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Abstract – The inverse of the gametic covariance matrix between relatives, G−1, for a marked
quantitative trait locus (QTL) is required in best linear unbiased prediction (BLUP) of breeding
values if marker data are available on a QTL. A rapid method for computing the inverse of
a gametic relationship matrix for a marked QTL without building G itself is presented. The
algorithm is particularly useful due to the approach taken in computing inbreeding coefficients
by having to compute only few elements of G. Numerical techniques for determining, storing,
and computing the required elements of G and the nonzero elements of the inverse are discussed.
We show that the subset of G required for computing the inbreeding coefficients and hence the
inverse is a tiny proportion of the whole matrix and can be easily stored in computer memory
using sparse matrix storage techniques. We also introduce an algorithm to determine the
maximum set of nonzero elements that can be found in G−1 and a strategy to efficiently store
and access them. Finally, we demonstrate that the inverse can be efficiently built using the
present techniques for very large and inbred populations.

gametic relationship / marker-assisted selection / best linear unbiased / prediction

1. INTRODUCTION

The utilization of marker quantitative trait loci associations in genetic evalu-
ation is now possible and likely to be used more extensively in the future. Also,
many authors have estimated gain through marker-assisted selection, e.g. [6,7,
9,14].

Marker information will not replace phenotypic records because a full pre-
diction of phenotype from DNA sequence is still far from achievable [3]. Joint
utilization of marker and phenotype information in current genetic prediction
models is, however, progressing at a rapid pace. Fernando and Grossman [2]
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explained how genetic markers associated with quantitative trait loci (QTLs)
could be incorporated into mixed models. Marked QTL alleles were considered
random in the context of the mixed model terminology, and algorithms to
construct and invert the covariance matrix pertaining to QTL additive effects
were developed.

Based on previous developments by Fernando and Grossman [2] and van
Arendonk et al. [12], and using the partitioned matrix theory, Wang et al. [13]
described an exact recursive method to obtain the inverse of the covariance
matrix of the additive effects of a marked QTL in the case of complete marker
data. If inbreeding is considered, certain elements of G are required, however,
Wang et al. [13] did not specify how these elements could be computed
separately.

The objective of the present paper is to develop a rapid method to obtain
the inverse of the covariance matrix of the additive effects of a marked QTL
in the case of complete marker data using a small subset of G. In addition to
the partitioned matrix theory, we show that the inverse can also be obtained
by factorizing the covariance matrix into LDL′ where L is a lower triangular
matrix whose inverse can be directly computed from pedigree and marker data.
Matrix D is shown to be proportional to the covariance matrix of Mendelian
sampling at the QTL for given observed marker genotypes. We will show that
D is block diagonal and can be computed from a small subset of G. The method
is inspired by the rapid method of Henderson [4] to obtain the inverse of the
numerator relationship matrix. In this work we will give special attention to
computing efficiency. Numerical techniques to efficiently compute and store
a subset of the covariance matrix and the nonzero elements of the inverse are
discussed.

2. TABULAR METHODS FOR THE COVARIANCE MATRIX
AND THE INVERSE

The covariance of marked QTL (MQTL) effects for given complete marker
data was discussed by Fernando and Grossman [2], van Arendonk et al. [12],
and Wang et al. [13]. The covariance can be divided into two parts: between
individuals and within individuals. By definition, the genetic covariance
between two alleles is the probability that they are identical by descent, multi-
plied by the additive genetic variance, σ2

v . In animals, each locus consists of two
alleles, hence for given known marker genotypes, four covariance values can
be computed between each two individuals as described in definition (1). Also,
within every individual, four covariance values can be computed as described
in definition (2). Denote the two MQTL alleles of individual i by α1

i and α2
i ;

in addition, denote the additive effects of the two MQTL alleles of individual i
by vi, where vi = [v1

i v2
i ]′. Also, let P(αi ≡ αj|M) denote the probability that
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any two alleles, say αi and αj, are identical by descent given M with M defined
as the event of observing marker genotypes, then

Cov(vi, v′j|M) = σ2
v

[
P(α1

i ≡ α1
j |M) P(α1

i ≡ α2
j |M)

P(α2
i ≡ α1

j |M) P(α2
i ≡ α2

j |M)

]
(1)

Cov(vi, v′i|M) = σ2
v

[
P(α1

i ≡ α1
i |M) P(α1

i ≡ α2
i |M)

P(α2
i ≡ α1

i |M) P(α2
i ≡ α2

i |M)

]
= σ2

v

[
1 fi

fi 1

]
· (2)

In definition (2) the probability of identity by descent between an allele and
itself, for M equals 1, and fi the probability that the two MQTL alleles of
individual i are identical by descent for M; f will be referred to as the inbreeding
coefficient.

If animals are ordered such that parents precede their progeny and are
identified by integers from 1 to n, then a number of n2 covariance matrices of
order 2, described in (1) and (2), can be put together in a matrix of order 2n that
is referred to as the conditional gametic relationship matrix for given marker
data [13]. Denote the element located in row r and column c of any matrix
A by A(r, c), and denote the entire rth row of A by A(r, ) and the entire cth
column of A by A(, c), then Cov(vi, vj|M)/σ2

v , and Cov(vi, vi|M)/σ2
v , that we

will refer to as Cij and Cii, can be written as

Cij =
[

G(2i− 1, 2j− 1) G(2i− 1, 2j)
G(2i, 2j− 1) G(2i, 2j)

]
(3)

and

Cii =
[

1 G(2i− 1, 2i)
G(2i, 2i− 1) 1

]
· (4)

For example, the (1,1) element of Cij is the element of G located in the (2i−1)th
row and the (2j− 1)th column. Because G is symmetric and Cij is not a scalar,
Cji = (Cij)

′. Moreover, all diagonal elements of G are equal to 1.

2.1. Tabular method for G

It can be shown that Cij can be computed from previous rows of G [13]. For
i > j,

Cij = Qi

[
Csj

Cdj

]
· (5)

Where s and d denote paternal and maternal parents, respectively, of indi-
vidual i, Qi is a 2× 4 matrix defined as

Qi=
[

P
(
α1

i ⇐ α1
s |M

)
P

(
α1

i ⇐ α2
s |M

)
P

(
α1

i ⇐ α1
d|M

)
P

(
α1

i ⇐ α2
d|M

)

P
(
α2

i ⇐ α1
s |M

)
P

(
α2

i ⇐ α2
s |M

)
P

(
α2

i ⇐ α1
d|M

)
P

(
α2

i ⇐ α2
d|M

)
]
·
(6)
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The matrix Qi contains the probabilities that the paternal and maternal alleles
of individual i descended from any of the four alleles of its two parents for
given observed marker genotypes. Due to the marker-QTL association, the
probability that an individual received the QTL allele that was in coupling
phase in the parent with the marker allele it received from that parent is 1− r
where r is the recombination rate between the marker locus and the QTL.
Based on this simple genetic fact, Wang et al. [13] computed Qi for the ith
individual. Matrix Qi is required for each individual in the pedigree and hence
its computing cost needs to be minimized. We present a general algorithm to
efficiently compute Qi in Appendix A.

Because the relationship Cij, between the two individuals i and j, at the QTL,
can be computed from already built relationships, i.e., Csj and Cdj as shown
in (5), there exists a recursive method to build new relationships from previous
elements of G. The following formulation, as suggested by Wang et al. [13],
adds the two rows corresponding to the ith individual to the lower triangle of
G, and using the symmetry of G, the corresponding upper triangle elements
are constructed:

Gi =
[

Gi−1 Gi−1A′i
AiGi−1 Cii

]
(7)

where Ai is a 2 × 2(i − 1) matrix constructed by setting A(, 2s − 1) equal
to Q(, 1), A(, 2s) equal to Q(, 2), A(, 2d − 1) equal to Q(, 3), and A(, 2d)
equal to Q(, 4), the rest of A is set equal to 0. The matrix Q is defined in (6),
and Cii is defined in (2). The inbreeding coefficient, fi, is the only element
required to construct Cii and can be computed as described in Wang et al. [13].
It is important for future use to know that fi is a function of Qi, Css, Cdd, and
Csd. Given observed marker genotypes and the recombination rate of 0.1, the
conditional gametic relationship matrix for the pedigree listed in Table I is
shown in Figure 1.

2.2. Decomposing G

In this section we decompose G following arguments similar to those
Henderson [4] used in decomposing the numerator relationship matrix (NRM).
The matrix G can be decomposed and written as

G = LDL′ (8)

where L is a lower triangular matrix and D is a block diagonal matrix. Matrix
L can be recursively computed using relationship (9) that adds the two rows
corresponding to individual i, i.e., rows 2i− 1 and 2i to L,

Li =
[

Li−1 0
AiLi−1 I2

]
(9)
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Table I. Example pedigree and the corresponding Qi and di matrices.

Animal Sire Dam Genotype Qi di

1 0 0 A1A1 – –
2 0 0 A2A2 – –
3 0 0 A1A2 – –
4 1 2 A1A2 0.50 0.50 0.00 0.00 0.500 0.000

0.00 0.00 0.50 0.50 0.000 0.500
5 3 4 A1A1 0.45 0.05 0.45 0.05 0.590 −0.410

0.45 0.05 0.45 0.05 −0.410 0.590
6 1 4 A1A2 0.50 0.50 0.00 0.00 0.500 0.000

0.00 0.00 0.10 0.90 0.000 0.180
7 5 6 A1A2 0.50 0.50 0.00 0.00 0.500 0.000

0.00 0.00 0.10 0.90 0.000 0.171
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Figure 1. Conditional gametic relationship matrix.

where I2 is an identity matrix of order 2; Ai is defined in (7). The relationship (9)
indicates that the smallest unit of L that can be built is a matrix of order 2,
not a scalar as in the decomposed NRM. To illustrate this and subsequent
computations, we use the pedigree of Table I. The matrix L is shown in
Figure 2.

To illustrate the procedure of building L, denote the 2 × 2 matrix on the
intersection of the two individuals i and j by R(i, j). Now given that 5 and 6
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Figure 2. L matrix.

are parents of 7, we compute R(7, 2) as

R(7, 2) = Q7

[
R(5, 2)
R(6, 2)

]
=

[
0.5 0.5 0 0
0 0 0.1 0.9

]



0.025 0.025
0.025 0.025

0 0
0.45 0.45




=
[

0.025 0.025
0.405 0.405

]
·

The variance and covariance of Mendelian sampling for an individual with two
alleles at the marked QTL for given observed marker genotypes is described by
a matrix of order 2, say di, and not by a scalar as in the case of the infinitesimal
model. Define D as diag[d1,d2, . . . ,dn], where the 2 × 2di can be computed
separately for each individual. It will be shown that σ2

vD is the covariance matrix
of Mendelian sampling due to a QTL linked to one marker for given observed
marker genotypes. To find the conditional Mendelian sampling covariance for
individual i, denote its Mendelian sampling by mi, then

mi = vi −Qi

[
vs

vd

]
· (10)

The rationale behind (10) is that Mendelian sampling in the case of a marked
QTL could be computed just as in the case of the infinitesimal model, by
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subtracting the expected breeding value from the realized breeding value. It
can now be proved that

1

σ2
v

Var(mi|M) = Cii −Qi

[
Css Csd

Cds Cdd

]
Q′i. (11)

See Appendix B for a proof of (11). Further, for a proof that D is block
diagonal, see Appendix C. From (11), di can be computed as

di = Cii −Qi

[
Css Csd

Cds Cdd

]
Q′i. (12)

To illustrate (12), we compute d for individual 7,

d7 =
[

1 0.104
0.104 1

]

−
[

0.5 0.5 0 0
0 0 0.1 0.9

]



1 0 0.225 0.09
0 1 0.225 0.09

0.225 0.225 1 0.05
0.09 0.09 0.05 1







0.5 0
0.5 0
0 0.1
0 0.9




=
[

0.5 0
0 0.17

]
·

Now it is straightforward to verify the decomposition of G by the direct
multiplication LDL′.

2.3. Computing the inverse of G

The inverse of G is now computed by making use of the decomposition
presented earlier. From the decomposition of G in (8), G−1 can be written as

G−1 = (L′)−1D−1L−1. (13)

L−1 is easy to compute due to the recursive method used to construct L. The
inverse of L can be computed according to the following recursive relationship

L−1
i =

[
L−1

i−1 0
−Ai I2

]
(14)

as can be verified by showing that
[

L−1
i−1 0
−Ai I2

] [
Li−1 0

AiLi−1 I2

]
= I.



160 G. Abdel-Azim, A.E. Freeman

Using the recursive relationship (14), L−1 for the pedigree of Table I is
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As mentioned before, D is composed of the di matrices along its diagonal,
and di is proportional to the conditional variance and covariance of Mendelian
sampling within individual i. Therefore, di is positive definite and can be
written as

di = tit′i (15)

where ti is a matrix of order 2 with 0 as its upper diagonal element. If di is
symbolically written as

di =
[

p k
k q

]
and c =

√
q− k2/p,

then

t−1
i =

[
1/
√

p 0
−k/pc 1/c

]
(16)

where p, k, q, and c are scalars. Notice that p and q are the conditional
Mendelian sampling variances associated with α1

i and α2
i , respectively, and k

is their conditional Mendelian sampling covariance. The results in (16) can
be easily seen by inverting ti, obtained after the decomposition of di in (15).
Relationship (16) shows an easy way to compute t−1

i directly from elements of
di without having to decompose di and then invert ti.
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After every di is decomposed as described in (15), D can be written as TT′
where T is lower triangular defined as diag[t1, t2, . . . , tn]. The matrix D−1 can
then be written as (T′)−1T−1 and

G−1 = (L′)−1(T′)−1T−1L−1. (17)

Since the inverse has the form (17), the contribution of each individual to G−1

is now easy to compute using the recursive method for constructing L−1 and
the efficient way of expression (16) that can be used to directly obtain t−1

i from
the elements of di. From (17), the contribution of the ith individual to the
inverse can be written as the cross product of

(
t−1
i (−AiI2)

)
, where the cross

product of any matrix, say B, is B′B. Since the nonzero elements of Ai are the
elements of the matrix Qi, the cross product of

(t−1
i [−QiI2]) (18)

is added to the following locations of G−1,




R(s, s) R(s, d) R(s, i)
R(d, s) R(d, d) R(d, i)
R(i, s) R(i, d) R(i, i)


 , (19)

where i, s, d, and R(i, j) are consistent with their previous definitions, with
R(i, s) for example, as the matrix of order 2 at the intersection of the individual
and its paternal parent.

2.4. Algorithm

Next, we suggest an algorithm to compute and add the contributions of the
ith individual to G−1.

• Set a 2× 6 matrix, say ∆ to 0.

• Set elements 1 to 6 of a 6× 1 vector, say τ, to 2s− 1, 2s, 2d− 1, 2d, 2i− 1,
and 2i, in order.

• Compute di as described in (12) and assign 1/
√

p to ∆(1, 5), 0 to ∆(1, 6),
−k/pc to ∆(2, 5), and 1/c to ∆(2, 6).

• Assign −Q(1, )/
√

p to elements 1 to 4 of ∆(1, ).

• Assign
(
kQ(1, )/pc−Q(2, )/c

)
to elements 1 to 4 of ∆(2, ).

• For x = 1 to 6
For y = 1 to 6

Add
(
∆(1, x)∆(1, y)+∆(2, x)∆(2, y)

)
to G−1

(
τ(x), τ(y)

)
.
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The algorithm does not explicitly invert or decompose D, it only computes
the elements of t−1

i according to (16) after computing di for each individual.
Furthermore, instead of carrying out the matrix product of (18), the algorithm
directly assigns the multiplication results to the 2× 6 matrix ∆.

To illustrate the computation of ∆, we compute ∆7. From d7 of Table I,
c = √0.171− 0/0.5 = 0.413,

√
m = 0.707, and hence

∆7 =
[−0.707 −0.707 0 0 1.414 0

0 0 −0.242 −2.176 0 2.418

]
·

The matrix G−1 for the example follows:
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2.5. One unknown parent

If one of the two parents of i is unknown, Wang et al. [13] have suggested
replacing the two columns of Qi that belong to the unknown parent with zeros,
i.e., considering the probability of QTL descent from the unknown parent
as undefined. This approach, however, creates unusual singularities in some
cases while inverting the gametic relationship matrix. For example, if the dam
is unknown and both the sire and the individual have marker genotype A1A2,
the contributions to the inverse due to i cannot be computed either by the current
algorithm or by the Wang et al. [13] algorithm.

Phantom identification numbers could be assigned to the unknown parents
and the problem becomes a pedigree with incomplete marker data. For incom-
plete marker data, alternative exact and approximate approaches are available



Gametic relationship matrix inverse 163

(Wang et al., 1995). The current techniques are still useful for the case of
one unidentified parent and the case of incomplete marker data in general. For
instance, if d is a phantom parent of i, the most probable genotype of d for
given s and i genotypes could simply be assigned to d, and approximate G or
G−1 values could be built as described earlier.

3. COMPUTATIONAL TECHNIQUES FOR CONSTRUCTING
THE INVERSE

In most animal breeding applications, large data are commonplace. In this
case, handling matrices like G and its inverse within computer memory is most
unlikely. Also, having to build these matrices on disk degrades performance
due to the repeated search that has to take place for certain elements of G and
G−1. In this section we explain a scheme to compute the minimum possible
set of G that contains elements required for computing the inverse. A sparse
matrix technique to store this set is also presented. In addition, due to the sparse
structure of the inverse, we suggest a method that can be used to determine
the maximum possible set of the nonzero elements found in the inverse and
corresponding sparse matrix techniques to efficiently store and retrieve them.

3.1. Computing a subset of G

Building the inverse as described earlier requires the 2 × 2 blocks Cii and
Csd of G to be available if inbreeding is to be accounted for. As was shown
by Tier [11], the diagonal of the NRM can be computed from a small subset
of the matrix. Although the diagonal of G is known to consist of 1s, and
hence need not be computed, we will use a similar approach to compute the Cii

submatrices located on the diagonal of G. Besides, in our case, extra elements
are needed for the inverse, i.e., the relationship of the two parents, but this does
not increase the computational task because Csd is needed for computing Cii.

For the example pedigree, the set of filled cells in Table II contains the
required elements. We express the subset in terms of the Cij and Cii submatrices
instead of single elements. The reason for this is its computational advantage.
The subset is first determined and then computed according to equation (5) and
rules explained in Wang et al. [13]. First, to determine the subset, read the
pedigree and flag cells Cii and Csd if s > d or Cds if d > s, i.e., the relationship
between the two parents located in the lower triangle. The cells required for
computing the previously flagged cells are determined as follows: starting from
the second to the last row of cells and proceeding up and to the left, flag the
two cells corresponding to Csj and Cdj as described in equation (5). Second,
after determining all the required cells, compute them row by row starting with
row 1.
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Table II. The subset of the gametic relationship matrix required for building the
inverse.

I2 * 1 *

C21 I2 *

C31 C32 I2 *

C41 C43 C44 *

C51 C54 C55

C65 C66

C77

1 An asterisk indicates a cell required in the
upper triangle that is taken from the lower tri-
angle.

Constructing only the required subset of G found in its lower triangle saves
computational time and storage requirements. For every row of cells, Qi is
built only once and used for all cells in the row. An asterisk “*” indicates
a required upper triangular cell that is obtained from the lower triangle. For
example, in Table II, C43 was flagged instead of C34. In the computing step
however, (C43)

′ is used whenever C34 is required.
For this method to be useful, it is necessary to employ a sparse storage

scheme that allows efficient storage and retrieval of elements of the subset. A
row-linked list approach is suggested in this case for two reasons: cells in a
row are not determined and flagged in any particular order, and the number of
filled cells in a row is not known a priori. Henceforth, a row-linked list will
refer to the sequence of filled lower triangular elements in a row as stored in
the linked lists.

To explain the storage scheme, specify the number of filled cells by nf and
the number of individuals by n. Define the following arrays: an integer array of
length nf , column, containing cell column indices; an integer array of length nf ,
link, containing pointers to the location of the next cell added to a list; a double
nf × 4 array, values, a row of which contains the four values of an off-diagonal
cell; and a double array of length n, f , containing inbreeding coefficients. Row
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Table III. Linked lists of the subset of the gametic relationship matrix required for
building the inverse.

i column(i) link(i) values(i, 1) values(i, 2) values(i, 3) values(i, 4) f (i)

1 0 0 0.00000 0.00000 0.00000 0.00000 0.00000
2 1 0 0.00000 0.00000 0.00000 0.00000 0.00000
3 1 10 0.00000 0.00000 0.00000 0.00000 0.00000
4 1 8 0.50000 0.50000 0.00000 0.00000 0.00000
5 1 9 0.22500 0.22500 0.22500 0.22500 0.00000
6 5 0 0.22500 0.22500 0.09000 0.09000 0.05000
7 0 0 0.00000 0.00000 0.00000 0.00000 0.10350
8 3 0 0.00000 0.00000 0.00000 0.00000
9 4 0 0.45000 0.05000 0.45000 0.05000

10 2 0 0.00000 0.00000 0.00000 0.00000

indices are assumed to be sorted in ascending order corresponding to the first
n entries of column, that is, for i = 1 to n, the column index of the first entry
to row list i is column(i). A value of 0 in column(i) indicates no entries have
yet been added to the ith list. A value of 0 in link(j) indicates a terminal link,
that is, the last entry in a list.

Linked lists for the example are given in Table III. To add an entry, Cij, to
the lists, start at column(i)where i is the individual to which the entry belongs.
If column(i) = 0, place the column index of the entry, j, in column(i) and the
four values of Cij in values(i, ), otherwise proceed via links to search whether
the array column already contains j. If not, store j and Cij in the next available
entry of column and values, respectively. To add an entry, Cii, to the lists, only
place the value of fi in the ith element of vector f , i.e., in f (i).

To retrieve the Cij entry from the linked lists, search for the entry starting at
column(i) and proceed via links until the desired column index is found, i.e., j.
The entries in a row list do not have to be sorted in any order because the search
method we described does not require any ordering. It is likely that a better
searching technique will require sorting the lists. In this case, the improved
searching technique is useful only if the time saved is greater than the sorting
time. Notice that in linked lists new elements are usually added to the lists by
inserting them in order. This practice, when tested, consumed more time than
just adding new elements to the next available entry as described earlier.

3.2. Sparse storage scheme for G−1

For large numbers of animals, neither G nor the inverse can be handled
in memory. We introduce a sparse storage scheme that allows construction
of the inverse within memory. The scheme first determines a maximum set
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Figure 3. Contribution of an individual to the nonzero elements of the lower triangle
of the gametic relationship inverse. A dark connector indicates a filled element of the
inverse. In the following, 2i − 1 and 2i indicate the two rows of individual i, 2d − 1
and 2d indicate the two rows of the dam, and 2s − 1 and 2s indicate the two rows of
the sire. Perpendicular lines to the previous rows indicate the corresponding columns.

of the nonzero elements found in the lower triangle of the inverse and then
computes them. The scheme is similar to that described earlier in storing and
retrieving the required subset of G, except that three of the four elements of the
R(i, i) submatrices on the diagonal of G−1 must be stored instead of only one
element, fi, of Cii. Only three elements are stored because of the symmetry of
G−1. Therefore the one-dimensional array, f , is replaced by an n× 3 array, say
diagv.

Using the matrix of (19), the maximum set can be determined while reading
the pedigree by adding to the lists the following entries corresponding to each
individual. For the ith individual, add either R(d, s) or R(s, d) to the lists,
depending on which of them is in the lower triangle; also add R(i, s), and
R(i, d). Entries for R(i, i), R(s, s), and R(d, d) are automatically stored in the
lists, in diagv. The sparse scheme sets an upper bound for the set of nonzero
elements of the inverse that does not exceed 15n, and its proportion out of 4n2,
the order of G, does not exceed 15/4n. This can be seen in Figure 3. The
dark connectors in the figure indicate the maximum number of filled elements
that individual i could ever cause. Notice that the proportion 15/4n indicates
that the percentage of filled elements dramatically decreases as n increases.
The simulated data summarized in Table IV clearly show that as the number
of individuals in the pedigree increases, the percentage of filled cells in the
inverse substantially decreases.
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After the maximum set has been determined, the algorithm described earlier
can be used to compute and add contributions of the ith individual to the
inverse. Because the elements of (19) have to be retrieved and added to,
perhaps several times, the values of the maximum set must be first set to 0.
The same search method used with G is used here to retrieve the elements of
the inverse. Searching via links is only required if it is for R(i, j) where i > j.
If i = j, then R(i, i) can be directly retrieved from diagv (i, ).

Now it should be clear that storing the elements of the matrices in groups
of 4, i.e., R(i, j), saves a great deal of computing time although it could contain
zero elements. Notice that a single element of Cij or R(i, j) of the inverse
is never required and hence searched for unless the other three elements are
required as well. Also, no search is required if i = j. Although storing only the
nonzero elements of the 2× 2 blocks is more memory-efficient, it showed very
poor performance in terms of speed when tested. More details of programming
strategies can be inferred from the C code listed in Appendix C.

4. SIMULATION AND VALIDATION

In this section we use simulated pedigree and genotype data to investigate
the efficiency of the algorithms. A modified nucleus scheme where sires are
selected in two stages was simulated. The objective was to simulate a structural
pedigree similar to what could be encountered in the U.S. Holstein population.
Breeding values were simulated according to a finite locus model. A situation
in which one QTL is associated with a known marker was simulated.

Data sets with variable sizes were simulated. Table IV shows that for larger
data sets both the required subset of G and the number of nonzero elements
of the inverse constitute a tiny proportion of 4n2. Results of three pedigree
data simulated over 15, 30, and 40 years are listed in Table IV. The first
pedigree comprising 18 801 animals started with 6 active sires and 14 young
bulls with a maximum of 50 daughters per young bull. We used a base cow
population of 2 000 cows with a maximum of 5 lactation seasons and with
culling ratios of 0.22, 0.26, 0.29, 0.34, and 1 for parities 1, 2, 3, 4, and 5,
respectively. The second and third pedigrees were simulated similarly, except
that the simulation was continued for 30 and 40 years, resulting in a generation
of 137 680 and 485 462 animals, respectively. The percentages presented in the
table are the number of physically stored single elements and not the number
of the R(i, j) matrices. However, this number does not include the overhead
caused by storing the links and column indices. The CPU seconds presented
in the table indicate that by using the current algorithms, building the inverse
of the conditional gametic relationship matrix for a marked QTL is as trivial as
building the inverse of the NRM.
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5. DISCUSSION

An algorithm to directly build the inverse of a conditional gametic relation-
ship matrix, from given marker data, was developed. The inverse algorithm is
based on matrix decomposition instead of partitioned matrix theory. Numerical
techniques that greatly improved computing performance were introduced.
Extension to multiple markers should be straightforward provided that MQTL
loci are independent. With multiple markers, efficiency should improve rel-
atively because column indices and link pointers are the same for all markers
and could be determined and stored only once.

It is imperative to mention that although both matrix decomposition and
partitioned matrix theory produce the same elements that an individual con-
tributes to the inverse, matrix decomposition offers a more computationally
useful structure to the mixed model applications. First, D in our study could
be used in a way similar to the Henderson D in the context of the reduced
animal model [1,5,10] to absorb the non-parental equations of the MQTL and
polygenes. Moreover, careful inspection of the mechanics of building D could
lead to more useful reductions pertinent to the inclusion of markers in the mixed
model. Reducing the number of equations is crucial if marker data are to be
practically used in genetic evaluation models.

Furthermore, the decomposition allows for more flexibility in handling the
mixed model equations, for instance, the Henderson L was used by Quass [8]
in transforming the equations in a way that could be useful for variance
components estimation methods. The decomposition we introduced allows
for the same technique to be adapted to handle a mixed model with markers.
This is only to name some examples, but strictly speaking, wherever the factors
of the decomposed numerator relationship matrix or the Mendelian sampling
variance are useful, the decomposed conditional gametic relationship matrix
and the conditional Mendelian sampling covariance, introduced in this study,
could be exploited similarly. The algorithm should motivate further research to
build on past experience for the developing area of marker-assisted selection.
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APPENDIX A

Algorithm to compute Qi

The theory for computing the probability of QTL descent based on the
probability of marker descent and the recombination rate, r, given marker
data, was discussed by Fernando and Grossman [2], van Arendonk et al. [12],
and Wang et al. [13]. The following is a general algorithm to compute
the matrix Qi for any number of alleles segregating in the population. The
algorithm avoids building the intermediate matrices PDMs and R-, see Wang
et al. [13]. The following is a C function that receives individual, sire, and dam
identification numbers (i, s, and d, respectively) in addition to a pointer to the
matrix containing marker allele genotypes in two columns (B). The function
returns a pointer for Q after building it.
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double **MakeQ(int i, int s, int d, int **B) {
int l=2, c, x1, x2, k, j, g[7], o1, o2, c1, c2;
double r = Recombination Rate;
double **Q; Q = dmatrix(1,2,1,4); /* allocate Q */
for(k=1;k<=2;k++) for(j=1;j<=4;j++) Q[k][j] = 0.;
if(s==0 || d==0) return Q;

g[1]=B[i][1]; g[2]=B[i][2]; g[3]=B[s][1];
g[4]=B[s][2]; g[5]=B[d][1]; g[6]=B[d][2];
for(k=1;k<=2;k++) {
x1 = x2 = 0;
if(g[l]==g[5] || g[l]==g[6])
for(j=3;j<=4;j++) if(g[k]==g[j]) x1++;

if(g[l]==g[3] || g[l]==g[4])
for(j=5;j<=6;j++) if(g[k]==g[j]) x2++;

if((x1+x2) == 3){ x1 *= 2; x2*=2; }
else { c=x1; x1+=x2; x2+=c; }

o1=5; o2=6; c1=3; c2=4;
c = x1; /* for j = 1, c will act in place of x1 */
for(j=1; j<=2; j++) {
if(g[l]==g[o1] || g[l]==g[o2])
if(g[k]==g[c1] || g[k]==g[c2]) {
if(g[c1]==g[c2]) Q[k][c1--2]=Q[k][c2--2]=1./c;
else if(g[k]==g[c1]) {Q[k][c1--2]=(1-r)/c; Q[k][c2--2]=r/c ;
else { Q[k][c1--2]=r/c; Q[k][c2--2]=(1-r)/c;} }

swap(&o1, &c1); swap(&o2, &c2);
c = x2; /* for j = 2, c will act in place of x2 */

}
l--;

}
return Q;

}

APPENDIX B

Computing Mendelian sampling conditional covariance

From relationship (10) in the text, Mendelian sampling of the ith individual
is written as

mi = vi −Qi

[
vs

vd

]

then

Var(mi|M) = Var(vi|M)+Qi Var

([
vs

vd

]
|M

)
Q′i − 2 Cov

(
vi,

[
vs

vd

]′
|M

)
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and

Var(mi|M)/σ2
v = Cii +Qi

[
Css Csd

Cds Cdd

]
Q′i − 2(CisCid)Q′i. (B.1)

From (5) in the text, Cis is computed as

Cis = Qi

[
Css

Cds

]
(B.2)

and Cid is similarly computed as

Cid = Qi

[
Css

Cdd

]
· (B.3)

By substituting (B.2) and (B.3) for (B.1), we obtain

Var(mi|M)/σ2
v = Cii −Qi

[
Css Csd

Cds Cdd

]
Q′i.

APPENDIX C

Proof that D is block diagonal

From (5) in the text, we have

Cov(vi, v′j|M)/σ2
v = Cij = Qi

[
Csij

Cdij

]
(C.1)

and from (10), we have

vi = Qi

[
vsi

vdi

]
+mi and vj = Qj

[
vsj

vdj

]
+mj (C.2)

where si and di are the sire and dam of individual i, respectively. To prove that
D is block diagonal, it is sufficient to show that the covariance between mi and
mj is null.

From (C.2),

σ2
v Cij = Cov

(
Qi

[
vsi

vdi

]
+mi, v′j|M

)

= Qi Cov

([
vsi

vdi

]
, v′j|M

)
+ Cov(mi, v′j|M)

= Qi

[
Csij

Cdij

]
+ Cov(mi, v′j|M). (C.3)
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But from equation (C.1), we have σ2
v Cij = Qi

[
Csij

Cdij

]
, which leads us to

conclude that the second term in (C.3), Cov(mi, v′j|M), must be zero. Simil-
arly, Cov(mi, v′sj

|M) and Cov(mi, v′dj
|M) could be shown to be null. Finally,

given that Cov(mi, v′j|M), Cov(mi, v′sj
|M), and Cov(mi, v′dj

|M) are all null,
Cov(vi, v′j|M) must be null.
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