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Abstract - This article presents an extension of the methodology developed by
Gilmour et al. [19], for ordered categorical data, taking into account the hetero-
geneity of residual variances of latent variables. Heterogeneity of residual variances
is described via a structural linear model on log-variances. This method involves 

’

two main steps: i) a ’marginalization’ with respect to the random effects leading to
quasi-score estimators; ii) an approximation of the variance-covariance matrix of the
observations which leads to an analogue of the Henderson mixed model equations for
continuous Gaussian data. This methodology is illustrated by a numerical example
of footshape in sheep. &copy; Inra/Elsevier, Paris

generalized linear mixed models / quasi-score / heterogeneity of variances /
threshold response model

Résumé - Une approche de quasi-score pour l’analyse de variables qualitatives
ordonnées par un modèle mixte à seuils hétéroscédastique. Cet article présente une
extension de la méthodologie développée par Gilmour et al. !19! dans le cas de variables
qualitatives ordonnées, prenant en compte l’hétérogénéité des variances résiduelles des
variables latentes. L’hétérogénéité des variances résiduelles est décrite par un modèle
linéaire structurel sur les logarithmes des variances. Cette méthode comprend deux
étapes principales : i) une « marginalisation » par rapport aux effets aléatoires qui
conduit, grâce aux équations de quasi-score, à l’estimation des paramètres ; ii) une
approximation de la matrice de variance-covariance des observations qui aboutit à un
système analogue aux équations du modèle mixte d’Henderson dans le cas de variables
continues gaussiennnes. Cette méthodologie est illustrée par un exemple sur la forme
des pieds chez le mouton. @ Inra/Elsevier, Paris
modèles linéaires généralisés mixtes / quasi-score / variances hétérogènes /
modèle à seuils
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1. INTRODUCTION

The threshold model is one of the most popular models for analysing ordered
categorical data especially in population [36, 37] and quantitative [7] genetics
as well as in animal breeding !16).

Recently Foulley and Gianola [8] extended the standard threshold model to
a model allowing for heterogeneous variances of the Gaussian latent variables
using a log-linear model for the residual variances. In the case of mixed models,
they proposed to base inference about threshold cutoff points, location and
dispersion parameters of the latent distribution on the mode of the a posteriori
(MAP) distribution. This approach is basically a conditional one (given random
effects) and is similar to penalized quasi-likelihood (l, 31), iterated re-weighted
restricted maximum likelihood [5] and hierarchical likelihood of generalized
linear mixed models [28] for one parameter exponential families. As discussed
by Foulley and Manfredi [10] and Engel and Keen [6], these procedures are
likely to have some drawbacks regarding the estimation of fixed effects due to
the approximation in integrating out random effects.

One simple way to overcome the difficulty of an exact integration of random
effects is the quasi-score approach of Me Cullagh and Nelder [30] which only
requires the mean and variance of the data distribution. In particular, an
appealing version of the quasi-score approach for computing estimations of fixed
effects was proposed by Gilmour et al. [18, 19] using an approximation of the
variance-covariance matrix. One of the main advantages of this method is that
it mimics the mixed model equations of Henderson [23] making the estimation
of fixed effects computationally easier and providing analogues of BLUP (best
linear unbiased predictor) of random effects as by-products. Moreover, this
quasi-score method, via linearization, was proven to be quite general [1, 21,
39]. Initially derived by Gilmour et al. [18] for binary data modelled with
logit or probit links, it was applied to ordered categorical data by the same
authors !19), to Poisson data with a log link by Foulley and 1m [9] and to a log
link exponential model by Trottier [35). The purpose of this paper is to show
how this procedure can also cope with heterogeneous residual variances in the
case of ordered polytomics modelled via Gaussian latent variables. Section 2
entitled ’Theory’ outlines the model, the quasi-score equations and their GAR
[19] counterpart and by-products. Section 3 illustrates the theory using the
numerical example of footshape in sheep presented by GAR !19).

2. THEORY

2.1. Model

The model assumptions and notations are basically the same as in Foulley
and Gianola [8]. First, it is assumed that the population can be stratified
according to an index i (i = 1, 2, ... , I) such that the between subgroup
variation corresponds to systematic influences of identified factors and the
within group variation to random noise.

There are J response categories indexed by j such that y2+ _ (yij+)
represents the vector of the counts of responses for subpopulation i in the



n!

different categories j. The vector yi+ can be expressed as the sum yi+ _ L y2r
r=l

of indicator vectors yir = (Yiln ?2! ’ &mdash; ; !r; &mdash; ’; yi.Jr!! such that y7,jr = 1 if

response of observation r in subpopulation i is in category j and yij, = 0
otherwise.

In the threshold approach, the probability of a response in category j for
an observation of population i, say !rij, is described by the distribution of
continuous latent variables giro, The expression of these variables is discretized
via threshold values (!l, !2, !j !,!-1), (!o = !oo and !j = +oo) such
that:

A mixed model structure is hypothesized on the latent variable:

where r!Z = E(£ir) is decomposed as a linear function x,)/3 of explanatory
variables (row vector xi’) with unknown coefficients /3 E IRP; !!zzzu* represents
the contribution of random effects to the model with u* being a (q x 1) vector of
scaled deviations, zi the corresponding row incidence vector and !!! the square
root of the u-component of variance, which may vary between subpopulations.

Classical assumptions are made regarding the distribution of u* and ei =

{eir}, i.e. u* - M(0, Iq) or, in genetics, u* - M(0, A) where A represents the
known relationship matrix, ei - N(0, Qe. Ini) and Cov( u, ei’) = 0.

Homogeneity of the covariate structure is assumed within the subpopulation
i, i.e. xi, = xi and zir = z7,. If not (e.g. when xi is a continuous covariate),
smaller units will be considered, even at the limit elementary units (n2 = 1).

Moreover, as in Foulley and Gianola (8!, the ratio pi = uujuei is assumed
to be constant (p) across populations which is equivalent to supposing homoge-
neous intra-class correlations (e.g. constant heritability or repeatability) across
environments. Thus,

with ai = z’Azi. In many applications, ai is a constant or even ai = 1, but
this simplification is not mandatory throughout this paper. In fact, the theory
is presented here with a single random factor but it can be easily extended to
any number K of independent random vectors uk.

Similarly for the expectations, a structure is postulated for residual variances
so as to account for the effects of factors causing heteroskedasticity. As in
Foulley et al. [13, 14], heterogeneity of residual variances is described by a
structural linear model and a log link function, as follows:

where p’ is the (1 x r) row vector of covariates and 6 is the (r x 1) vector of
real-valued dispersion parameters.



2.2. Estimation

The estimation procedure described here includes two steps. The first step
consists in setting up the quasi-score equations based on the first two marginal
moments according to the quasi-likelihood theory [30] and its extension to

correlated observations [29]. The second step lies in replacing the variance-
covariance matrix of observations by an approximation which is analogous to
solving for fixed effects using the mixed model equations of Henderson (23].

2.2.1. (!uasi-score equations

Let e = (ç’, 13’, 6’)’ be the (J - 1 + p + r) vector of parameters of interest,
where !!! J_1) X 1) are the thresholds, !3!pX 1) the location parameters, and 6<r x i!
the dispersion parameters. The quasi-score equations are:

where Y(7(j-i)xi) = (Yi! Y2! ! ! ! !Yi, ! ! ! !Yi)! is the vector of the observed

cumulative proportions with y2!!!_l!Xl! = LYZ+!ni, L is a ((J- 1) x J) matrix
built from a lower triangular matrix of Is, the last row of which is removed.
In addition, p = E(y), E = Var(y) and D’ = 0p’/05 with dimension
((J + p + r - 1) x I(J - 1)).

Equations in (6) need to specify p and E which can be performed as follows.
j

Let Mij ) ! 7rik. The conditional expectation of Mij given realized values
k-1

of the random effects u* is defined as Mij (u*) = Pr(P2r ! !j I u*) which, due to
the distribution assumptions made, can be expressed as a normal cumulative
density function (CDF):

In the marginal model, 1-iij is the expectation of fJij ( u*) with respect to
the distribution of u*. Remember that if X N N(fJ,u2), the E(4l(X)) =
!(!(1 + (2)-1/2) !2!. Here, the expectation of (7) reduces to:

As shown in detail in the Appendix, the variance-covariance matrix E of
the observations can be decomposed as the sum of two components:



The first component EA is a (I(J - 1) x I(J - 1)) block diagonal matrix
such that:

In equation (11), Eo,ii is a ((J - 1) x (J - 1)) matrix whose general term
I

is (170,ii)jk = fJij(1 - fJik) for j, k = 1,..., (J - 1), so that E = i(D1 (Eo,!2)/nit=i

is the variance-covariance matrix of observations for multinomial data (i.e. a
purely fixed model).

The second component EB corresponds to the covariance terms for off-

diagonal blocks, i.e.:

For any pair of blocks (diagonal i = i’ or off-diagonal i =1= i’) its general term
( j k) can be expressed as:

where tii! is the correlation coefficient between f j, and e2!r! and 4l2 (a, b; r) is
the CDF of the standardized binormal distribution with arguments a, b, and
correlation r.

The system in equation (6) can be solved by Fisher’s iterative algorithm as
follows:

where De(t+1) = e(t+1) - e(t),
D’ = Ott’100 can be decomposed as (9V/!)(!/!).
Now iti, = 4)(-yij) so that:

with <P = EB (pi and oi = diag{4>hij)} for j = 1, 2, ... , (J - 1), where 4>(.) is
i=l

the standardized normal density function. The second element can be written
as the product:



and Wi = !/1 +!o’!.
Replacing D’ in equation (14) by its combined expression D’ = T’H’o from

equations (15) and (16) leads to an iterative generalized least square system:

where W(1(!_1!x1(J-1!! _ !E 1! is a matrix of weights, and v = HTO +
o- 1 (,! - p) is a working variable. Both are updated from round (t) to round
(t + 1) of iteration using the current value B(t! of 0.

2.2.2. The GAR procedure

The size (I(J &mdash; 1)) of the E matrix to invert in W may be very large in
some types of applications (e.g. genetic evaluation of field data). This precludes
the use of the equation system (20) for computing 0 estimates. This was the
basic reason why Gilmour et al. [18] proposed an alternative procedure based
on a convenient approximation of E, whose principle was explained in detail
in Foulley et al. !12!.

Let Q(a, b; r) = 4l2 (a, b; r) - 4l(a)lF(b) . Using Tallis’s [34] result viz i9Q/Or =
4>2 (a, b; r) (02(-): standardized bivariate density with arguments a, b and
correlation r), the first order Taylor expansion of S2(a, b; r) about r = 0 is
S2(a, b; r) = r4>(a)4>(b) + o(r2). Applying this to a = !y2!, b = !y2!! and r = tii&dquo;
which occur in the general term of EB,iil (cf. equation (13)), leads to:

This can also be written as:



where <Pi and z§ are as previously defined, G = Ap2, Mi = - 1 < j- i> Wi ! (1<k> is

a vector of k ones and the minus sign is used for the convenience of calculation).
! 

I

Letting Z!IX9) - (zi,Z2,...,z,;,...,z!, M!l!!-li X1! - ! Mz and
1=1

Z!1!.!-1!X9) = MZ, E and its components can be expressed in condensed form
as: 

where EA is the same as defined in equations (10) and (11) with block
diagonal terms of EB replaced by their approximations given in equation (23).
Substituting E in W-1 = <p-l¿,4>-l by its expression in equation (24), one
has:

which displays the classical form R + Z* GZ*! of a variance-covariance matrix
of data under a linear mixed model. This structure enables us to solve for e in

(20) using the Henderson mixed model equations !23!, i.e. here with:

R-1 can be directly calculated due to the peculiar structure of Eo which has a

tridiagonal inverse (see Appendix). Detailed expressions for the elements of the
coefficient matrix and the right hand side of (26) can be found in the Appendix.

Moreover, arguing as Gilmour et al. [19] from the mixed model structure of
equation (26), one can extract two by-products of this system:

i) a BLUP-type prediction of the random effects represented by the u
solution to equation (26).

ii) a EM-REML-type estimation of the variance component, say here p2 via:

where Cuu is the portion of the inverse of the coefficient matrix in equation (26)
corresponding to u.

In some instances, one may consider a backtracking procedure [3] to reach
convergence, i.e. at the beginning of the iterative process, compute a(k+l) -

(e (k+i) U’(k+l))/ as a(k+l) = a(k) + !(x+yDaO+y with 0 < w(kH) ::;; 1.



3. NUMERICAL EXAMPLE

The preceding theory is now illustrated with a small example. For pedagog-
ical reasons, the data set used is the same as the one analysed by Gilmour
et al. !19!. The data consisted of footshape scores recorded in three categories
on 2 513 lambs observed over a 2 year period, out of five mating groups [17]
later on referred to as ’breeds’ for simplicity, and sired by 34 rams which are
assumed to be unrelated.

The data set is listed in table I. As the year (Yi; i = l, 2) and breed (Bj;
j = 1,2,3,4,5) factors are disconnected, parametrization is not standard.

Following Searle’s [32] ’cell means models’, the parametrization adopted here
is defined from the elementary estimable parameters, i.e. here the cell location
(qzj ) and dispersion (Vij) parameters.

The chosen functions are as follows:



(30 represents the effect of a reference population (breed 1 in year 1); (31 is a

possible measure of a ’year’ effect; !3z, /?3 and /?4 stand for within year contrasts
between breeds.

Letting those estimable functions expressed as j3 BIL, where j3 = ((30, (31,
(32,(33,(34)’, ¡.t = (fJl1,fJ12,fJ13,fJ24,fJ25)’ and B is the (5 x 5) matrix of
coefficients given previously, the incidence matrix X used in equations (3) and
(16) is obtained simply as X = B-’ (since 1L = X(3 = XBTL). Note that this
parametrization not only makes sense as far as its practical interpretation is
concerned, but also generates an intercept ,Go (since bil = 0, Vi) which can be
substracted from the original threshold values !j making computations easier
(see Foulley et al. !12!, formula 17.85 p. 392, and Gilmour et al. [19] formula 2).

The same B transformation applies to the 6ij as linear functions of the

v,i,j = lnQ2!. The interpretation of parameters is similar to previously, but with
the geometric means replacing arithmetic means and ratios replacing differences
as shown below:

The general procedure presented here was applied to both standard (S-TM)
and heteroskedastic (H-TM) threshold models with the fixed parametrization
effects described above for the location and dispersion parameters, and random
sire effects within year x breed subclasses.

Data were not analysed in detail since the main purpose of this numerical
illustration is to serve as a test example. Parameter estimates under both
models are shown in table II. The intra-class correlation (sire variance) was
estimated as 0.0622 and 0.0630 under the S-TM and H-TM, respectively.
Differences between sire predictions under the two models are distinct but
small, suggesting, as expected, a wider spread of predictions under the H-TM
(+ 0.8 %).

The estimations of fixed effects for location parameters under the S-TM
model are not directly comparable with those obtained by Gilmour et al.

[19] owing to different parametrizations. The estimates and Wald’s tests

(table III) provide strong evidence for heterogeneity in residual variances.
Marked differences can be observed between year 2 and year 1 (ratio: QY2 /9 yl 2 =
exp(2 * 0.3145) = 1.88) and between breeds especially in year 2 (ratios:
u1ju1, = exp(2 * 0.3389) = 1.97 and u15ju!4 = exp(2 * (-0.3016)) = 0.55).

It is worth noting that, in the H-TM model, year and breed contrasts within
year 2 are not significant factors of variation of the mean but greatly influence
the residual variance contrarily to what happened with the breed contrast



within year 1. Thus one may apply in practice a more parsimonious H-TM
model which has in that case as many parameters as the S-TM model (i.e. four
fixed effects + one variance component) but fits the data set better (X2 Pearson
statistics = 27.0 and 11.8 for 4 degrees of freedom for purely fixed models).



4. DISCUSSION

New perspectives are opened in the analysis of ordinal data by the use of
heteroskedastic threshold models [38]. The justifications for considering this
extension were discussed at length by Foulley and Gianola [8] and include
alternatives such as the variable threshold concept and its relationship with
H-TM. Here, heterogeneous variances were considered within the framework of
the usual mixed linear model with heteroskedasticity described by structural
models [14, 15]. This problem can also be tackled under different model
structures such as for instance the multilevel models of Golstein !20!.

In the H-TM context, the GAR quasi-likelihood procedure turns out to be a
natural alternative to the MAP approach proposed by Foulley and Gianola !8!.
The main advantage of the MAP approach lies in both its conceptual and
computational simplicity. Part of this simplicity results, however, from an
inference based on the mode of the joint posterior distribution of 13 and u
rather than from posterior expectations or marginal modes. In other words,
due to its equivalence to Schall’s approach !31!, it can be viewed as a procedure
based on a linearization of a conditional model [35!.
On the contrary, the GAR quasi-score method is an attempt to integrate out

u in order to estimate the 0 and 6 fixed effects. There is, however, a trade-off
for an easy integration, i.e. i) to replace the data distribution by its quasi-
likelihood counterpart, and ii) to approximate the variance-covariance matrix
of data by a Taylor expansion about small intra-class correlations. Moreover,
as pointed out by Knuiman and Laird !27!, u solutions to equation (26) have
no clear justification.
An additional level of approximation resorts to estimating G from formula

(27) which mimics classical EM-type formulae for linear models. Model approx-
imations, when estimating G as originally proposed by Harville and Mee [22]
and Foulley et al. !11!, could also be especially critical. For example, with binary
data, such approximations may yield seriously biased estimators (4!. Fully EM
marginal maximum likelihood or Bayesian posterior analysis based on MCMC
(Monte Carlo Markov chains) methods [33] would be useful to improve the
estimation of variance components and to get further in the implementation
of heteroskedastic models [15]. An alternative procedure based on simulated
moments was proposed by Jiang !26!; it provides consistent estimators for both
fixed effects and random components. Although computationally attractive,
this method can be quite inefficient when applied to small samples.
A comparison between MAP and GAR has been carried out via Monte Carlo

simulation for an S-TM and for binary data by Hoeschele and Gianola [24].
Contrarily to expectations, MAP estimators of fixed effects were superior to
GAR estimators in terms of bias and MSE, and u predictions were very close to
each other. Preliminary simulation work carried out on a sire-maternal grand
sire design assuming G known and relatively large differences in variances
exactly indicate the same tendency as far as the comparison of these two
methods is concerned: smaller MSE for 13 and 6 fixed effects with MAP and very
little difference in u prediction (-0.5 % in MSE and +1.0 % in R2 for MAP
versus GAR). That simulation, however, clearly shows the interest of selecting
H-TM versus S-TM based EBVs (7 % in MSE and +5 to 14 % in R2).
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APPENDIX

Decomposition of the data variance-covariance matrix

Let y be the vector of the observed cumulative proportions of response in
the (J - 1) first categories y = (!i ...... y!,..., y!/.

Let yi = (y21, ’fh2&dquo;’&dquo; !2!, ... , !z J) be the (J x 1) vector whose Yij element
is the frequency of responses in category j for subpopulation i.

Cumulative and elementary proportions are linked via:

where L is a ((J - 1) x J) matrix built from a lower triangular (J x J) matrix
of Is, the last row of which is removed.

yi can, however, be expressed as a combination of indicator variables:
1 
n,

Yi = &mdash; y!y:r with yi,! an indicator vector of dimension (J x 1), with 1 onn 2 r=1 I
the jth row if the observation r of the population i is in the category j. Then,

Now, Var(Yir) = F’’(Yir.f’ir) - E(Y.<T)E<Y&dquo;T)!, with E(YorY/r) ! dl!!lE(Yo0)1,
and E(yir) = TIi, with H; corresponding to the (J x 1) vector of (7r!)j=i! !./.
Thus,

Moreover, Cov(y!y!) = !(y,.y!) - E’(Yir)E(Yir!)’. E(y!.y!,) = II2ii>
where H2,, stands for a (J x J) matrix, for which the Uk) term represents the
joint probability that an observation r of subpopulation i is in category j and
that a different observation r’ from the same subpopulation i is in category k,
i.e. (IIz,!)! = PT(yijr = yikr’ = 1). Thus,

Since, from equation (A1), Var(.ki) = LVar(y,7)L’, and using the decompo-
sition in equation (A3) with formulae (A4) and (A5), one has:



LIIZIIiL’ - !I!!!l!zk}(!!!m,...,!,1-y!! where fJij = <I>hij) = ’L,k=l7rik, and
because L Var(y2,.)L’ = L diagfllil } L’ - L Hin! L’, this expression reduces
to LVar(yi,)L’ = Eo,2i with

where tii stands for the correlation coefficient between Pir and £ir’; !*2 is the
CDF of the normal bivariate distribution, such that <I>2 (Yl, Y2; p) = P((Yl s
!1) f1 (Y2 X yz)), Y1 and Y2 being identically distributed as JV(O, 1), with
Corr(Yi, Y2) = p. Inserting this in equation (32) leads to:

Hence, the (i, i) blocks of the variance-covariance matrix of y can be written
as:

The expression of the covariance calculated before can be easily generalized
to the case of two distinct populations i and i’. Then, it follows:

Finally, the variance-covariance matrix E of y can be written as the sum of
two components:

where EA is a block diagonal matrix defined as:

1
with E!, = &mdash;(Bo,,: - EB,ii), and EB = {Eg iin!i,i!=1,...,1)! where £0,it is

ni

given in equation (A6), and EB,ii and EB,ii, are given in equations (A7) and
(A9).



Regarding correlation coefficients involved in equation (A7), one has

Similarly for ti2!, in equation (A9):

Calculation of R-’

R is a block diagonal matrix such that R = !-lEA!-1 = ! z Ri, and thus:A 
i=1

where Bi = q5 ’’Eo,iio -’ and 1 ltij = z2 Gz2’. Using Woodbury’s formula (see
e.g. Householder [25] p. 124) for inverting Ri, one obtains:



Now, Bi has a known tridiagonal structure (see e.g. Mc Cullagh and Nelder
[30] p. 168) such that:

where 0 stands for the density of N(0,1).

Expressions for the coefficients of equation (26)

The left hand size of the system is:

which can be partitioned according to !, ,C3, 6 and u, as:

where (.1.) represents a description of the matrix column by column.



The second part of the system is:
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