in the
corresponding cliques. This is only so after each belief table has been updated

with the information on all other variables. Propagation in junction trees is a
means of updating the belief with such information.

This updating is performed by means of an operation called ’absorption’.
This has the effect of propagating information between neighbouring cliques.
For example, if information is propagated from B(C6) to B(C5) as in figure 2,
B(C5) is said to absorb from B(C6), or, equivalently, C6 is said to send a

message to C5. The absorption operation consists of the following calculation:

B*(C5) = B(CS) B*((!))’ where B*(S5) = C6BS5 B(C6). The absorption can
B(55) c!js!06 BS5

be regarded as updating the belief potential of p(W5, W6, W7) (B (W5, W6, W7))
with information on the belief potential of p(w6, w7, wS)(B(W6, w7, w8)) . This
is accomplished by first finding the conditional belief of variables in C5 given

variables in C6 by B(W5Iw6’ W7) = B(w5’ w6’ w7) . The joint belief of variables
j3(we,W7)

in C5 is then updated with new information from C6 by B*(ws,We,W7) =
B*(we,W7)B(w5!W6,W7), where B*(we,W7,Wg).

The junction tree is invariant to the absorptions. This means that after an
absorption, equation (11) is still true.

The object is now to perform a sequence of absorptions. In this study, se-
quences are defined by the call of the routines ’collect evidence’, and ’distribute
evidence’ [15]. Collect evidence is an operation that collects all evidence in the

junction tree towards a single clique. Consequently, calling collect evidence
from any clique results in the belief table being equivalent to the joint pos-
terior distribution of the variables it contains. As an example, figure 2 shows
that calling collect evidence from Cr results in: B (CI) ex: P (W 1, W2, w5Iys), and
the order of absorptions is established as follows. First, cI requests to absorb
information from its neighbours (C2). However, this operation is only allowed
if CZ has already absorbed from all its other neighbours (C3 and C5). Since this
is not the case, C2 will recursively request for absorption from these cliques.
This is granted for C3, but C5 still has not absorbed from C4 and C6, which
it requested. This is finally granted, and the absorptions can be performed in
the order illustrated in figure 2a.

Distribute evidence from Cr in figure 2b is performed by allowing cI to send
a message to all its neighbours. When a clique has received a message it will
send a new message to all of its neighbours, except to the clique it has just
received a message from. In our example the order of messages (absorptions)
is illustrated in figure 2b.

If ’collect evidence’ is followed by the routine ’distribute evidence’ from the
same clique, then for any clique B(C;) cc p(c¡Jy) [15]. This is a very attractive
property because it is then possible to find the marginal posterior density of any
variable, by summing other variables out of any clique in which it is present,
rather than summing all other variables out of the joint distribution.

2.3.8. Example of exact calculations

An example is provided in this section to illustrate the relationship between
exact calculations with or without the use of the junction tree representation.

Should we want to compute the marginal posterior probability distribution
P(Wl IY8), this can be carried out directly using standard methods of probability:

However, the independence structure between genotypes allows for recursive
factorisation:

and we can write equation (9) as:

The junction tree algorithm is then used as follows. First, the junction tree
in figure 1 c is formed and initialised by the method shown previously. Collect

evidence is then called from Cl to calculate p(Cl !y8). As already described,
this call consists of the series of absorptions ordered as illustrated in figure 2a.
The corresponding calculations are as follows. First, absorptions indicated by 1

in figure 2a: B* (C5) = B*(s4> B*(s5) where B* (54) # £ B(C4) andin figure 2a: B*(c5) = B(C5)
B(S44) B (S5)

where B * (S4) L B(c4) and!(64) B(55) !* (!) W4

*
B*(S5) = £ B(C8) and B* (C2) = B (C2) B(S22) , where B*(S2) = L B(c3).!—’ ±i)J2) !—’W8

’ ’

W3

B*(S) B
Second, absorptions indicated by 2 in figure 2a: B**(C2) = B(C2) B * (S3)

B(S3)
where B*(S3) = !B*(C5). Finally, absorptions indicated by 3 in figure 2a:

W7

After collect evidence has been completed, p(w]jy) can be found by
p(wi]y) cc L B*(Cl). Writing these calculations together, and substituting

W2WS

the initial probabilities (without the tables of all ones), we obtain:

This is exactly the same calculation as equation (10), which illustrates that
junction tree propagation is basically a method to separate calculations into
smaller steps, and to arrange the order of these, such that the correct result is
obtained.

2.3.9. Random propagation

Another propagation algorithm, which relies on the junction tree structure,
is ’random propagation’, developed by Dawid [3]. This method provides a
random sample from the joint posterior distribution of all variables in the
Bayesian network, p(V!e). Random propagation is initialised by calling collect
evidence from an arbitrarily chosen clique Co. As mentioned previously, this
results in B(Co) being equal to the joint posterior distribution of variables
contained in Co, (-B(Co) cc P(Co!e)). B(Co) is then used to sample the variables
in Co. Information on the realised state of variables is distributed to the

neighbouring cliques (C.), by absorption from Co to Cn. The belief tables
of en will then be proportional to the joint posterior distribution of variables
contained in the given cliques, conditional on the variables already sampled.
That is, B(Cn) cc p(C’!C’o,e) = p(CnB{Co n Cn}!Co,e). After normalisation,
variables of CnB{Co fl Cn} are sampled, and absorptions are performed to
their neighbouring cliques. Sampling and sending messages is continued in this
manner until the entire network is sampled. The order in which sampling is
performed follows the order of messages in distribute evidence (figure 2b). In
our genetic example, we can first collect evidence to Cl. Performing the random
propagation algorithm then involves sampling from the following distributions:

2.3.10. Creating blocks by conditioning

The method of random propagation of Dawid [3] can be used to obtain a
random sample of all variables from their joint posterior distribution, p(V!e),
or equivalently p(wlb, u, m, f, (7 e 2,G2, u y). However, if the Bayesian network is
large and complex, the cliques of the junction tree may contain many variables.
This is a problematic scenario, as dimensions of the corresponding belief tables
are exponential in the number of variables the cliques contain. Therefore, the
storage requirements of junction trees may become prohibitive, preventing the
performance of the operations described earlier. If this were the case, it would
not be possible to obtain a random sample from the joint distribution of all
variables.

Conditioning on a variable allows a new Bayesian network to be drawn,
where the variable conditioned on is separated into several clones. This will
often break loops in the network, as illustrated in figure 3. When loops
are broken, fewer fill-in links are needed to render the graph triangulated,
and consequently, fewer and smaller cliques are created. It follows that the

storage requirements of the corresponding junction tree are smaller and random
propagation can be performed. The concept of conditioning is illustrated in
figure 3, where two different variables, W5 and w7, are conditioned on. The

resulting Bayesian networks are illustrated in figure 3a and c, and the reduced
junction trees are illustrated in figure 3b and d. This corresponds to the creation
of two blocks, BI = {wiW2WgW4W6W7Wg} and B2 = fWlW2W3W4W5WCW81-
The reduced junction trees demonstrate that storage requirements of the
junction trees are reduced, because loops in the original Bayesian network are
broken. This occurs as the junction trees contain fewer cliques and some of
the cliques contain fewer unknown variables. In figure 3b and d variables with
letter subscripts are assumed known. It is easy to see that a very large junction
tree can be reduced sufficiently with respect to storage constraints, if many
variables are conditioned on.

Blocks were created by choosing variables through the following iterative
steps. First, the variable yielding the highest reduction in storage requirements
when conditioned on was identified. Second, this variable was conditioned on in
some blocks. Third, the storage requirements of the resulting junction trees were

calculated. If the storage requirements were larger than what was available,
the steps were repeated finding the next variable to condition on. This was
continued until all blocks satisfied the storage constraints of the system. All
variables were, of course, required to be in at least one block. Jensen [10]
provides more information on the block selection algorithm.

Blocks Bl, ... , Bn are constructed such that each contains most of the vari-
ables of the network. The complementary sets (i.e. the variables that are condi-
tioned on) are called Bc, ... , B’. In this way, each set, B; U B! , contains all the
major genotypes in the pedigree. As the junction tree of each block can now
be stored in the computer, exact inference can be performed, and a joint sam-
ple of all variables in the block can be obtained using the random propagation
method. Therefore, using the described form of blocking, we can obtain random
samples from the joint distribution of a block, conditional on the complemen-
tary set of other variables in the MIM and data, p(B; !B! , b, u, m, ae, aU, f, y).

In the MIM, the Gibbs sampling algorithm using general blocking can thus
be summarised as follows:

1) form optimal blocks with respect to storage constraints by conditioning;
2) construct the junction tree for each block;
3) run the Gibbs sampler as shown previously, but substitute step II by:

IIa) propagate information to B;, from new updates of allele frequency,
adjusted phenotypes and genotypes of Bi using the message passing scheme;

lib) use random propagation of Dawid [3] to achieve a random sample from
p(B; ! Ba, b, u, m, 6e , 6u ! f ! Y) ;

IIc) sample genotypes in Hi according to equation (3).
Each time step II is performed a new block B;+1 is updated. When all blocks

have been sampled we start again sampling Bi.
In this algorithm, only one of the blocks (B;) is updated during each itera-

tion. All other variables are updated from their full conditional distributions,
such that all variables are sampled once during each iteration. Other updating
schemes are also possible, and are described in the discussion.

3. EXAMPLE ON SIMULATED DATA

As an example, a simulated pedigree, with five overlapping generations of
individuals, was analysed. In each generation five randomly selected sires were
each mated to ten randomly selected dams, and each dam produced a litter of
three offspring. Parents for the next generation were selected from all offspring
and the parents in the current generation. This results in a pedigree of 750
individuals. Input values for the simulated data set were: ae = 85, 6u = 15,
a = 10, f = 0.2 and cy m 2 = 32, where cy mg 2 is the expected major gene variance
calculated as 02 = 2p(1 — p)a2. In the simulation, as well as in the analysis,
inbreeding was ignored.

The simulated data set was analysed using the general blocking algorithm
with five blocks, each containing more than 95 % of all major genotypes. The
sampling scheme of Janss et al. [9] (sire blocking), was used as a reference
method. The algorithm in which all variables are updated univariately from
the full conditional distributions is not included in the present study because
sire blocking has already been shown to be much more efficient [9].

Preliminary analysis showed that 100 000 samples would be sufficient for
the given Markov chain to obtain the equivalent of 250 independent samples
of genetic variances. A burn-in of 5 000 samples was used to allow the chain to
converge to the target distribution.

3.1. Convergence and mixing diagnostics

The criteria upon which we compare the two algorithms is an assessment
of the information content in a given Gibbs chain. The effective sample size
measures the number of independent samples from the marginal posterior
distribution to which the actual chain corresponds. To estimate the effective
sample size, a standardised time series method of batch means was used

[6, 7]. This relies on dividing the chain, of length n, into m equal-sized
kn/m

.
m ’&dquo;’batches, with the batch means calculated as: Mk = — V! g(xi),
n
i=(k-1)N/m+1

k = 1, ... , m, and Xi are the samples. These batch means will converge in
distribution to independent, identically distributed normal random variables.
Convergence of the batch means was checked by standard one-way analysis

of variance and by estimating the lag correlation between batch means. The
Monte Carlo variance (VMc) was estimated as the variance between batches:

-

1
?n

2
-

VMC = m m - 1 y!(-!k &dquo; M)2, k = 1, ... , m, where M was the mean of them(m - 1) ! !k=I

m batch means, and the effective sample size [21]: SSE = Vy!/VMC, where Vw
was the within-batch variance, calculated using time series analysis, to take the
high autocorrelation of successive samples into account.

3.2. Results from simulated example

The marginal posterior mean of the residual variance is low compared to the
input parameters of the simulated data set (tables I and 77). It is not a general
feature of the algorithm to underestimate the residual variance, and the input
values of parameters were all contained in the 95 % highest posterior density
regions estimated for the relevant marginal posterior densities.

Estimated means of marginal posterior distributions were very similar for
the two Gibbs sampling approaches. However, important differences in mixing
properties, measured as Monte Carlo variance and effective sample size, were
observed. The Monte Carlo variance was considerably larger and effective

sample sizes considerably smaller when using the sire blocking algorithm
(table 77), compared to the general blocking strategy (table I). For example, for
the parameter of major gene variance, which was of primary interest, the SSE
was nearly seven times as high when the general blocking strategy was used.
Therefore, the sire blocking scheme was allowed to run another 100 000 rounds
and the results are summarised in table IIZ The effective sample sizes of the
two main parameters of genetic variance (au and (Y’ m 9) were still considerably
smaller than when the general blocking algorithm was run for half as many
rounds. For example, the SSE for the major gene variance was still nearly four
times as high when using the general blocking algorithm. These results indicate
that, even when many final offspring exist, the general blocking algorithm mixes
faster.

The algorithms were primarily compared with respect to the number of
rounds, instead of computer time. This was because the general relationship
between number of rounds and computer time for the two algorithms in different
data structures was not known. However, in terms of computer time, one round
of general blocking corresponds to almost two rounds using sire blocking.
Consequently, when comparing the usage of computer time by the different
algorithms, tables I and III can be compared directly.

4. DISCUSSION

The primary objective of this paper was to introduce graph theoretic
methods to animal breeding, with particular emphasis on improving mixing
and reducibility properties in MCMC methods for single gene models. By
introducing a blocking Gibbs sampler with the MIM in a segregation analysis
setting, the blocking algorithm of Jensen et al. [13] was extended to methods
used in quantitative genetics. However, if genetic marker information is included
in the model, more severe reducibility problems are often encountered, making
a Gibbs sampler with univariate updating infeasible. This is because the sample
space is often cut into non-communicating subspaces, and the induced Markov
chain does not converge to the desired joint posterior distribution. However,
sampling strategic individuals jointly will connect the disjoint sample spaces,
and thereby create an irreducible Gibbs sampler. Blocking Gibbs sampling has

already been successfully applied to linkage analysis with one genetic marker for
a simple Mendelian trait [11]. This approach can also be extended to complex
models such as the MIM. Although in a complex pedigree, it might not be
obvious which genotypes must be sampled jointly, the general blocking strategy
holds the potential to solve the crucial reducibility problem in MCMC methods
for linkage analysis.

The two blocking strategies resulted in similar point estimates of marginal
posterior means of model parameters. However, in this simulated example, the
general blocking strategy was more efficient. After having run the algorithms for
an equal number of iterations, the samples from the general blocking algorithm
contained approximately seven times as much information concerning the major
gene variance, as did the samples from the sire blocking algorithm (measured
by the effective sample sizes). When the algorithms were run for the same
amount of time, rather than the same number of iterations, the samples from
the general blocking algorithm still contained four times as much information
as those from the sire blocking algorithm. The difference in efficiency might
seem small, but for these time-consuming algorithms, it is quite a significant
difference.

The simulated data set used to compare the two blocking strategies had
rather many final offspring. This meant that sire blocking was already a con-
siderable improvement in comparison to using univariate updating of geno-
types. Therefore, a large difference between the two blocking strategies was
not expected. In other situations, the proposed algorithm is expected to be
even more beneficial. Examples include a pedigree with fewer final offspring
or with many individuals without phenotypic records. Such cases often occur
when conducting analyses in animal breeding, as ancestors are often traced
back several generations from individuals with phenotypic records. The result
is a complex pedigree with a gap between founder individuals and individuals
having records, but not much information on the genotypes. In such situations,
the general blocking strategy is also expected to improve mixing considerably
because founder individuals will be sampled jointly with those having records.

In the proposed algorithm, blocks are chosen to be as large as possible in
order to jointly sample almost all genotypes. Thus, it was chosen to update one
block of genotypes in each iteration. The drawback of this approach is that it
is currently difficult to handle a complex pedigree of more than about 5 000 to
10 000 individuals. However, this particular strategy is not essential. The use
of the graphical model theory to construct a blocking Gibbs sampler is much
more general and can be applied in many different ways. A block selection
algorithm that ensures the possibility of using the general blocking strategy,
for any sized pedigree, could be developed. In such an algorithm, each block
will, in large data sets, contain a much smaller proportion of the entire pedigree
and possibly with less overlap between the blocks. Consequently, the scheme in
which the blocks are visited also has to be revised to optimise the algorithm.
In this situation several blocks would be updated in each iteration, but not
necessarily all. In order to analyse large animal pedigrees, development of such
blocking schemes is required.

REFERENCES

[1] Bulmer M.G., The effect of selection on genetic variability, Am. Nat. 105 (1971)
201-211.

[2] Cannings C., Thompson E.A., Skolnick M.H., Probability functions on com-
plex pedigrees, Adv. Appl. Probab. 10 (1978) 26-61.

[3] Dawid A.P., Applications of a general propagation algorithm for probabilistic
expert systems, Stat. Comput. 2 (1992) 25-36.

[4] Elston R.C., Stewart J., A general model for genetic analysis of pedigree data,
Hum. Hered. 2 (1971) 523-542.

[5] Gelfand A.E., Smith A.F.M., Sampling based approaches to calculating margi-
nal densities, J. Am. Assoc. 85 (1990) 398-409.

[6] Geyer C.J., Practical Markov chain Monte Carlo, Stat. Sci. 7 (4) (1992) 473-
511

[7] Glynn P.W., Inglehart D.L., Simulation output analysis using standardised
time series, Math. Oper. Res. 15 (1990) 1-16.

[8] Guo S.W., Thompson E.A., A Monte Carlo method for combined segregation
and linkage analysis, Am. J. Hum. Genet. 51 (1992) 1111- 1126.

[9] Janss L.L.G., Thompson R., Van Arendonk J.A.M., Application of Gibbs
sampling for inference in a mixed major gene-polygenic inheritance model in animal
populations, Theor. Appl. Genet. 91 (6/7) (1995) 1137-1147.

[10] Jensen C.S., Blocking Gibbs sampling for inference in large and complex
Bayesian networks with application in genetics, Ph.D. thesis, Aalborg University,
Denmark, 1997.

[11] Jensen C.S., Kong A., Blocking Gibbs sampling for linkage analysis in large
pedigrees with many loops, Technical report R-96-2048, Department of Computer
Science, Aalborg University, Denmark, 1996.

[12] Jensen C.S., Sheehan N., Problems with the determination of the non-

communicating classes for MCMC applications in Pedigree Analysis, Biometry 54
(1997) 416-425.

[13] Jensen C.S., Kong A., Kjaeruiff U., Blocking-Gibbs sampling’ in very large
probabilistic expert systems, Int. J. Hum. Comp. Stud. 42 (1995) 647-666.

[14] Jensen F.V., An Introduction to Bayesian Networks, UCL Press, University
College Limited, CA, 1996.

[15] Jensen F.V., Lauritzen S.L., Olesen K.G., Bayesian updating in causal prob-
abilistic networks by local computations, Comput. Stat. Q. 4 (1990) 269-282.

[16] Lauritzen S.L., Spiegelhalter D.J., Local computations with probabilities on
graphical structures and their application to expert systems, J. R. Stat. Soc. Series
B 50 (1988) 157-224.

[17] Lindley D.V., Smith A.F.L., Bayes estimates for the linear model, J. R. Stat.
Soc. Series B 34 (1972) 1-41.

[18] Morrison D.F., Multivariate Statistical Methods, McGraw-Hill, New York,
1976.

[19] Morton N.E., MacLean C.J., Analysis of family resemblance. III. Complex
segregation analysis of quantitative traits, Am. J. Hum. Genet. 26 (1974) 489-503.

[20] Sheehan N., Genetic restoration on complex pedigrees, Ph.D. thesis, Univer-
sity of Washington, 1990.

[21] Sorensen D.A., Andersen S., Gianola D., Korsgaard I., Bayesian inference
in threshold models using Gibbs sampling, Genet. Sel. Evol. 27 (1995) 229-249.

[22] Wang C.S., Rutledge J.J., Gianola D., Marginal inference about variance
components in a mixed linear model using Gibbs sampling, Genet. Sel. Evol. 25
(1993) 41-62.

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Mixed inheritance model
	2.2. Gibbs sampling
	2.2.1. Full conditional posterior distributions
	2.2.2. Location parameters
	2.2.3. Major genotypes
	2.2.4. Allele frequency
	2.2.5. Variance components

	2.3. Blocking strategies
	2.3.1. Sire blocking
	2.3.2. General blocking using graph theory
	2.3.3. Bayesian networks
	2.3.4. The junction tree
	2.3.5. Transformation of a Bayesian network into a junction tree
	2.3.6. Exact computations in a junction tree
	2.3.7. Junction tree propagation
	2.3.8. Example of exact calculations
	2.3.9. Random propagation
	2.3.10. Creating blocks by conditioning

	3. EXAMPLE ON SIMULATED DATA
	3.1. Convergence and mixing diagnostics
	3.2. Results from simulated example

	4. DISCUSSION
	REFERENCES

