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Abstract - Power for mapping quantitative trait loci using crosses between segregat-
ing populations was studied in pigs. Crossing generates gametic disequilibrium and
increases heterozygosity. The condition for a heterozygosity among Fl individuals to
be greater than in either line at crossing is that allele frequency should be lower than
1/2 in one line and higher than 1/2 in the other line. Maximum expected power and
expected risk were used to compare hierarchical backcross (each boar mated to several
sows; contrast within boars), hierarchical intercross (each boar mated to several sows;
contrast within both boars and sows) and traditional intercross (each boar mated to
one sow; contrast within both boars and sows). The use of hierarchical designs (back-
cross and intercross) increased power for traits with low or intermediate heritabilities.
For small QTL effects and low heritabilities the hierarchical backcross design gave the
highest expected power but also the highest risk. There is not a general design which
allocates resources in an optimum fashion across situations (heritabilities, QTL ef-
fect, heterozygosity). A compromise between designs with high power and low risk
is suggested. A hierarchical backcross design of 400 piglets and heterozygosity 0.68
requires between four (maximum expected power) and eight boars (minimum risk) to
detect a QTL of 0.5 phenotypic standard deviations. Selection of extreme individuals
in parental lines increased power up to 21 %. Commercial crosses are proposed as an
alternative to experiments for QTL mapping. @ Inra/Elsevier, Paris

gene mapping / quantitative trait locus / statistical power / hierarchical design /
pig

Résumé - Puissance de détection des loci à effets quantitatifs dans les croisements
entre lignées non consanguines chez le porc. On a étudié chez le porc la puissance
de détection des loci à effets quantitatifs à partir de croisements entre populations en
ségrégation. Le niveau d’hétérozygotie chez les individus FI est supérieur à celui de
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l’une ou l’autre des lignées en croisement si les fréquences alléliques sont supérieures
à 1/2 dans l’une des lignées et inférieures à 1/2 dans l’autre lignée. La puissance
maximale espérée et le risque espéré ont été considérés pour comparer les croisements
en retour hiérarchiques (chaque verrat est accouplé à plusieurs truies : contrastes
intra-verrat), l’intercroisement hiérarchique (chaque verrat est accouplé à une truie ;
contraste intra-verrat et intra-truie). L’utilisation de ces deux types de schémas
hiérarchiques a augmenté la puissance de détection pour les caractères à héritabilités
faibles ou intermédiaires. Pour les CaTLs à petit effet et les héritabilités faibles, le
schéma hiérarchique avec croisement en retour a donné la puissance espérée maximale
et aussi le risque le plus élevé. Ce n’est pas le même schéma expérimental qui alloue
les ressources d’une façon optimale quand on considère des situations différentes pour
l’héritabilité, les effets de QTL et le niveau d’hétérozygotie. Un schéma hiérarchique
avec croisement en retour de 400 porcelets et une hétérozygotie de 0,68 requiert
entre quatre verrats (puissance espérée maximum) et huit verrats (risque minimal)
pour détecter un QTL avec un effet de 0,5 écart-type phénotypique. La sélection
d’individus extrêmes dans les lignées parentales a augmenté la puissance jusqu’à
21 %. Les croisements entre lignées commerciales sont proposés comme alternatives
aux expérimentations de détection de QTL. &copy; Inra/Elsevier, Paris
détection de gènes / locus à effet quantitatif / puissance statistique / schéma
hiérarchique / porc

1. INTRODUCTION

Crosses between inbred lines and analyses within outbred lines have been
proposed for quantitative trait loci (QTL) detection. In the first approach,
inbred lines are assumed to be fully homozygous for alternative alleles at

both marker and QTL. Consequently, Fl individuals are fully heterozygous
and gametic disequilibrium is maximum. High heterozygosity allows high
segregation and, therefore, high power. With maximum gametic disequilibrium,
a specific allele at the marker is associated with a specific allele at the QTL in
all families. Consequently, increased power is achieved because a lower number
of contrasts is needed using across family analyses based on a larger number of
observations per contrast.

In the second approach, analyses within outbred lines, both marker and QTL
are segregating. Power in crosses between inbred lines is much higher than in
analyses within outbred lines. A combination of both approaches has assumed
that the lines are segregating at the marker but fixed for alternative alleles at
the QTL [1, 2!. Another alternative, not explored yet, is to consider parental
lines with different allele frequencies at the QTL because of different selection
history.

Conventional types of crosses between inbred lines are intercross and back-
cross. Power of an intercross versus a backcross design is increased because the
number of segregating rneioses in an intercross is twice as many as in a back-
cross. Experiments conducted in pigs have restrictions in family structure to a
maximum of approximately ten piglets per litter. A small number of full-sibs
may result in low power !9!. A hierarchical structure, such as a few boars mated
to several sows each, allows larger subgroups of progeny inheriting alternative
alleles from each boar, which may increase power.

It has been proposed to use selective genotyping to increase power for

QTL detection [10, 11]. Selective genotyping is efficient when the cost of



growing progeny is less than the cost of genotyping. Another use of selection,
not considered yet, would be to use extreme individuals for the quantitative
trait as parents to produce the Fl. This approach increases the frequency of
heterozygotes in the Fl and, therefore, statistical power.

The objectives of this paper are: 1) to investigate the degree of disequilib-
rium generated when crossing two populations segregating at two loci; 2) to

investigate under which conditions the heterozygosity (and consequently power)
in the cross of two lines segregating at a QTL is higher than within either line;
3) to investigate power using hierarchical designs; 4) to investigate optimum
allocation of resources for a given experiment size; and 5) to investigate the
effect of selection of extreme individuals in the parental lines on heterozygosity
and power.

2. THEORY

2.1. Underlying genetic model and assumptions

The purpose of the experimental crossing is the mapping of QTL by the use
of genetic markers such as microsatellites. It was assumed that recombination
events did not occur between marker and QTL and that all offspring were
informative for the marker. These simplifying assumptions were made to reduce
the number of parameters to be shown in the results. The impact of these
assumptions in practical scenarios is addressed in the discussion.
An underlying mixed inheritance additive model was assumed with an

additive biallelic locus segregating at frequencies of the favourable allele pB
and pc for lines B and C, respectively. The QTL was assumed to be in Hardy-
Weinberg equilibrium and in gametic phase equilibrium with the polygene
in each parental line. The variance attributable to the QTL in units of the
residual phenotypic variance in line i was: vb(i) = 2pi(1 - Pi)a2 /(u! + aE),
where pi is the frequency of the favourable allele in line i, cr is the QTL
effect, and (a A 2 + 0,2 E is the residual phenotypic variance with 0,2 A and OF2 E
being the additive variance attributable to the polygene component and the
environmental variance, respectively. The heritability comprising QTL and
polygene variation in parental line i was:

where h! is the residual heritability attributable to the polygene component,
and has value a A 2 /(U2 A + 0,2 E ). Parameters h! and V2 Q are usually not known
and only estimates of h2(i) are available for some traits. Different heritabilities
in the two parental populations were not assumed because of the magnitude
of the sampling variance of the estimates of heritability and because parental
populations may have been raised under different environmental conditions.
For simplicity, power computation in this paper was carried out for a given
QTL effect and constant residual heritabilities among Fl individuals. There-

fore, results are valid for a variety of situations with respect to the parental
populations segregating at a QTL, not only at a different frequency, but also



with a different heritability (comprising QTL and polygene). The highest pos-
sible heritability (QTL and polygene) in the parental populations (denoted as
h2(max)) leading to a given heterozygosity at the QTL among Fl individuals
was computed as an indication of the values of heritability in practical situa-
tions. The impact of this assumption on power is addressed in the Discussion.
Three levels of heterozygosity in the Fl were considered: 1, 0.68 and 0.32. A
heterozygosity of 1 occurs when the QTL is fixed for alternative alleles. A het-
erozygosity of 0.68 may occur for a range of situations in parental populations
(e.g. PB = 0.8; pc = 0.2 and pB = 0.68; pc = 0). A heterozygosity of 0.32
represents the situation where the two lines segregate at the same frequency
(e.g. pB = 0.8; pc = 0.8) or when one allele is absent from one population
and segregating at a frequency lower than 0.5 in the other population (e.g.
pB = 0.32; pc = 0.0). The advantages of crossing experiments aimed at QTL
mapping are: 1) linkage disequilibrium between QTL and marker alleles in the
Fl; and 2) increased heterozygosity among Fl individuals.

2.2. Gametic disequilibrium in the cross of two outbred lines

If the two populations are fixed for alternative alleles at both marker and
QTL, then gametic disequilibrium is maximum in the Fl. Therefore, power is
increased with respect to within-family analysis. If the two parental populations
are segregating at the same frequency, then the resulting Fl population is in
linkage equilibrium and no benefits are expected from crossing. If the genes
are segregating at different frequencies in the parental populations then some
degree of disequilibrium will be generated. For a more general description of this
problem, gametic disequilibrium will be computed at two loci, M and N, that
can be either two markers or one marker and one QTL. Gametic disequilibrium
between markers can be estimated if estimates of allele frequencies in the
parental lines at crossing are available. Let f6M and fb,! be vectors of allele
frequencies at locus M (with k alleles) and at locus N (with g alleles) in

parental population B. Similarly, feM and f!,V are the corresponding vectors
of allele frequencies at loci M and N in parental line C. Assuming that the two
loci are in linkage equilibrium within the line then the matrix with gametic
frequencies at each pair of alleles for line B is:

The matrix of gametic frequencies in line C is FeMjV = f’M f!!,. The matrix
with gametic frequencies for each pair of alleles at loci M and N in the Fl of



the cross between lines B and C is given by: FbeM N = 1/2(FbMN + FEMN)-
The allele frequencies for loci M and N in the Fl cross are fbcm ! FbcMN1 1
and f6!N = 1’ FbeMN, respectively. In these equations 1 represents the unit
vector. The gametic disequilibrium matrix is then obtained simply by DMN =

FB,MN - (fb,M f6!NO Elements of matrix DMN are the disequilibrium values for
all possible combinations of alleles at loci M and N. Define the disequilibrium
parameter between two loci M and N, S2MN, as the sum of absolute values of
all elements of matrix DMN computed by 52,!,Ir, = 1’ abs(DMN)1, where ’abs’
denotes the absolute value at each element of the matrix between brackets.

Therefore, S2MN measures the general degree of association between alleles at
loci M and N. The value of 52,,,1,! ranges between 0 and 1. For example, QMN
is 1 when lines at crossing are fixed for alternative alleles and disequilibrium is
maximum and QMN is 0 when the lines at crossing are segregating at the same
frequency for each allele and disequilibrium is null.

2.3. Heterozygosity in the cross of two outbred lines

Consider two outbred lines B and C segregating at a biallelic QTL with
alleles Q and q. Assuming random mating, the frequency of heterozygous
individuals at the QTL among the Fl individuals is:

It is shown in Appendix 1 that the necessary condition for increased

heterozygosity with respect to either line at crossing is that one line is

segregating at a frequency of the favourable allele greater than 1/2 and the
other line at an allele frequency lower than 1/2.

2.4. QTL mapping designs for the cross between two outbred lines

Power computation was carried out assuming that allele frequencies at

the marker were not very different in the two parental populations, and
consequently, gametic disequilibrium was small and ignored. However, the
increased heterozygosity in the F1 boars can be used to study segregation,
within families, of a QTL associated to a marker by recording performance
and inheritance of alternative marker alleles in the next generation (backcross
or intercross depending on the mating of Fl boars to one of the parental
lines or Fl sows, respectively). Therefore, the approach that can be followed
is the same as in QTL mapping within outbred lines but with an increased
heterozygosity among Fl individuals. Three alternative designs are considered
in this section: hierarchical backcross design, traditional intercross design and
hierarchical intercross design. Contrasts in hierarchical designs can use large
subgroups of progeny of a mixture of half- and full-sibs within boar.

2.4.1. Hierarchical backcross design

In a hierarchical backcross design, b boars from the Fl are mated to s sows
each to produce p piglets per litter. Sows can be from any parental line. A
statistical model to analyse the data could be:



where y2!kc is the lth observation of phenotype on a piglet with marker allele k
inherited from boar i when mated to sow j, boi is the fixed effect of boar i, so2!
is the fixed effect of sow j mated to boar i, mijk is the fixed effect of marker
allele k inherited from boar i, and eijkl is the residual random error. Model

(2) is a three level hierarchical design in which marker alleles are nested within
sows, which in turn are nested within boar. For simplicity, sows and boars were
assumed fixed. It is not strictly correct because the model does not account for
relationships between animals.

Power for model (2) was computed following the x2 approach of Gelder-
mann [5] and Weller et al. [14] comparing the square of the difference between
the two progeny subgroups inheriting alternative alleles from their boar (SDP)
for each boar family to the expected squared difference under the null hypothe-
sis. Therefore, the alternative hypothesis is a QTL linked to the marker and the
null hypothesis is the absence of a QTL linked to the marker. For a more de-
tailed description of the method and discussion of the assumptions, see Weller
et al. !14!. Briefly, the assumptions are complete linkage between a fully infor-
mative marker and a QTL, and the analyses are carried out within families.
For simplicity, it is assumed that there is no common environmental variance
and litter size is fixed at 10.

The statistical tests to reject or to accept the null hypothesis are based
on the distribution of the SDP. The summed SDP values divided by the
squared standard error of the contrast (SE2) follow a central k2 distribution
with b degrees of freedom under the null hypothesis for a large sample
size or when phenotypic variance is known. For the alternative hypothesis
E(SDP/SE2) N x2(nc, b), where nc is the non-centrality parameter of a non-
central x2 distribution with b degrees of freedom. The value of the non-
centrality parameter is nc = b heBC 0!/SE!, where 0 = a + 6(l - 2 pB)
and 0 = c! + 6(1 - 2pc), for backcrosses with lines B and C, respectively
(Appendix 2), a is half the difference between the two alternative homozygotes,
6 is the dominance deviation, and SE! = 4 [(1 + (1/4)shr - l/2h!)/(sp)]
[equation (A3) in Appendix 3!.

Following Weller et al. [14], the power to detect a segregating QTL was
computed as 1 - ! = 1 ! p[x2(nc, b) < T], where 13 is the probability of
committing a type 2 error, [p(x2(nc, b) < T] is the probability of a x2 value
under the alternative hypothesis (non-central X2 with parameter nc and b

degrees of freedom) less than T, with T being the value of the central x2 (b)
for a given significance level of committing a type 1 error.

2.4.2. Traditional intercross design

In the intercross design, inbred lines B and C are crossed to produce the
Fl boars and sows that are intercrossed among themselves. In the traditional
intercross design b boars are mated to one sow each. A linear model allowing
testing for the marker-(aTL effects is:

where Yijk is the hth observation on piglet k with marker genotype j inherited
in family i, fz is the fixed effect of family i, mij is the fixed effect of marker-
QTL genotype j inherited in family i ( j = 1 to 3; homozygous for either allele



and heterozygous) and eijk is the residual error. Model (3) would be the one to
use in the analysis of real data. However, to take advantage of the X2 approach
of Geldermann [5] and Weller et al. [14] for power calculation, the following
linear model can be used:

where !z!!l is the lth phenotypic observation of piglet inheriting marker allele k
from the sow and allele j from the boar, mbij is the fixed effect of marker allele

j inherited from the boar, m8ik is the fixed effect of marker allele k inherited
from the sow, and ei!xl is the residual error.

Model (4) is linearly equivalent to model (3) under the assumption of a fully
additive underlying genetic model and no sexual imprinting. The distribution
under the alternative hypothesis of E(SDP/SE 2) is approximately xz(nc, b) and
X2 (nc, s) for boars and sows, respectively. Assuming that the hypothesis being
tested is the same either within boars or within sows, the distribution of the

sum of ’¿,(SDP /SE2) for both boars and sows follows a xz(2nc, b+s) under the
alternative hypothesis. The sum of variables having non-central xz distributions

jointly independent also follows a non-central X2 distribution with degrees of
freedom equal to the sum of the degrees of freedom of the former non-central X2 2
and non-centrality parameter equal to the sum of the non-centrality parameters
of the former variables having non-central xz. The non-centrality parameter of
the xz has a value 2nc = (b + s) heBC (p /SE2, where 0 = a + 6(l - PB - pC),
and SE! = 4 !(1 - (l/2)!)/p] [equation (A4) in Appendix 3]. Similarly to a
hierarchical backcross design, power to detect a segregating QTL was computed
as 1 - (3 = 1 - p[x2(2nc, 2b) < T], where /3 is the probability of committing
a type 2 error, !p(2(2nc, 2b) < T] is the probability ofax2 value under the
alternative hypothesis (non-central X2 with parameter 2nc and 2b degrees of
freedom) less than T, with T being the value of the central X2 (2b) for a given
significance level of committing a type 1 error.

2.4.3. Hierarchical intercross design

In a hierarchical intercross design, b boars from the Fl are mated to s sows
each from the Fl to produce p piglets per litter. Power calculation can be
carried out using the linear model:

where Yijklm is the mth observation of phenotype on a piglet with marker
allele k inherited from boar i mated to sow j, boi is the fixed effect of boar

i, soij is the fixed effect of sow j mated to boar i, mbik is the fixed effect
of marker allele k inherited from boar i, msijl is the fixed effect of marker
allele I inherited from sow ij and eijklm is the residual error. Power calculation

using model (5) requires different non-centrality parameters within boars and
sows. The non-centrality parameter in boars is: ncb = b heBce2 /SE2, where
0 = a + b( I - pB - Pc ) (Appendix 2), with SE2 = 4[(1 + (1/4)ph; -1/2h;)/(sp)]
for s > 1 (Appendix 3). Values of SEZ for s = 1 are as for traditional intercross



design. The non-centrality parameter in sows is nc,s = bsheBCB2/SE2, where
0 = a+6(I-PB-pc) (Appendix 2), and SE2 = 4[(1 - ( 1 /2)h$) /p] (Appendix 3).
Assuming independence, the distribution of the sum of E(SDP/SE2) for both
boars and sows follows a x2(ncb+nc.&dquo; b(1+s)) under the alternative hypothesis.
Under the null hypothesis, the distribution of the sum of E(SDP/SE2) for both
boars and sows follows a central X2 (b( + s)). Power to detect a segregating
QTL was computed as 1 - (3 = 1 ! p!x2(ncb + ncs, b(1 + s)) < T], where /3 is
the probability of committing a type 2 error, (p(x2 (nch + nc,, b(1 + s)) < T] is
the probability of a x2 value under the alternative hypothesis (non-central x2
with parameter nci, + ncs and b(1 + s) degrees of freedom) less than T, with
T being the value of the central x2 (b(1 + s)) for a given significance level of
committing a type 1 error.

2.5. Design of experiments using crosses between outbred lines

Most experimental costs are in raising, genotyping and recording of a given
number of slaughter pigs in the F2 or backcross. Therefore, the parameters to
be chosen by the researcher are the number of boars, the number of sows and
the number of piglets per sow. In practice, it is convenient for the handling of
the experiment to fix the number of piglets per sow. It is also economical since
the use of few piglets per sow would increase the cost in raising a large number
of sows. It will be assumed from now on that the number of piglets per litter
in the experiment is fixed at ten and the question is how to make optimal use
of different numbers of boars and sows in the Fl for a given experiment size
(total number of slaughter pigs).

Parameters of interest are the expected power (EP) and its standard
deviation (SD):

where pr(i) is the probability according to the binomial distribution of having
i heterozygous boars [assuming a frequency of heterozygous boars given by
equation (1)], and Pi is the power with i boars computed according to the
previous sections. Expected power is utilized for each design to account for
random sampling of the boars. SD can be used as a measurement of the
variation in power. Comparison of alternative crossing designs can be done by
comparing expected power and its standard deviation at a fixed experiment size.
The approach used in this paper for optimum allocation of resources is based
on the repeated computation of expected power for all possible combinations
of the number of boars and sows at a given experiment size assuming constant
litter size of ten piglets. The power of the mating structure having the highest
expected power will be called maximum expected power (MEP). The functions
CINV and PROBCHI of SAS [12] were used to compute central and non-central
x probabilities, respectively.



Another parameter of interest in planning experiments is expected risk (ER)
which we define as the probability of having power lower than 0.5 due to
sampling among Fl individuals in the segregating population:

2.6. Selection in parental lines to increase power for QTL mapping

Selection of high ranking individuals in one parental line and of low ranking
individuals in another parental line can be used to increase statistical power
for the experiment when the lines are not fixed for alternative alleles. Assume
a biallelic QTL segregating in the two parental lines. Consider a hierarchical
backcross design in which high and low ranking individuals selected in the
parental lines are randomly mated to produce Fl, which are again randomly
mated to one of the unselected parental lines. Two effects would occur in this
scheme: 1) an increase in the frequency of heterozygous individuals in the Fr
which would increase the power to detect QTL; and 2) an increase in genetic
variance of the backcross offspring due to linkage disequilibrium [3], which
would decrease power to detect QTL.

2.6.1. Frequency of heterozygotes among offspring of high and low
ranking parents

Computation of the frequency of heterozygous Fi individuals was carried
out by using integrals simultaneously of the three normal distributions cor-
responding to the three genotypes at the QTL. The selected proportion (p,5)
for the high line is related to the proportion selected among individuals with
genotypes QQ, Qq and qq (pQQ, poq and pqq) by the equation:

with f(xIGi) being the normal density given genotype (Gi = QQ, Qq or
qq). Values pQQ, PQq, and Pqq can be found for a unique truncation point,
t, analytically. In the examples considered in this paper Simpson’s rule [13]
was used for increasing values of the abscissa until a value of t was found
satisfying the above equation for a given ps. Computation of expected genotype
frequencies among high ranking individuals after selection in the high line was
carried out by



The same procedure was followed to obtain expected genotype frequencies
among low ranking individuals in the low line (pQQ,L, PQq L’ p99,L) using the
same proportion selected, ps, as for the high line. Computing the expected
frequency of heterozygous Fl offspring resulting from the cross of selected
parents from each line was carried out with equation (3) of Gomez-Raya and
Gibson [6]. It assumes random mating and utilizes the frequencies among
extreme individuals from each of the two parental lines.

2.6.2. Increased variance among the offspring of Fl individuals

The effect of selection of high and low ranking individuals on genetic variance
and on the estimation of heritability is discussed by Bulmer [4] and Gomez-Raya
et al. !7!. Briefly, if selection of high and low ranking individuals is carried out
in the same population then genetic variance increases in the selected group of
parents QAS = (1 + !s!)o’!; where QA is the genetic variance for the polygenic
component in the unselected population, k,5 = [z 4>(z)]/ps, z is the absolute
value of standard normal deviates at cutoff points, 4>( z) is the ordinate and r
is accuracy of evaluation. The above equation can also be used when crossing
high ranking individuals from one parental line with low ranking individuals
from the other parental line as long as the parental populations have the same
genetic variance and the same polygenic heritability and allowance is made for
the different selection intensities for each genotype at the QTL and for each
line. For simplicity, an approximation to account for different selection pressures
across genotypes was made by weighting the values of z and 4>(z) according to
the proportion selected from each genotype and line in the computation of k8
by

where zi&dquo; and 4>(z;&dquo;) are the absolute values of standard normal deviate and
ordinate at truncation point for genotype i and line m (i had values 1, 2 and
3 for genotypes QQ, Qq and qq, respectively).
An exact computation would be feasible by using all possible groups resulting

in the Fl offspring and by including the variation of the means corresponding to
the different groups. This variation is small, particularly for QTL of small effect,
and the approach used accounts for the increased variance among offspring from
selected parents.

Following Bulmer (3!, the genetic variance in the Fl generation is 0’ A(Fl) 2
(1 + (1/2)ksr2)u!. The disequilibrium is halved in the next generation since
parents in the Fl are chosen randomly. The genotypic variance among backcross
offspring from randomly mating Fl individuals to one of the parental lines
(unselected) is:

The heritability among backcross offspring is also increased by selection of high
and low ranking individuals in the parental lines:



Power calculation was carried out as described in the corresponding section
but using the increased frequency of heterozygotes and heritability as computed
above. The estimates of the gene effect are biased if selection of parents is used.
Correction for selection bias in the estimates of the gene effect can be achieved
after accounting for the increased variance among backcross offspring by

where a* is the estimate of the gene effect from the experiment using selection,
and a is the estimate of the gene effect after correction for selection bias. Both
&* and a are in phenotypic standard deviations units.

3. RESULTS

Table I shows the gametic disequilibrium parameter for alternative number
of alleles segregating in the parental populations. The disequilibrium is high
when alleles at each of the two loci are fixed in one population but they are
rare in the other population. If the alleles at the two loci are segregating at a
similar frequency in the two populations then disequilibrium is small. In this
situation, the analysis could be performed within families allowing for different
alleles at the marker to be associated with the same allele at the QTL in
different families.

Maximum expected power and its standard deviation for three different

crossing designs in a variety of situations (QTL effect, residual heritability,
experiment size) for heterozygosity 1, 0.68 and 0.32, are given in tables II, 111
and IV, respectively. The heritability including QTL and polygenic variation
(h2(max)) of the parental population having the highest possible value is

given in these tables. It can be observed that residual heritability has a small
effect on power for the range of heritabilities in the parental populations.
Therefore, power figures can be considered as a good approximation when
accurate estimates of heritability in the parental population are not available.
On the other hand, a reduction in the frequency of heterozygotes among Fr

individuals diminished the power for any situation considered. For example,
for residual heritability 0.2 and QTL effect 0.5 in an experiment with 200
piglets in a hierarchical backcross design, the maximum expected power with
a significance level of 0.05 fell from 0.85 to 0.31 for heterozygosity 1 and

0.32, respectively. Power using hierarchical designs (backcross and intercross)
increases in all cases with the exception of traits with high heritability when
compared to traditional intercross designs (tables 77-7 V). Maximum expected
power using hierarchical backcross designs is larger than using hierarchical
intercross designs when the QTL effect is small. The opposite occurs for large
QTL effects.

The use of a larger experiment size increases power in all cases. For example,
the average maximum power across QTL size and residual heritability (table II)
for heterozygosity 1 in hierarchical backcross designs is 0.60, 0.79 and 0.91
for experiment sizes 200, 400 and 800, respectively. Similarly, for hierarchical



intercross designs, average maximum power is 0.58, 0.71 and 0.81 for experiment
sizes of 200, 400 and 800, respectively.

Variation in power due to the sampling in the Fl should also be consid-
ered. Hierarchical backcross designs show a much larger variation than either
intercross designs (tables III and II!. An example of how power, standard devi-
ation of power and expected risk change for alternative mating designs is given
in table V. In this example, heterozygosity is 0.68, residual heritability of the
trait is 0.2 and QTL effect is 0.5 phenotypic standard deviations with experi-
ment size of 400 piglets. The resulting expected power utilizing a hierarchical
backcross design is maximum when using two boars and 20 sows (0.79). The



corresponding standard deviation of power and expected risk are 0.27 and 10 %,
respectively. A compromise between expected power and risk can be taken. For
example, the use of five boars has a low expected risk of 4 % with an expected
power of 0.74. It is more obvious with a hierarchical intercross design where
expected power using between one and ten boars is very similar (0.81 to 0.83).
However, the expected risk is only low when using four or more boars.

Hierarchical and traditional intercross designs gave identical results at her-
itability 0.5 (tables 11-I!. This is because traditional intercross is an extreme
case of hierarchical intercross (one sow per boar) which is the best allocation
of resources at high heritabilities.

Table VI shows the number of boars, expected power and risk for designs
having maximum expected power and minimum risk in hierarchical intercross
and backcross designs. The residual heritabilities are 0.10, 0.20 and 0.50 and
the QTL size ranges from 0.3 to 0.6 phenotypic standard deviations in an
experiment of 400 piglets with Fz heterozygosity of 0.68. It can be observed
that the numbers of boars for maximum expected power and minimum risk are
different in many instances but the values are not very far apart. It should also
be noticed that the optimal allocation of resources in the experiment varies
with the QTL effect. A small number of boars is required for small QTL effects
which in turn would also have high risk.









Heterozygosity and power using phenotypic selection of extreme individuals
in a hierarchical backcross design with 400 piglets, residual heritability 0.20
and varying percentage selected are depicted in figures 1 and 2, respectively.
Parental lines were segregating at frequencies of 0.8 (selected to increase) and
0.2 (selected to decrease). A percentage selected of 100 is given for comparison
with the unselected case. Percentage selected of 0.5 % was the lowest attempted.
Heterozygosity increases with increasing selection pressure in each line and
with the size of the QTL. Following the same pattern, power increases with
decreasing percentage selected being up to 21 % more (figure 2). The increase
is small if the power in the unselected situation is close to 0 or 1.

4. DISCUSSION

Most previous research in QTL mapping has assumed that lines at crossing
are fixed for alternative alleles at the QTL [1, 2, 8]. The availability of divergent
inbred lines for traits of economical interest is a limiting factor in these studies.



Domesticated breeds of pigs have been undergoing artificial selection to increase
growth rate and litter size, for example. Only for research purposes, selection
criterion has been low growth rate or reduced litter size in experimental
populations. Therefore, it seems more reasonable to assume that the lines at

crossing differ in allele frequency at the QTL rather than that they are fixed
for alternative alleles.

The benefits of crossing lines are to increase gametic disequilibrium between
marker and QTL alleles and to increase heterozygosity among Fl individuals.
Gametic disequilibrium generated at crossing is high when the allele frequency
at the two loci (either two markers or one marker and one QTL) is very different
in the two parental lines. Gametic disequilibrium between two linked markers
could be estimated in chromosomal fragments by the use of the disequilibrium
parameter proposed in this paper. It would require that markers are not tightly
linked so parental lines could be assumed to be in linkage equilibrium. If the
gametic disequilibrium is low (e.g. Q < 0.2) then the analysis could be carried



out within families as considered in this paper with only a small loss in power.
If the gametic disequilibrium is high (e.g. S2 > 0.8) then a maximum likelihood
approach could be developed allowing the same marker allele to be associated
with the same QTL allele only in some families. Consequently, power figures
as given in this study represent a lower bound of the achievable power in those
cases. More work is needed to assess the gain in power in situations where
disequilibrium parameter has intermediate values.

Power for QTL detection in experiments involving crosses between two
outbred lines is higher than using within-line experiments when the frequency
of the favourable allele is higher than 1/2 in one parental line and lower than 1/2
in another parental line. The increased power can be attributed to the higher
frequency of heterozygous Fl individuals than in either parental breed. The
larger the difference in allele frequency between the two parental populations,
the larger is the increase in power.

It was assumed in the computation of power that residual heritability was
constant for varying QTL effects and for a given heterozygosity in the Fl.
This represents a variety of situations in which parental populations can be
segregating for a QTL at a different frequency and having a different heri-
tability. The approach taken in this paper was to compute also the heritability
(comprising QTL and polygene variation) of the parental line with the highest
possible value for a given heterozygosity in the Fl. At low residual heritabil-
ity, the contribution of large QTL to the heritability is high. For example, for
residual heritability 0.1 and QTL effect of 0.6 phenotypic standard deviations,
the heritability is 0.22 when the allele frequency in the parental population is
0.68 (table 111). In spite of the large contribution of the QTL variation to the
heritability, changes in power for different heritability values are small. Discrep-
ancies in power comparing residual heritability 0.1 and 0.2 for the same QTL
size range between 0.00 and 0.05 (table 111). Therefore, power figures, as given
in this paper, are well approximated when precise estimates of heritabilities
from parental population are not available. The approximation is particularly
good when the QTL has a small effect.
On the other hand, it was assumed when computing power that recombina-

tion between QTL and marker did not occur. In most instances, recombination
would occur. If the recombination fraction between the marker and the QTL is c
then the number of offspring should be increased in proportion to 1/( 1- 2c? to
obtain the same power as with complete linkage !14!. Power could be increased
by using interval mapping instead of the use of a single marker !10!. Most of
the relevant information in interval mapping comes from the non-recombinant
individuals. The number of offspring required to obtain power as given in this
paper should be increased in a proportion 1/(1-c’), where c’ is the recombina-
tion fraction between the two markers. That is, around 25 % more offspring are
needed to achieve power as given in this paper for interval mapping between
two markers with a recombination fraction of 0.20. A larger experiment size
will also be needed to achieve the same power figures as given in this paper
when the marker is not fully informative. The use of interval mapping can mit-
igate the lack of informative offspring by utilizing information corresponding
to nearby informative flanking markers.

The models used in this paper ignore the possibility of a common full-sib
family component such as may occur for some traits of economic interest in



pigs. Power for mapping QTL affecting those traits would be reduced !9!. The
approach used in this study to compute power could be modified to account
for this problem by incorporating a term corresponding to the common family
component in the standard error of the contrasts.

It has also been assumed that the heritabilities in parental populations
as well as within the offspring of Fl remain unchanged. The frequency of
heterozygotes at other loci affecting the trait could increase genetic variance
among Fl individuals and, therefore, heritability. One generation of random
mating is enough to restore Hardy-Weinberg equilibrium as would occur after
intercrossing Fl individuals. However, changes in the genetic variance among
offspring resulting from the hierarchical backcross design may occur. If there are
other QTL affecting the trait showing dominance or epistasis, then changes in
the phenotypic variance and heritability could also occur. Therefore, departures
from the power as computed in this paper would be expected for traits that
show heterosis such as reproductive traits.

For a given power, a backcross requires about twice as many progeny as
an intercross design because the number of segregating meioses is doubled
in the intercross [10]. Experimental design for mapping QTL in pigs has the
limitation that the number of piglets per litter has a maximum around ten.
This limits the size of the subgroups of progeny where the contrasts are carried
out. Hierarchical backcross and intercross designs can, however, be used in pigs
and allow contrasts within boars with larger subgroups of progeny. Power of
intercross versus backcross depends on both heritability and QTL effect when
using hierarchical designs. At high heritability levels, the hierarchical intercross
design is more powerful than the hierarchical backcross design. The opposite
occurs at low heritability values.
An interesting result was that power for small QTL effects was higher in

a hierarchical backcross than in a hierarchical intercross. The only difference
between the two designs is that the hierarchical backcross ignores meioses from
sows. In a hierarchical intercross, contrasts between alternative alleles inherited
from sows are small with a large variation given the small QTL effect and the
small progeny group (ten piglets). However, the total number of degrees of
freedom may be high because of the large number of sows. On the contrary, in
a hierarchical backcross each of the few boars has large subgroups of progeny
which means that contrasts have low variation and hypothesis testing is carried
out with a low number of degrees of freedom. As a consequence of the above,
power may be reduced in the intercross.

There is not a general experimental design which can allocate resources in
an optimum way if the experiment size is fixed. Power in experiments with
a low number of boars is higher for small size of QTL and high heritability
(table V7). The opposite occurs for QTL with large size and low heritability.
Risk measured as the probability of power lower than 0.5 due to sampling of
F, boars is high with a low number of boars. If the frequency of heterozygous
Fl individuals is low then the risk increases and the power decreases (results
not shown). A compromise between expected power and risk should be made.
A possibility for experiments searching for QTL affecting traits with known
heritability is first to decide the potential QTL size and Fl heterozygosity
detectable for a given experiment size (tables 77-7 V). Second is to choose a

design for that QTL size with maximum expected power but conditional on an



expected risk of less than a value of, say, 0.05. For example, for traits with low
heritability and using hierarchical backcross designs with an experiment size of
400 piglets, the detectable QTL sizes are 0.3, 0.3 and 0.5 for a heterozygosity of
1, 0.68 and 0.32, respectively (tables 11 IV). Between four (maximum expected
power) and eight boars (minimum risk) could be chosen for a heterozygosity of
0.68 and a QTL effect of 0.5 phenotypic standard deviations (table VI). If the
heterozygosity is lower then the QTL will be very difficult to detect even using
a design with optimal allocation of resources.
Dam and sire lines currently utilized for commercial production of pigs (e.g.

Large White, Landrace and Duroc, in Norway) can be considered as parental
lines which are crossed to produce Fl individuals with high frequency of
heterozygotes. Genotyping both boars (Fr ) and piglets (backcross to Landrace)
and recording of traits in the slaughter pigs can be used to map QTL by
contrasting inheritance of alternative alleles with large subgroups of progeny.
Utilizing both sire and dam lines would also be feasible in a similar fashion
to a hierarchical intercross design. However, the cross between Fl boars and
sows is not currently used by the industry. The swine industry in other
countries often uses four-way crosses. For example, line A is crossed to line B
to produce Fl (AB), line C is crossed to line D to produce Fl(CD). The cross
Fl(AB) x Fl(CD) would also show increased heterozygosity and power with
respect to experiments within line if the allele frequency is higher than 1/2
among Fi (AB) and lower than 1/2 among Fl(CD) individuals and vice versa.
The use of commercial pigs for QTL mapping has two advantages: 1) saving
in the cost of running the experiment since the carcasses can be sold at current
prices in the market; and 2) findings can immediately be used in marker-
assisted selection in the commercial stocks.

Selective genotyping involving growing a large population but genotyping
only those individuals whose phenotypes deviate far from the mean has been
proposed to increase power for QTL detection [10, 11]. In this paper an
alternative use of selection to increase power is proposed. Selection of extreme
individuals in the parental lines segregating at a QTL can be used to increase
heterozygosity in the Fl and consequently, power of the experiment. It has
been shown that selection is more useful with experimental designs having
intermediate values of power without selection. The increase in power is up to
21 %. A higher power would be feasible if high selection intensities are practised,
for example, by screening large populations for extreme individuals. The main
restriction with either use of selection (extreme individuals in the parental lines
or extreme progeny) is that in many instances, QTL mapping experiments are
carried out for several traits, which makes impractical the use of selection.
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APPENDIX 1: Heterozygosity in the cross of two outbred lines

In this section, the conditions for increased heterozygosity in the cross
between two segregating populations at a QTL is studied. Consider two outbred
lines B and C segregating at a biallelic QTL with a favourable allele frequency
pB and pc for lines B and C, respectively. Under Hardy-Weinberg equilibrium,
the frequency of heterozygous individuals at the QTL in breed B is:

Similarly, the frequency of heterozygotes among Fl individuals in the cross
is



Rearranging the above equation

where d = PB - Pc, the difference in allele frequency between the two breeds.
The amount d(2pB - 1) is the excess of heterozygotes in the cross with

respect to line B. The same reasoning can be used to obtain the frequency of
heterozygotes in the cross as a function of d and pC:

The following can be concluded by inspection of equations A1 and A2.
i) If pc > 1/2 and PB > 1/2 then d (2 pB - 1) is positive and d (1 &mdash; 2 p!) is

negative.
ii) Ifpc < 1/2 and pB < 1/2 then d (2 pB - 1) is negative and d (1 - 2 pC)

is positive.
For i or ii, the heterozygosity in the offspring of a cross is not higher than

in the parental line (B or C) with the highest heterozygosity.
iii) If pc > 1/2 and pB < 1/2 then d (2 pB - 1) is positive and d (1 - 2 pc)

is positive.
iv) Ifpc < 1/2 and pB > 1/2 then d (2 pB - 1) is positive and d (1 - 2 p!)

is positive.
For iii or iv, the heterozygosity in the offspring of a cross is higher than the

heterozygosity within either line, B or C.
Therefore, crossing between outbred lines segregating at a QTL with a

frequency larger than 1/2 in one line and lower than 1/2 in the other leads
to increased heterozygosity in Fl, which increases statistical power for QTL
mapping with respect to analysis within line.

APPENDIX 2: Contrasts in backcross and intercross designs

Outbred lines B and C are segregating at a biallelic QTL (with alleles Q
and q) with favourable allele (Q) at frequencies PB and pc for lines B and C,
respectively. Offspring from a heterozygous (Qq) Fl boar inheriting allele Q
can be QQ (with genetic value a) and Qq (with genetic value 6). Offspring
inheriting q can be qQ (with genetic value 6) and qq (with genetic value -a).
The genotype frequencies of each type of offspring depending on the mating of
Fl individuals with parental line B (backcross BC-B), parental line C (backcross
BC-C), or with other Fl individuals (intercross) are:



Contrasts within boar for backcrosses with lines B and C are 9 = a +

b(1 - 2 pB) and 6 = cY + S(1 - 2 pC), respectively. Contrast for the intercross
is 0 = a + 6 (1 - PB - Pc)’ Therefore, for fully additive models (as assumed in
the paper) B = a.

APPENDIX 3: Standard error of contrasts

The following derivations are for a phenotypic variance of 1. Consequently,
other variances are expressed as a proportion of the phenotypic variance. It is
also assumed that there is no residual covariance between sires. Consider first
a hierarchical backcross design where y2!!! is the lth observation of phenotype
on a piglet with marker allele k inherited from boar i mated to sow j. The total
variance is the variance of the means of the subgroups of progeny (mixed full-
and half-sibs) being contrasted and has value

where h2 is the residual heritability, s is the number of sows per boar and p is the
number of piglets per sow. The total variance of the means is also VT = V6+Vw,
where Vb and Vw are the components between and within families, respectively.
The standard error of the contrast in a hierarchical cross design is two times
the square root of V7&dquo; since the contrast is within the progeny groups inheriting
alternative alleles from their boar and half of the total number of daughters
per boar would receive each allele.

The square of the standard error can be computed by:

since V6 = (1/4)hr.
The same approach can be used for the traditional intercross design. In this

case the total variance is given by

where !2!! is the kth observation on piglet k with marker genotype j inherited
in family i. The standard error of the contrast in the traditional intercross

design is

Note that the traditional intercross design is a particular case of a hierarchical
intercross design with one sow per boar. Therefore, SE2 was computed using
A4 when s = 1 in hierarchical intercross designs.
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