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Abstract - This paper presents a general expression to predict breeding values using
animal models when the base population is selected, i.e. the means and variances of

breeding values in the base generation differ among individuals. Rules for forming
the mixed model equations are also presented. A numerical example illustrates the
procedure. &copy; Inra/Elsevier, Paris
mixed model equations / animal model / base population / selection

Résumé - Expression générale des équations du modèle animal mixte tenant
compte de la sélection des populations de base. Cet article présente l’expression
générale pour prédire les valeurs génétiques par le modèle animal quand la population
de base est sélectionnée, c’est-à-dire quand cette population est un mélange de sous-
populations à moyenne et variances génétiques différentes. On présente les règles de
construction des équations du modèle mixte. La procédure est illustrée par un exemple
numérique. &copy; Inra/Elsevier, Paris
modèle mixte / modèle animal / population de base / sélection

1. INTRODUCTION

The prediction of breeding values involves assumptions on animals with
unknown parents, commonly named the base animals. Correct understanding
and definition of the base population are critical for animal models because
all subsequent breeding values are tied to them. The usual assumption is to
consider base animals unselected. However, this condition often does not hold
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because it is not always possible to trace the complete geneology or to describe
the selection process back to the unselected foundation generation. In this case,
the distribution of breeding values is altered and, in particular, it is no longer
valid to assume that the breeding values of the base animals have the same
mean and variance, and that the genetic variance of the base generation is
twice that of the Mendelian variance.

In a Gaussian setting, Henderson [6] derived a modification of the mixed
model equations (MME) which led to the obtaining of predictors of breeding
values that are unbiased even if base animals were selected, provided that
the variance components associated with the model were known. In many
applications these equations are difficult to set up and various alternatives have
been suggested. In sire evaluation, Henderson [5] proposed to assign logically
animals to fixed groups according to some existing prior knowledge of breeding
values, or instead to treat animals as fixed if selection occurred in an unspecified
manner. Quaas and Pollak [12] showed the equivalence between the MME for
a sire model with genetic groups and those derived by Henderson [6] under
his selection model, provided that the appropriate genetic groups were defined.
The alternative formulation of the MME derived by Quaas and Pollak [12] for
a model with genetic groups was exploited in Graser et al. [4] and in Quaas
[11]. They gave easy rules to set up the equations corresponding to an animal
model with base animals treated as fixed and an additive genetic animal model
with groups and relationships, respectively. Cantet and Fernando [1] extended
these rules to allow for heterogeneous additive genetic variances and segregation
variance between groups. However, these rules assume that each base animal is
randomly sampled within the group, and therefore that its variance is the same
as before selection took place. Although Henderson [7, 8] and van der Werf and
Thompson [14] developed MME that account for reduced genetic variance of
base animals due to selection, they did not explicitly give a set of rules to set
up the associated MME.

The purpose of this paper is to present a general approach to predicting
breeding values when genetic means and variances of base animals are not
homogeneous. The problem has been dealt with in the literature, and easy rules
are available to set up the MME when individuals from the base population
have different means [11] or can be easily derived when they have distinct
genetic variances [14]. However, both aspects have not been dealt with in
one practical approach. This paper brings these two problems together. The
generalisation gives a convenient formulation for illustrating the relationships
between several methods of dealing with selected base populations. This
includes obtaining MME which can be constructed using an extension of the
rules given by Quaas [11] to cope with different assumptions concerning the
variance of breeding values of base animals. A numerical example is given.

2. THEORY

The usual animal model expression can be written as:

where y is the vector of records; b is the vector of fixed effects; ab is the random
vector of breeding values of base animals; ar is the random vector of breeding



values of non-base animals; e is the random vector of residuals; and X, Zl and

Z2 are known incidence matrices associated with b, ab and ar, respectively.
The vector of breeding values of non-base animals can be partitioned as:

where s* is a linear transformation of the random vector of the Mendelian

sampling effects (s) of animals with known parents, such that

where P2 is a matrix relating non-base animals among themselves; and Q is
the incidence matrix relating base animals with their descendants, such that

where PI is a matrix relating base animals with non-base animals. PI and P2
are matrices with 0.5 in the parent’s columns in each row.
We can then write !4!:

With this model (3), the expectation and dispersion matrices for the vector of
observations are:

Note that as Mendelian sampling effects are independent of ancestral breed-
ing values we have

Further, it can be shown that the dispersion matrix of Mendelian sampling,
var(s) = Ho, is diagonal with the ith diagonal element defined as:

where j and k are the parents of i.
Thus, following equation (1), we can write the variance of s* as:

We will denote that V(e) = R. To complete the definition of the model,
we need only to specify the expectation and dispersion matrices for ab. This
will serve to develop different hypotheses about the mean and variance of the
base population. In most mixed models either the mean or the variance is

assumed to be zero. Hence, to be general, we will consider that E(ab) = Qbg
and V(a!,) = H6, where g is the vector of base population means, Q6 an

incidence matrix relating the base animals to their respective groups, and Hb
is the dispersion matrix of breeding values of base animals.



Expression (3) can be rewritten as:

With this model the vector of breeding values of base animals is:

Now, following the modification of Quaas and Pollak [12] in a similar manner
to that described by Graser et al. (4!, the associated MME are:

Absorption of the equations for the genetic groups (g), and using equa-
tions (2) and (4), permit us to rewrite the MME in equation (5) as

and a is the vector of breeding values of base (ab) and non-base animals (ar).
Now, calling



and Z = [Zl Z2] the prediction of breeding values when base animals are
selected is then obtained by solving the following MME:

The calculation of G*-1 is simplified if all the groups are assumed to have
the same additive genetic variance, and base animals are unrelated and non-
inbred, because in that case G*-1 is the usual inverse of the relationship matrix.
Otherwise, the calculation of G*-’ requires computing Ho introducing the
segregation variance between groups and inbreeding, though these effects can
be easily accommodated using for example the algorithms given by Cantet
et al. [1] and Meuwissen and Luo (10), respectively.

The second term of G*-’ requires the computation of H However, from
inspection of MME in equation (5) it can be seen that, if no inbreeding
is assumed and base animals are genetically unrelated, H-’ does not need
to be calculated because G*-1 can be constructed directly by extending
the algorithm of Quaas [11]. In particular, if base animals are sampled at
random from some selected populations, and, for simplicity, are assumed to
be genetically unrelated, then Hb is diagonal with the ith diagonal element
defined as 6i Qa, where 6i accounts for the reduction in the genetic variance Qa a 2
due to selection. In this case, G*-1 = A*-1(1/Qa) and A*-1 can be computed,
for m = number of unknown parents of an individual, replacing x(= 4/(k+2))
in the rules of Quaas (11) with:

- x=2, ifm=0(k=m);
- x = [4/(2 + 8j)], if m = 1 and the unknown parent is from a population

with variance 6j or a 2(k = 6j);
- and ! _ (4/(2 + 6j + 6k)], if m = 2 and the unknown parents are from

populations with variance 6j Qa and 8k Qa (k = 6j + 6!).

3. NUMERICAL EXAMPLE

Consider the following pedigree:

All base sires and dams come from the same population. Dams were taken at random
and sires were selected from the offspring of the 1 % of the phenotypically best
animals.



Records were made in two time periods as follows:

Two different genetic groups can be defined: g, for the selected base males
and 92 for the randomly chosen base females, both with different additive
genetic means and variances. Assigning a hypothetical base animal to these
groups (g, and g2) genetic groups can be treated as fixed effects (6 = oo).

Selection carried out in males is known. Therefore, assuming normality, the
proportion of genetic additive variance after selection (b) can be derived from
the following expression: 6 = 1-i (i-w) h2, with i being the selection intensity
value, w the standardised truncation point value and h2 the heritability
value !13!.

Following the proposed rules, we have:



The associated MME are:

The coefficient matrix has order 15 but rank 14. Imposing the restriction
gl = 0 the solution is: b = (15.622, 12.593), g = (0, -10.162) and a = (-0.006,
- 9.921, 0.053, -10.402, -4.911, -5.264, -4.747, -5.381, -5.275, -5.096,
- 7.593). The large difference estimated between groups can be explained by
the higher proportionate contribution of the group of females to the records
made in the second time period.

For the usual genetic group model, assuming that additive genetic variance
is the same for both groups of base animals, males and females, there is also one

dependency in the equations. Imposing the same restriction (gl = 0) the solu-
tion is: b = (15.626, 12.602), g = (0, -10.174) and a = (-0.007, -9.934, 0.059,
- 10.414, -4.918, -5.270, -4.750, -5.384, -5.286, -5.099, -7.602).
MME for the simplest animal model, assuming E(ab) = 0 and V(ab) = I 0a 2

have full rank. The solution is: b = (10.586, 6.701) and a = (0.009, 0.133, 0.050,
- 0.249, 0.246, -0.286, 0.280, -0.312, -0.040, -0.026, -0.309).

4. DISCUSSION

The results presented in this paper permit us to obtain a general expression
to predict breeding values using animal models when the means and variances
of breeding values in the base generation differ among individuals. This can
be accomplished using equation (5) or equation (7) with a proper definition
of H in equation (6). In particular, it is through Qb and Hb that we account
for the distribution of breeding values of base animals, and can illustrate the
correspondence among different models for selected base populations. Thus,
if Qb = 0 and H6 = I o, a 2, the expression (7) leads us to the habitual MME
under a non-selection model. With H6 1 = 0, which can be obtained by setting
6i = oo, we can represent the genetic groups model !11! or the fixed base animal
model !4!, depending on whether Q6 ! 0 or Q6 = 0, respectively.



Similarly, the MME described in van der Werf and Thompson [14] are the
same as in equation (7) with H61 = 6 1 (llafl) and Qb = 0. Further, when
selection can be described as a linear function of breeding values of base animals
(M’ab), it can be shown that equation (7) is equivalent to equation (3) in

Henderson [8] when M = H-1 Qb, and, therefore, Q’ Hb 1 ab represents the
conditional variable upon which selection is assumed to be based. This can be

interpreted generally as a weighted grouping, where groups are weighted by the
dispersion matrix of breeding values of base animals. Alternatively, the results
of Famula [2] serve to show that this is equivalent to a model of restricted
selection using Hb 1 (ab as a restriction matrix.

Hence, predictions of ab deviations from their group mean are independent of
selection decisions made in the past and, assuming normality, selection can be
ignored. Note, however, that this is not true if descendants of base animals are
also selected, unless they are selected on linear, translation invariant functions
of the observations (6!. The latter condition would not be satisfied when the
selection criterion included the group effect or, more generally, when base
animals were treated as fixed [14]. Nonetheless, this condition for ignoring
selection does not need to be met when likelihood [9] or Bayesian [3] methods
of inference are used, and it has not been demonstrated that this property leads
to maximising the expected genetic progress, as Fernando and Gianola [3] have
shown in a simulated example.

Equation (7) can also be useful in the estimation of variance components
when, as in the example presented, selection can be simply modelled. In this
case, the problem of selected base animals could be reduced to estimating
some extra parameters, although the amount and the structure of available
data would condition the reliability of estimates (14!.

5. CONCLUSION

When additive genetic means and variances of base animals are not homo-
geneous, prediction of breeding values can be obtained by means of animal
models if the covariance matrix of additive genetic values is properly defined.
MME construction is similar to that with homogeneous mean and variance in
the base population. The different methods that have been proposed for pre-
diction of breeding values when base population animals have been selected in
some non-random manner can be deduced from a general expression of MME.
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