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Abstract - The use of an animal model in the analysis of selection experiments offers
the theoretical advantage of accounting for changes occurring in the genetic parame-
ters in the course of the experiments. Explicit estimators of realized heritability (h2)
are derived in this paper for balanced one-generation selection designs. Expressions
are given for the expectations and variances of the estimators in relation to the true
heritability and for the sensitivity of the estimators to the prior value of heritability.
Sensitivity is generally high, except for high values of the true heritability and/or
extremely large family sizes. The uncertainty on heritability may, however, be taken
into account in a context of Bayesian inference, which allows a simultaneous esti-
mation of the initial heritability and of the response. On the other hand, animal
model estimators, being dependent on the genetic model assumed, may not provide
adequate measures of the actual responses. They also tend to overestimate the ac-
curacy of genetic trend evaluations, since genetic drift is not properly accounted for.
Animal models, however, provide a way of evaluating the effects of selection and lim-
ited population size in long-term selection experiments, and thus permit a check on
the validity of the underlying infinitesimal additive genetic model. Some examples
based on published results of long-term selection experiments on mice are discussed.
&copy; Inra/Elsevier, Paris
genetic evaluation / selection experiment / animal model BLUP / realized

heritability

Résumé - Utilisation du modèle animal dans l’analyse des expériences de
sélection. L’application du modèle animal à l’analyse des expériences de sélection
permet en théorie une prise en compte de l’évolution des paramètres génétiques
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au cours de l’expérience. Des estimateurs explicites de l’héritabilité réalisée h2 sont
présentés dans cet article pour le cas d’expériences de sélection sur une génération en
dispositif équilibré. Des expressions sont données des espérances et des variances des
estimateurs en fonction de l’héritabilité vraie, ainsi qu’une expression de la sensibilité
des estimateurs à la valeur initiale de l’héritabilité. Cette sensibilité est généralement
élevée, sauf pour des valeurs élevées de l’héritabilité vraie et/ou des tailles de famille
très grandes. Cependant une méthode bayésienne d’inférence permet de s’affranchir
de cette difficulté, en estimant simultanément la valeur initiale de l’héritabilité et
la réponse. Par ailleurs, les estimateurs du modèle animal, parce que dépendants
du modèle génétique supposé, ne fournissent pas toujours des mesures adéquates
des réponses à la sélection. Ils tendent aussi à surestimer la précision des évolutions
génétiques tracées, puisque la dérive génétique n’est pas bien prise en compte. Le
modèle animal, en contrepartie, constitue une méthode d’évaluation des effets de la
sélection et de la taille limitée des lignées dans les expériences de longue durée, et
permet ainsi de tester la validité du modèle génétique additif infinitésimal sous-jacent.
Quelques exemples basés sur des résultats de la littérature relatifs à des expériences
de longue durée chez la souris sont discutés. &copy; Inra/Elsevier, Paris
évaluation génétique / expérience de sélection / modèle animal BLUP /
héritabilité réalisée

1. INTRODUCTION

One of the objectives of a selection experiment is to compare reality to
theory, by checking whether the selection responses predicted are actually
achieved. Use is made of the concept of realized heritability !’, defined as
the ratio of response (R) to selection differential (S) such that h! = R/S (see
Falconer [5]). This parameter (h’) is in fact one element of a set of realized

genetic parameters, which can be derived from a properly planned multitrait
selection experiment. In farm animals with long generation intervals, selection
experiments are generally carried out for a limited number of generations, and
the main interest is to evaluate the effect of selection on the means of the
selected populations. On the other hand, long-term selection experiments with
laboratory animals have somewhat different purposes, which are essentially
to assess the limits to selection and to evaluate the effect of selection on the

genetic parameters. Most often, individual selection is applied, allowing an
easy calculation of S and a direct measurement of R/S. Family and combined
selection, however, may also be applied and h’ is then a more complex function
of R/S involving the corresponding index coefficients (e.g. see Perez-Enciso and
Toro [11]). With BLUP selection, no exact calculation of S for the selection
criterion is possible, except in balanced designs, and realized heritability cannot
be measured. Responses (R) are classically based on generation/line least-

square estimators obtained in an experimental design properly controlling
environmental differences between generations. However, responses may also
be derived from individual breeding values. In the late 1970s it appeared that
the BLUP method of evaluation could be taken to its ’logical conclusion’, as
noted by Thompson [16] in his review of sire evaluation, since genetic trends
in dairy cattle using BLUP estimators began being presented at that time.
In addition to the standard methods of analysis of selection experiments,
essentially based on least-square estimators (see [8]), new methods based on
mixed models were developed from then. Moving from sire models to animal



models offered additional advantages. As shown by Sorensen and Kennedy !13!,
the animal model has advantages in the estimation of selection response as well
as in the study of the evolution of genetic variance. These two aspects will be
considered in succession in this paper. A distinction will be made between
inferences based on assumed prior values of the variances in the model and a
more general approach integrating the uncertainty on those variances.

2. REALIZED HERITABILITY ESTIMATION
IN ONE-GENERATION SELECTION EXPERIMENTS,
ASSUMING PRIOR VALUES OF THE VARIANCES
IN THE MODEL

As early as 1979, Thompson had pointed out that the responses derived from
mixed models include information components based on the selection pressure
applied. The estimator of R is then a function including S, which is not the
case in the standard methods of analysis of selection experiments. The question
explicitly put by Thompson [16] was whether &dquo;BLUP estimates of trend are just
multiples of the selection differentials&dquo;. By considering simple one-generation
designs, analytical expressions of the weight of S in the estimation of R can
be obtained, as will be shown below. Simple designs have previously been
investigated by Thompson !17!, who considered selection in one sex over several
generations, and also by Sorensen and Johansson !12!, who considered selection
operating in both sexes.

2.1. Design 1: no control line

Though this situation has been fully addressed by Thompson [17], it is

again summarized here for the sake of completeness, and the derivation of
the estimator of !2 is detailed in the Appendix. Using Thompson’s notation,
n unrelated males (n > 2) are measured for the trait of interest in generation 1,
out of which one is selected and leaves n progeny measured in generation 2. A
pool of dams unrelated to the sires is assumed, in which pedigree information
is ignored. In such a situation, the individual (animal) mixed model applied is:

where y2! is the value of the trait measured in generation i (i = 1, 2) on the
individual j ( j = 1, ... n), mi the generation mean, a2! the individual additive
genetic value with variance aa, eZ! a random environmental effect with variance
Qe, and letting h2 = a2/(a2 + (2)

In this design, fixed effects are confounded with generation, and it was shown
by Thompson !17! that the estimator of realized heritability is the prior value
of h2 assumed. The derivation presented in the Appendix may be extended to
any balanced scheme implying selection of s sires leaving n offspring each. It
has also been shown by Sorensen and Johansson [12] to hold when selection is
in both sexes.



2.2. Design 2: control line

The situation considered here is the same as in design 1, with the addition of
a very large pool of unrelated individuals of constant genetic merit, measured
in both generations. This allows all measures to be expressed as deviations from
a fixed control level. Environmental differences between generations are thus
eliminated, and a common mean m may be taken in the model, which becomes:

where y2! is the trait value of individual j in generation i (i = 1, 2; j = 1, ... n)
expressed as a deviation from the control, and a and e are defined as in
model (1). As shown in the Appendix, model (2) yields the following estimator
of realized heritability:

in which S is the selection differential, D the observed difference between
generation means, and k a weighting factor such that:

A similar reasoning applies when selection operates in both sexes, one
individual is selected out of n candidates in each sex, and the selected couple
leaves a full-sib family of size 2n. It can be shown that the weighting factor of
D/,S’ in equation (3) then becomes kf/ (1 + lc f) with:

This situation has been considered by Sorensen and Johansson [12], who
derived the proper weight, implicitly assuming n = 2. K in their notation equals
2 k f. The above situations may easily be extended to sn unrelated candidates
in generation 1, and s half-sib families of size n in generation 2, or s couples
selected out of sn candidates of each sex and leaving s full-sib families of size
2n, since the expressions (3), (4) and (5) are independent of s.

2.3. Design 3: divergent selection

The situation considered now is when the two extreme individuals are
selected out of 2n unrelated candidates, and each of the selected individuals
leaves n offspring, dam pedigree information being also ignored. Equation ( 1 )
then applies here, assuming i = 1, 2 and j = 1, ... 2n. As shown in the
Appendix, the estimator of realized heritability is again:

in which S is the selection differential applied in generation 1, i.e. now the

phenotypic difference between the two extremes, D is the observed difference
in generation 2 between the two sire families, and k is a weighting factor such
that:



When selection operates in both sexes, assuming the extremes to be selected
out of n candidates in each sex, and assortatively mated to produce two full-sib
families of size n, it can be shown that the weighting factor of D/5’ in equation
(6) becomes kf/ (1 + lcf), with:

As with design 2, the situations can be extended to the case of 2sn unrelated
candidates in generation 1 and 2s half-sib families of size n in generation 2, or
sn candidates of each sex and 2s full-sib families of size n, since the expressions
(6), (7) and (8) are also independent of s.

2.4. Statistical properties of the estimators of realized heritability:
evaluation of the designs

In design 1, with discrete generations and no control, the estimator h2 is
strictly equal to the h2 assumed in equation (1), and the response measured
is strictly speaking a prediction, independent of the measures in generation 2
and of family size n. In designs 2 and 3, it can be seen that R combines an
a priori information (0.5 h 2S), in fact a multiple of the selection differential,
and an a posteriori information (D), which is the observed response. The prior
information dominates roughly in inverse proportion of h2, as shown by the k
values (4), (5), (7) and (8), which are increasing functions of h2, as also noted
by Sorensen and Johansson [12] for design 2. The statistical properties of the
random variable !2 in designs 2 and 3 will now be examined in order to evaluate
more precisely the efficiencies of those designs.

The estimators (3) and (6) of !2 have the following expectation, since
E(D/S) = 0.5 5 h) , ho being the true heritability, as opposed to the prior value h2:

As shown in figure !, this function varies from 0 to h) when h2 increases
from 0 to 1, and goes through a maximum which can be obtained by setting
the derivative of equation (9) equal to zero. It can be shown that this
maximum is reached for h2 > h), since the equation to solve may be written
h2 = ho + (1 + k)/ (dk/dh2), and k and dk/dh2 are both positive.

Equation (9) and figure 1 clearly show how dependent the animal model
estimators are upon the heritability assumed in the model. Excluding extreme
deviations of h2 from h) , the estimators will generally increase with increasing
value of h2. The sensitivity of the design to the prior h2 may be expressed
as the slope of the curve defined in equation (9) at the value h2 = h), which
can be shown to be 1/(1 + k). The sensitivities of various designs for three
values of h) are presented in table 1. It can be seen that sensitivity varies
from nearly 1, which means quasi-proportionality of /! to h2, to nearly zero, a
situation of independence of /! from h2. However, low sensitivities can only be
reached either for traits of high heritability or for very large family sizes. At
equal family size, divergent selection (design 3) is generally less sensitive than



one-line selection with control (design 2). One sees also that the advantage of
design 3 over design 2 increases with increasing heritability and/or larger family
size. When selection operates in both sexes, similar patterns can be shown to
hold.

The variance of the estimators (3) and (6) for given fixed values of S is:

Given the assumptions underlying model (1) and further assuming
o-a + af = 1 in both generations, it can be shown that in the general case of s
or 2s sires selected in generation 1 and half-sib family size of n:

in designs 2 and 3, respectively.



Equation (10) shows that the accuracy of estimation of h2, in terms of the
inverse of its standard error, is inversely proportional to the relative weight
k/(1 + k) given to the posterior information in this estimation. In designs
yielding estimators very sensitive to prior heritability, i.e. with low heritability
and small family size, animal model estimators of !2 will be extremely accurate.
It can also be seen that equation (11) does not include the drift variance
associated with the limited effective size of the selected lines, and thus shows
that the genetic drift variance is not properly accounted for in the animal
model estimators. For instance, in the simple case of design 3 with s = n = 1,
V(D) = 2 and does not include the drift variance due to an effective population
size of N = 4 in each line, corresponding to one male and an infinite pool of
unrelated females. Quite similarly, a strict application of least squares does
not account for genetic drift either, but this effect may be incorporated into
the variance of the estimators of realized heritability, through the procedures
described by Hill !8!.

3. INFERENCES FROM SELECTION EXPERIMENTS WHEN
THE VARIANCES IN THE MODEL ARE UNKNOWN

The sensitivity of the estimators considered so far to prior values of h2 is

clearly the consequence of the uncertainty as to the real value of this parameter.
The problem, however, has a conceptually simple solution when framed in a
Bayesian setting, as shown by Sorensen et al. !15!. Inferences about selection
responses can be made using the marginal posterior distribution of selection
response, and the uncertainties about variance components are then taken into
account by viewing those components as nuisance parameters.

The marginal posterior distributions can be obtained by Gibbs sampling,
and probabilities that the response R lies between specified values can be
computed. The same reasoning applies to variance components and h2. In the
simple designs considered in section 2, where S can be calculated, the posterior
distribution of R/S could be obtained and compared to that of h2. Inferences
are influenced by the amount of data available and the assumed type of a



priori distribution of the variance components, as shown in the example in
Sorensen et al. [15]. In this example h’ cannot be obtained, since S cannot
be easily calculated. But one can expect its properties to closely follow those
of R, according to the amount of data and type of prior, i.e. the more data
are available the less are the estimates of responses influenced by the choice of
priors. And similarly for the variances of the estimate, they would be expected
to be highly dependent on the type of prior, in addition to being larger than
those obtained in the section 2 setting, since more uncertainty is taken into
account.

4. EVOLUTION OF GENETIC VARIANCE IN SELECTION
EXPERIMENTS OVER SEVERAL GENERATIONS

Moving from one cycle of selection, as considered above, to several successive
cycles requires accounting for the effects of selection on the genetic variance. It
is well known that selection induces linkage disequilibria tending to reduce the
genetic variance, and leading to an asymptotic response lower than the response
expected in the first generation !3!. In selected lines of limited size, an additional
factor reducing the response is the decrease in genetic variance due to genetic
drift, a decrease which itself depends on the selection criterion applied !18!.
Consequently, the ratio R/S evaluated over several generations is not relevant,
as it is expected to be systematically below the initial heritability. The animal
model takes into account the two phenomena of variance reduction due to drift
[13] and to the Bulmer effect [14]. This model, when applied to long-term
selection experiments, thus yields unbiased estimates of selection responses
over successive generations on the one hand, and provides an estimate of the
initial genetic variance on the other, using the restricted maximum likelihood
approach (REML: e.g. see !16!). A basic assumption of this approach is of course
the additive genetic infinitesimal model.

Selection experiments have been analysed increasingly according to the
animal model methodology, since Blair and Pollak [2] evaluated selection

response in a seven-generation experiment on sheep, and suggested that mixed
models could be used to estimate genetic trends when no control is available.
One of the first applications to long-term selection experiments has been
presented by Meyer and Hill !10!, on 23 generations of selection for food intake
in mice. In order to show the evolution of genetic variance, a two-step procedure
of data splitting was implemented, first cumulating increasingly larger numbers
of generations from the beginning of the experiment (analysis I), and then
having separate groups of consecutive generations analysed independently
(analysis II). As shown in table 11, analysis I indicates that, as expected,
standard realized heritability (R/S) decreases when the number of generations
included increases, whereas the animal model heritability also decreases, which
is contrary to expectation, since in theory the animal model estimates the
initial genetic variance. Analysis II indeed reveals a marked reduction of genetic
variance already at generation 8, and the effect is enhanced at generation 14.
The authors could then safely conclude that ’selection for appetite in mice
has reduced the genetic variance over and above the effects of inbreeding and
selection’, and that the infinitesimal model does not apply. Another conclusion
to be drawn is that the animal model underestimates the initial heritability



and, consequently, responses are also underestimated initially, owing to the
sensitivity of the estimator to prior heritability. A close examination of the
graph of predicted values and phenotypic means over generations (in figure 2 of
[10]) indeed seems to indicate a slightly larger observed divergence compared to
the animal model prediction. In contrast, in another mouse selection experiment
of similar duration, the animal model estimate of heritability over the whole
experiment was found to be very close to the estimate obtained in the first seven
generations, and, accordingly, the divergence predicted from the animal model
was in good agreement with the actual phenotypic divergence observed [1].

5. DISCUSSION AND CONCLUSIONS

The theoretical advantages of the mixed animal model in the analysis
of selection experiments have been frequently emphasized. Compared to a
simpler least-square analysis, the method allows one to better account for
environmental effects and avoids the need for an experimental design with
controls [2, 12, 14]. It is also well known that the estimates of selection

response obtained via the animal model are dependent on the prior values of the
genetic parameters [2, 12, 17!. As shown here, this dependency can be precisely
evaluated in simple one-generation selection designs and the usual designs yield
estimates of !2 highly sensitive to the prior heritability in most cases (see
table !. Such a conclusion can safely be extended to designs covering more
generations, such as the repeat sire design investigated by Thompson [17] over
three generations. The sensitivity of a design may also be evaluated a posteriori,
by estimating responses with increasing values of the prior heritability, and in
most cases responses have been shown to actually increase markedly when h2 2
increases (see, for instance, [2] or [11]). A posteriori evaluations of responses
with varying values of prior heritability should also be recommended in the
more general case of field data. The sensitivity of the estimator to prior h2 2

may be expected to be a decreasing function of the degree of overlap between
generations, or of the degree of connectedness of the data. Obviously, when
generations do not overlap the situation is that of design 1, with no control,
and sensitivity is maximum.



In the absence of information on the true value of heritability, it was shown
by Gianola et al. [6] that breeding values should be predicted using its REML
estimate in the data. It was later shown that the problem of inferences about
genetic change when heritability is unknown can be solved in a Bayesian setting
!15!. It should be noted that the classical approach suggested by Gianola et al.
[6] offers a good approximation to the full Bayesian method of Sorensen et
al. [15] when the information about heritability in the experiment is large
enough. The accuracy of BLUP evaluation has also been sometimes presented
as an argument in favour of the method for the estimation of genetic trends.
However, the prediction error variance of BLUP estimates is highly dependent
on the weight given to the prior information, as equation (11) shows. A false
impression of high accuracy will then be obtained in designs highly sensitive to
prior genetic parameters. In addition, drift variance as a source of error between
replicates is partially ignored, since the incidence matrix Z of individual genetic
values and the relationship matrix A are considered as fixed. A common feature
of the graphs showing genetic trends based on animal model evaluations of
breeding values is the smoothing out of the between-generation fluctuations,
in contrast with the highly irregular evolution of the phenotypic means (e.g.
figure 1 of !2!, or figure 2 of !10!). If a Bayesian approach is implemented, the
choice of an appropriate prior distribution of heritability is an important issue
to consider. As shown in the example simulated by Sorensen et al. (15!, the
variance of the posterior distribution of the selection response is considerably
reduced when an informative prior is used. Another issue, quite distinct from
the problems of statistical inference previously discussed, is the genetic model
assumed. The additive infinitesimal model is implicit in models (1) and (2)
and it is also the most generally used model in the analysis of long-term
selection experiments. The responses estimated are clearly model dependent.
In particular, ignoring dominance is known to lead to an overestimation of the
responses. A simulation [9] has shown that for a trait showing 40 % additive
genetic and 20 % dominance variance, the use of an additive animal model
yielded a bias in the estimate of response over six generations which was 1.21
times the real response. Chevalet [4] has derived an expression for the bias
expected in breeding value prediction when an additive model is applied in a
dominance situation. In addition, the infinitesimal model cannot account for
changes in gene frequency due to selection or mutational variance, which are
likely to contribute substantially to changes in additive genetic variance. Heath
et al. [7] have suggested an extension of the REML procedure to the estimation
of changes in variance components over generations and they have shown that
significant changes had occurred in their selected mouse lines.

In conclusion, the usefulness of the animal model approach for studying
the evolution of genetic parameters in long-term selection experiments is now
well documented. The model indeed provides a way of testing the adequacy
of the genetic assumptions underlying the analysis of selection responses.
As to genetic trends, the animal model, strictly speaking, only provides
trends in breeding value predictions based on a specific genetic model. This
dependency on the genetic model leads to questioning the adequacy of the
animal model applied to evaluate genetic progress. It should be noted that
the consequences of using a wrong genetic model for evaluating responses
over several generations are expected to be different from the consequences on



breeding value predictions and selection efficiency. In breeding value predictions
precision is more important than bias, as pointed out by Johansson et al. (9!.
When responses are evaluated, the errors may be cumulative over generations,
and create a sizeable bias. In other words, one may doubt that a proper
evaluation of past events (such as genetic progress over a long period of time)
can be safely based on a method whose aim essentially is to predict the future
(such as breeding values needed to carry out selection decisions).
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APPENDIX: Derivation of analytical expressions of realized heri-
tabilities using animal models

A1. No control line

From equation (1), the following system of 2 (1 + n) equations is derived:
see the approach in design I of !17!, assuming one selected sire, s = 1, and a
number of years T = 2. Letting yi be the phenotypic value of the individual
selected and letting Yl, Y2, aI, a2 represent the phenotypic and additive genetic
mean values in generations 1 and 2, respectively, and putting a = (1 - h2)/h2,
the system is:

From the equality (A2) = L (A5)/n one obtains a2 = 0.5all, and putting
j

this value of a2 into (Al) = [(A3) + L (A4)] /n yields al = 0, whence
j

ml = yl. By definition the selection differential is S = yll - yl = ym - mi.
From equation (A3), replacing a2 by its value above, S may be expressed as a
function of all, such as S = (1 + a)all. As al = 0, the selection response is
R = a2 = 0.5 all. As 1 + a = 1/h2, the estimator of R can be expressed as a
function of S:

Since selection is only in one sex, the estimator of realized heritability (/!)
is2!/!,i.e.:



A2. Control line

Replacing rnl and m2 by m in the previous system (A1)-(A5), the following
system is obtained:

From (A9) + (AlO) + (A8) = 0, all may be expressed as all = 3ai + 2 a2. S,
defined as in section Al, and D = y2 - yl may also be expressed in terms of al
and a2 in the following system:

Solving (A12) and (A13) for al and a2 yields:

The estimator of

If k is defined as the weight of D relative to that of 0.5 h2S (i.e. 40:/ h2) in
this estimator, k = h2!2 + a(n + 3)/2!/4a, and R may be expressed as:

From this the estimator (2 -R/6’) of /! given in equation (3) with the value
of k in equation (4) is obtained.



A3. Divergent selection

Model (1) can account for this design, if one considers 2n individuals
measured in each generation. Noting the symmetry in the equations for the
two extreme (selected) individuals, ylh and yl!, and letting their respective
progeny means be Y2h and Y2, and the corresponding additive genetic means in
generation 2 be a2h and a2!, the following system is obtained:

S and D may be expressed as functions of (alh - all) and (a2h - a21) in the
following system:

Solving (A18) and (A19) for (a2h - a21) yields the estimator of R:

If k is again defined as the weight of D relative to that of 0.5 h2S (i.e. 4c!/3h,2)
in this estimator, k = 3h2(1 + a + na/3)/4a, and R may be expressed as:

From this, the value of !2 given in equation (6) is derived with the value of
k given in equation (7).
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