
Original article

Alternative models for QTL
detection in livestock.

III. Heteroskedastic model
and models corresponding
to several distributions

of the QTL effect

Bruno Goffinet Pascale Le Roy Didier Boichard

Jean Michel Elsen Brigitte Mangin

, 

a Biométrie et intelligence artificielle, Institut national
de la recherche agronomique, BP27, 31326 Castanet-Tolosan, France
b Station de génétique quantitative et appliquée, Institut national

de la recherche agronomique, 78352 Jouy-en-Josas, France
c Station d’amélioration génétique des animaux, Institut national

de la recherche agronomique, BP27, 31326 Castanet-Tolosan, France

(Received 20 November 1998; accepted 22 April 1999)

Abstract - This paper describes two kinds of alternative models for QTL detection in
livestock: an heteroskedastic model, and models corresponding to several hypotheses
concerning the distribution of the QTL substitution effect among the sires: a fixed and
limited number of alleles or an infinite number of alleles. The power of different tests
built with these hypotheses were computed under different situations. The genetic
variance associated with the QTL was shown in some situations. The results showed
small power differences between the different models, but important differences in the
quality of the estimations. In addition, a model was built in a simplified situation to
investigate the gain in using possible linkage disequilibrium. &copy; Inra/Elsevier, Paris
half-sib families / heteroskedastic model / linkage disequilibrium / QTL
detection

Résumé - Modèles alternatifs pour la détection de QTL dans les populations
animales. III. Modèle hétéroscédastique et modèles correspondant à différentes
distributions de l’effet du QTL. Ce papier décrit deux types de modèles alternatifs
pour la détection de QTL dans les populations animales : un modèle hétéroscédastique
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d’une part, et des modèles correspondants à différentes hypothèses sur la distribution
de l’effet de substitution du QTL pour chaque mâle : un nombre fixe et limité d’allèles
ou au contraire un nombre infini d’allèles. Les puissances des différents tests construits
avec ces hypothèses sont calculées dans différentes situations. L’estimation de la
variance génétique liée au QTL est donnée dans certaines situations. Les résultats
montrent de faibles différences de puissance entre les différents modèles, mais des
différences importantes dans la qualité des estimations. De plus, on construit un
modèle dans une situation simplifiée pour étudier le gain que l’on peut obtenir en
utilisant un éventuel déséquilibre de liaison. &copy; Inra/Elsevier, Paris
familles de demi-frères / modèle hétéroscédastique / déséquilibre de liaison /
détection de QTL

1. INTRODUCTION

In theoretical papers dealing with QTL detection in livestock, the QTL
effects are most often considered to be different across the sires i, and the
residual variance within the QTL genotype as constant among the sires (e.g.
[9, 10]). These hypotheses were made in the two previous papers about
alternative models for QTL detection in livestock [4, 8!. In this third paper,
these two sets of parameters are studied.

First, a heteroskedastic model with residual variance a/ specific to each sire
i is evaluated. The rationale for this test is that it should be more robust against
true heteroskedasticity, for instance when different alleles are segregating at
another QTL than the QTL under consideration. However, the power of the
tests may be smaller than in the homoskedastic model if the homoskedastic
model is correct.

Different possibilities concerning the within sire QTL substitution effect o!
will also be considered: a fixed and limited number of alleles, or an infinite
number of alleles. Taking into account these distributions of the QTL effect
can increase the power of the tests if the model is correct, and decrease this
power if the model is incorrect. Therefore, the behaviour of the tests based on
these different models will be compared under different situations concerning
the distribution of the QTL effect. More specifically, the case of a biallelic QTL
in linkage disequilibrium with the marker, will be explored in greater detail.

Jansen et al. [6] also considered the same kind of model concerning the
residual variances and the number of alleles, but did not compare the power
of the tests. Coppieters et al. [3] also considered these kinds of models and
compared the power of regression analysis and of a non-parametric approach.

Most hypotheses and notations are given in Elsen et al. [4]. To simplify
the computations, all the comparisons were made using the most probable sire
genotype hsi = argmaxhSiP(hsilMd and the linearised approximation of the
likelihood described in the previous paper. All the simulations were made with
5 000 replications, and the length of the confidence interval for the simulated
power was smaller than 1 %. When an analytical solution could not be found,
we used a quasi Newton algorithm to compute the maximum likelihood. The
chromosome length was 1 Morgan, with 3 or 11 markers, equally spaced, each
with two alleles segregating at an equal frequency in the population.



2. EVALUATION OF A HETEROSKEDASTIC MODEL

In this section, the power of the T2 test built under a homoskedastic model

[8] will be compared to the power of the T6 test built under a heteroskedastic
model, where o, e’i 2 is used in place of Q2 in the likelihood Â’r,hs. This compar-
ison will be made for both homoskedastic and heteroskedastic situations. The
heteroskedastic situation will be modelled assuming the existence of an inde-
pendent QTL, i.e. located on another chromosome. This QTL is assumed to
be biallelic, with balanced frequencies (0.5) in the sire population and with an
additive effect. Dams are homozygous for this QTL. Under this hypothesis, the
within offspring residual variance is lower for sires homozygous for this QTL
than for the heterozygous sire. Powers were calculated considering an Ho re-

jection threshold corresponding to a correct type I error, which is computed
in the same situation, homoskedastic or heteroskedastic, with no QTL on the
tested chromosome.

Table I concerns true homoskedastic situations, with a residual variance
ol2= 1. In this table, the power of the TZ and T6 tests are given for different
values of the number of progeny per sire (20 or 50), of the number of markers
in the different linkage group (3 or 11), of the position of the QTL (0.05 or
0.35) and of the additive effect of the QTL (a = 0.5 or 1). The two possible
QTL alleles thus had the same probability. Note that in this case, the QTL
substitution effect equals the QTL additive effect.



Tables II and III concern true heteroskedastic situations. A QTL located on
another chromosome was simulated with an a2 effect. The thresholds of the
TZ and T6 tests are given in table II for different values of the a2 effect and
for 20 sires, 50 progeny per sire and 11 markers. The results were obtained
with 5 000 simulations. The power of the T2 and T6 tests are given in table III
for different values of the linked QTL additive effect (a = 0.5 or 1.0), of the
position of this linked QTL (x - 0.05 or 0.35) and of the independent QTL
additive effect (a2 = 0, 1, 1.5 or 2). For each QTL, the two possible alleles had
the same probability.

In the true homoskedastic situation, and for a given number of sires and
markers, the thresholds of the two tests appear to be very close to each other
for all cases (data not shown), which is in agreement with the asymptotic
theory in linear models. In a linear model, the asymptotic distribution of Fisher
test statistic is the same if the residual variance used in the denominator
is replaced by any consistent estimate of this variance. The estimate of the
residual variances in the model corresponding to the T!’ test is consistent, as
is the estimate in the other model. The thresholds given in table II show that
the T6 test is not sensitive at all to the value of a2, whereas T2 is slightly more
sensitive. The use of the threshold corresponding to a2 = 0 when it is not true
can lead to a first type error of 5.5 % instead of 5 %.

The power of the T! test appears to be only slightly smaller than the power
of the T2 test in the case of or,,i = 0’e’ This very small decrease is in agreement
with the difference in power of an analysis of variance test when the number of
degrees of freedom of the residual varies from 50 to 1000, i.e. from the number
of progeny per sire to the total number of progeny.

The power of the T! test is slightly larger than that of the T2 test only in
cases where the QTL leading to heteroskedasticity has a large effect. Even in
these cases, the differences between the power of the two tests remain small
and of the same order as for homoskedastic situations, but with the opposite
sign.

From these results, and considering that the tests based on the heteroskedas-
tic model take a little less time to compute (about 5 %), the following tests will
be based on this model.



3. VARIOUS NUMBERS OF ALLELES AT THE QTL LOCUS

In the previous papers [4, 8!, QTL substitution effects ai were defined within
with each sire i. In this paper, two possible alternative situations concerning
these effects are considered.

- A limited number of QTL alleles, and therefore a set of only a few possible
values for ai . In this case, the parameters are these values and the probability
of QTL genotypes. This is the model used by Knott et al. (7!.

- An infinite number of possible values, drawn at random in a normal
distribution. This is the model used by Grignola et al. (5!.

In these two situations, we will consider that the QTL effects are indepen-
dently and identically distributed between the sires.

In the two cases, the linearised version of the likelihood can be written as:

where f(a7) is the density of the distribution of a2 .



In the situation with two possible alleles at the QTL locus, the likelihood
becomes:

where p’ = p(ai = a) = p(ai = -a) and a are the two parameters of the
distribution.

In the situation with a normal distribution of the QTL effect, the density

f (a2 ) is the normal density 0(a’; 0, o, 2) and the likelihood is written as A3!!
(normal).

The test built with the likelihood AHhs(two alleles) will be T7 and the test

built with the likelihood A3!! (normal) , T8.
In table IV, T7 and T’ test thresholds are given for different situations

concerning the number of markers and the number of progeny per sire. In
table V, the power of the T6, T7 and T8 tests are presented for two kinds of
situations. In the first, the QTL had two possible equiprobable (pa = 1/2)
alleles with no dominance and an additive effect a. The QTL substitution
effect ai for each sire i is therefore 0 with a probability of 1/2 and a with
a probability of 1/2. We have E(an = a2/2. The QTL variance due to the sire
in the progeny of i is a2/4, and globally a/ = E(a2/4) = a2/8. In the second,
the effect of each value ai was drawn at random in a normal distribution,
ol = a2/2 of null expectation and variance. Therefore, E(a?) = a2/2 and
or = E(af /4) = a2/8 as in the first case. The results are presented for different
values of the parameters.

It is interesting to note that the thresholds are appreciably smaller than
the thresholds presented in table Il. This is due to the fact that there is only
one parameter for the QTL effect in T7 and T8, and 20 in T6. The differences
between the two kinds of thresholds can be compared with the differences
between the xiddl 95 % quantile, 3.84, and the X!oddl 95 % quantile, 31.41.



The main and quite strange result was that the power of T! is always larger
than or equal to the power of the other tests.

In order to compare the T! and T7 tests more thoroughly when the model
really has two alleles, a very large number of simulations were performed in a
simplified situation. A very informative marker, linked totally to the QTL was
assumed to exist, and the residual variance was assumed to be known (20 sires
and 50 progeny per sire). The T6 and T7 tests were simplified accordingly.
The T6 test was found to be more powerful (with a difference of 3-4 %)
than the T7 test for 0.1 < p’ < 0.9, and T7 was more powerful (with the
same differences) than T6 for the other values of p’. This confirms that the
loglikelihood ratio test is not the more powerful test in mixture situations, for
all values of the alternative parameters. Andrews and Ploberger !1, 2] showed
that the loglikelihood ratio test is admissible but not optimal in cases, such as
mixture models, where a parameter disappears under the null hypothesis (here
the probability of having one of the two alleles). We tried a value pa = 0.05 in
the general framework with md = 50, L = 11, a = 0.5, but unfortunately the
T6 test remains more powerful (with a difference of 2 %) than the T7 test.

Concerning the comparison between T! and T’ in situations where the
QTL effect is normally distributed, it is clear in such simple and balanced
situations that both T6 and T8 are asymptotically equivalent to the test based
on the value of 6Z where the a, are the maximum likelihood estimators

i

of the QTL substitution effect. Therefore, their power should have been quite



the same. The relatively poor performance of T’ is perhaps partially due to
numerical problems, because in some cases (2 %), the algorithm had difficulties
in converging and the corresponding simulations were excluded from the results.

The estimation of the QTL variance due to the sire Q2 obtained with the
different models is shown in table VI. With the models used in T6 and T7, this
estimation is obtained as a function of the estimates of the ai or a; with T’,
it is estimated directly. The value 0.03125 (resp. 0.125) of (T2 corresponds to
values a = 0.5 and o,2 = 0.125 (resp. 1.0 and 0.5).

It appears that the estimator obtained using T8 is the only quite unbiased
estimator of u.;. The bias is very large when using the other tests. A practical
solution would be to use the simple T6 test to detect a QTL and to use the
estimate associated with T8 when a QTL is detected.

4. BETWEEN SIRES LINKAGE DISEQUILIBRIUM

To investigate the usefulness of using a model including a linkage disequilib-
rium between markers and QTL alleles at the between sires level, a simplified
situation, which mimics the real situation, but which is considerably easier to
compute, was considered.

The QTL is supposed to be located on a marker locus, with all the 20
sires considered A, B heterozygous for this marker. The dams are considered as
carrying other alleles and therefore all the progeny are informative. We denote
YA(i) (resp. Ya(i)) the mean of the nA(i) (resp. nB(i)) progeny of sire i carrying
allele A (resp B). The two possible alleles at the QTL are denoted Q, with an



additive effect of a/2 and q, with an additive effect -a/2. The model for the
expectation of YA(i) and YB(i) is:

The variability around this expectation will be considered as normally
distributed, with mean 0 and variance a2/nA(i) (resp. u2/nB(i)) assumed
to be known. We will consider two tests: the analysis of variance test which
corresponds to the model E(YA(i)) - E(YB(i)) = ai, without an assumption
concerning the distribution of the ai, and the likelihood ratio test corresponding
to the mixture model concerning the sire allele. The first test is analogous to
test T6 and will be denoted T6! and the second, analogous to test T7 will be

denoted T 7’ . This is only an analogy because the residual variance is assumed
to be known, all the progeny are informative and the tests are computed only
on the marker.

The powers of these two tests for U2 = 1, a = 0.5, with different numbers
of informative progeny nA (i) + rzB (i) = constant across the sires, and different
values of the parameters pi and p2, are given in table VII. Note that the
25 informative progeny would correspond to the mean number of informative
progeny for 50 dams and a single biallelic marker.

It appears that the use of a model with a linkage disequilibrium can
increase the power if there is really a linkage disequilibrium (that is a large
difference between pi and p2) but can lose power when there is a small linkage
disequilibrium. These results depend heavily however on the hypothesis made
in this simplified situation.

- QTL location knowledge; this knowledge increases the power of the two
tests but perhaps does not change the difference between the two tests.



- The females do not carry either of the sire’s alleles; it is not a very realistic
situation, but it leads to easier computations and one can think that it does

not change the power difference between the two tests.
- The use of a completely linked marker; it is considerably more difficult

to build a model with one or several partially linked markers and the gain in
using this information would be smaller than the gain presented in table VIL

5. CONCLUSIONS

In many situations, the power of the simple T! test, which is easier and faster
to compute, is equal to or a little bit better than the power of the other tests.
This result could be specific to QTLs of little effect. In the present study, we
focused on QTL effects of such a relatively small magnitude because, with (aTLs
with larger effects, all the tests would have had the same power, one. For (aTLs
with large effects, the comparison should rely upon other criteria than power,
such as the length of the QTL location confidence interval. Nevertheless, the
T8 test is appreciably better than the other test in estimating QTL variance.

The model using a linkage disequilibrium can lead to more power in some
situations. Nevertheless, it is of interest only if one can be sure that there is
really a linkage disequilibrium. The other problem for the use of this model is
the extension to a general situation where the QTL is not located on a marker.
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