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Abstract – Daily feed intake data of 1 279 French Landrace (FL, 1 039 boars and 240 castrates)
and 2 417 Large White (LW, 2 032 boars and 385 castrates) growing pigs were recorded with
electronic feed dispensers in three French central testing stations from 1992–1994. Male (35
to 95 kg live body weight) or castrated (100 kg live body weight) group housed, ad libitum fed
pigs were performance tested. A quadratic polynomial in days on test with fixed regressions
for sex and batch, random regressions for additive genetic, pen, litter and individual permanent
environmental effects was used, with two different models for the residual variance: constant in
model 1 and modelled with a quadratic polynomial depending on the day on test dm as follows
in model 2: σ2

εm
= exp

(
γ0 + γ1dm + γ2d 2

m

)
. Variance components were estimated from weekly

means of daily feed intake by means of a Bayesian analysis using Gibbs sampling. Posterior
means of (co)variances were calculated using 800 000 samples from four chains (200 000 each).
Heritability estimates of regression coefficients were 0.30 (FL model 1), 0.21 (FL model 2),
0.14 (LW1) and 0.14 (LW2) for the intercept, 0.04 (FL1), 0.04 (FL2), 0.11 (LW1) and 0.06
(LW2) for the linear, 0.03 (FL1), 0.04 (FL2) 0.11 (LW1) and 0.06 (LW2) for the quadratic term.
Heritability estimates for weekly means of daily feed intake were the lowest in week 4 (FL1:
0.11, FL2: 0.11) and week 1 (LW1: 0.09, LW2: 0.10), and the highest in week 11 (FL1: 0.25,
FL2: 0.24) and week 8 (LW1: 0.19, LW2: 0.18), respectively. Genetic eigenfunctions revealed
that altering the shape of the feed intake curve by selection is difficult.
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1. INTRODUCTION

Today, selection of pigs for growth performance considers average daily
feed intake and average daily live weight gain over the whole growing period
and/or the ratio of the two, i.e. feed conversion. Average daily feed intake is
negatively correlated with the leanness of the carcass. Selection for increased
leanness and improved feed conversion has led to a decrease in the feed intake
capacity (FIC) [27]. “Modern” genotypes of pigs have a lower mean voluntary
feed intake and feed intake increases at a lower rate with body weight compared
to “older” genotypes [2]. In the long run, FIC might become a limiting factor
for a further improvement of the efficiency of lean growth. In the past,
improvement of feed conversion was mainly achieved by a reduction in the
rate of fat deposition. But according to several authors, optimum levels of
backfat thickness are or will soon be reached and other routes to improve feed
efficiency have to be found [7,14,26]. De Vries and Kanis [5] have suggested
dividing the growing period into three phases:

1. early fattening period where FIC of pigs is determined by mechanical
constraints and FIC is less than the optimum level of feed intake (FI(opt)),
where lean deposition rate is at its maximum and fat deposition rate at its
minimum for the given lean deposition rate [4],

2. intermediate fattening period where FIC is still determined by mechanical
constraints but FIC > FI(opt),

3. late fattening period where FIC is determined by metabolic constraints with
FIC > FI(opt).

Increasing FIC in period 1 to its optimum level should increase growth rate
without affecting the leanness of the carcass, while increasing FIC in periods 2
or 3 would lead to fatter carcasses. Increasing FIC in period 1 while keeping
FIC in periods 2 and 3 constant should lead to more efficient animal growth.
Webb [27] supports this view and stresses the need of further research on
genetic and environmental effects on the shape of feed intake curves.

Electronic feeders installed in central testing stations allow the measurement
of individual daily feed intake of performance tested growing pigs. Analyses
of feed intake curves might lead to new interesting traits for pig breeders, e.g.
curve parameters or feed intake capacity at different ages. One possibility to
analyse feed intake curves is by means of polynomials [1] using a random
regression model [22].

The objective of this study was to estimate genetic variation in feed intake
curves of growing pigs and to assess possibilities to change the feed intake
curve by selection.



Random regression for feed intake of pigs 637

Table I. Number of animals with records of weekly means of feed intake per day (LW
= Large White; FL = French Landrace; % = proportion of tested animals).

Week 1 2 3 4 5 6 7 8 9 10 11 12 13
Day 4 11 18 25 32 39 46 53 60 67 74 81 88

LW 2 312 2 263 2 229 2 173 2 292 2 255 2 213 2 137 1 907 1 227 509 131 14
% 95.7 93.6 92.2 89.9 94.8 93.3 91.6 88.4 78.9 50.8 21.1 5.4 0.6

FL 1 214 1 192 1 163 1 156 1 224 1 183 1 178 1 160 1 042 752 323 103 19
% 94.9 93.2 90.9 90.4 95.7 92.5 92.1 90.7 81.5 58.8 25.3 8.1 1.5

2. MATERIALS AND METHODS

2.1. Data

1 279 French Landrace (FL, 1 039 boars and 240 castrates) pigs from 697
litters and 2 417 Large White (LW, 2 032 boars and 385 castrates) pigs from
1 259 litters were performance tested in three French central testing stations
from 1992–1994. For each animal tested, pedigree information of three gener-
ations of ancestors was available, which resulted in 3 826 (FL) and 7 784 (LW)
animals in the pedigree, respectively. Growing pigs were housed in groups
of 6 to 15 animals in 316 (FL) and 370 (LW) pens, respectively. Pens were
equipped with one electronic feed dispenser each (Acema-48, Acemo, Pontivy,
Morbihan, France), where ad libitum daily feed intake was recorded. Groups
that were on test during the same period of time on the same testing station
formed a batch. There was a total of 35 batches with French Landrace and
36 batches with Large White pigs. After about one week of adaptation to the
automatic feed dispensers, animals were tested from 35 kg live body weight
until they reached 95 kg (boars) or 100 kg (castrated males) live body weight,
respectively. Raw data contained daily feed intake records for the whole period
during which the animals were on the testing station, but records from the
adaptation period were discarded. Test day one was defined as the day when
animals reached 35 kg live body weight. Starting from there, weekly means
of feed intake per day were calculated and saved as the record for the middle
day of the week, in order to reduce the amount of data for the evaluations.
This resulted in records for days 4, 11, 18, . . . , 74, 81, and 88 (Tab. I). The
last record of an animal represents feed intake of the last week before leaving
the testing station after reaching 95 kg (entire males, candidates to selection)
or 100 kg live body weight (castrates, slaughtered contemporaries).

The variance of an arithmetic mean of n independent values is equal to the
original variance of these values divided by n (see e.g. [24]). Averaging daily
records into weekly means therefore results in a reduction of the residual vari-
ance proportional to the number of records included in this average. Whenever
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records of more than one day per week were missing, all the records of this
week were discarded and the weekly mean was set to missing, to avoid a major
influence of missing records on the estimate of residual variance. Animals
with less than five records of weekly means for the estimation of feed intake
curves were deleted from the data set. This was also necessary if no records
were available in the first three weeks of the testing period, as this might lead
to poor estimates for polynomials, especially negative values for the intercept,
which is not plausible.

2.2. Model

The following random regression model, which is a quadratic polynomial in
days on test dm was fitted to weekly means of daily feed intake records:

yghijkm = sex0g + sex1g dm + sex2g d 2
m

+ batch0h + batch1h dm + batch2h d 2
m

+ a0i + a1i dm + a2i d 2
m

+ p0j + p1j dm + p2j d 2
m

+ l0k + l1k dm + l2k d 2
m

+ e0i + e1i dm + e2i d 2
m+ εghijkm

(1)

where sexng and batchnh are fixed regressions for the gender of the animals,
and the period and station of their test, respectively; ani are random regressions
for animal additive genetic effects; pnj, lnk and eni are random regressions for
permanent environmental effects of pen, litter and the tested individual, respect-
ively; εghijkm is a random residual error which accounts for daily deviations of
feed intake from the expected trajectory of animal i on day dm.

Model (1) can also be presented in a hierarchical form, using a quadratic
polynomial as a regression function and fitting fixed (sex, batch) and random
(a, p, l, e) effects to regression coefficients, which can be regarded as artificial
traits. What is called “permanent environmental effect of the tested individual”
above, is nothing else than a residual for regression coefficients. The quadratic
polynomial was chosen as a regression function for (weekly means of) daily
feed intake based on results of Anderson and Pedersen [1], who showed that
a cubic polynomial is sufficient to fit cumulated feed intake of growing pigs.
A cubic polynomial for cumulated feed intake corresponds to a quadratic
polynomial for daily feed intake, as daily feed intake can be written as the first
derivative of cumulated feed intake. A higher order polynomial would fit the
data better (reduce the residual variance), but would also substantially increase
the number of covariances to be estimated. This additional effort does not seem
to be justified, as feed intake is expected to evolve smoothly (almost linear)
within the growing period considered.
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Fixed and random effects for regression coefficients were chosen based on
results of Labroue [16,17], who analysed daily feed intake averaged within
three growing periods (based on the same raw data) using a multivariate model.
Instead of fitting a fixed effect for group size (number of pigs in a pen), a
random permanent environmental effect for each pen (group of pigs housed
together) was included in the model. The same fixed and random effects were
applied to all three regression coefficients to guarantee a proper definition of
heritability for these artificial traits (see section 2.4).

Normal distribution of feed intake data is assumed:

y|b, a,p, l, e, σ2
εm
∼ N

{
Xb+ Za+ Up+ Vl+We, Iσ2

εm

}
(2)

y is a vector containing feed intake data; b is a vector containing fixed regres-
sions for sex and batch with a dimension three times the total number of levels
of the fixed effects; a, p, l and e are vectors containing random regressions for
additive genetic and permanent environmental effects with a dimension that is
three times the number of animals in the pedigree, number of pens, number
of litters and number of animals in the test, respectively; σ2

εm
is the residual

variance of day on test dm and X, Z, U, V and W are incidence matrices
containing regression covariables for each record.

The residuals are assumed to be independent. Two different models were
applied for the residual variance. In the first model it was assumed constant
over the whole testing period for all animals and in the second model all the
animals were assumed to have the same residual variance on a given day on
test dm, but the course of the residual variance was modelled as follows :

σ2
εm
= exp

(
γ0 + γ1dm + γ2d 2

m

)
(3)

This second model is expected to fit the data better, because the residual variance
is likely to change during the testing period due to scale effects.

The following assumptions were used for the distributions of fixed and
random effects (regressions):

b ∼ constant

a|A,G0 ∼ N {0, (A⊗G0)}
p|P0 ∼ N {0, (I⊗ P0)}
l|L0 ∼ N {0, (I⊗ L0)}
e|E0 ∼ N {0, (I⊗ E0)} (4)

A is the numerator relationship matrix, G0 is the (co)variance matrix of random
regressions of additive genetic effects and P0, L0 and E0 are (co)variance
matrices for random regressions of permanent environmental effects. All these
(co)variance matrices are of dimension 3× 3.
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Table II. Lower diagonal elements of symmetric scale matrix S for inverse Wishart
prior distributions of additive genetic (G0) and permanent environmental (P0, L0, E0)

covariance matrices of random regression coefficients.

Element S(1, 1) S(2, 1) S(2, 2) S(3, 1) S(3, 2) S(3, 3)

Value 3.075 e−2 −4.900 e−4 1.440 e−5 0.0 0.0 2.500 e−9

Informative priors with low numbers of degrees of freedom were used for
the variance components. For the 3 × 3 (co)variance matrices of regression
coefficients G0, P0, L0 and E0, inverse Wishart distributions with five degrees
of freedom were used. Prior scale matrices were equal for all four covariance
matrices. Elements of scale matrices corresponding to intercept and linear
regression coefficients were chosen such that their expected value corresponded
to one fourth of the phenotypic (co)variances derived from Andersen and Ped-
ersen [1]. Expected values for phenotypic (co)variances of the quadratic regres-
sion coefficient were arbitrarily set to 1.0 e−8 (variance) and zero (covariances),
as Andersen and Pedersen [1] included random effects for intercept, linear and
quadratic regression coefficients only, when fitting a cubic polynomial in days
on test for cumulated feed intake. The resulting elements of scale matrices for
covariance matrices of random regression coefficients are shown in Table II.
For the constant residual variance σ2

ε a scaled inverse Chi-square distribution
with five degrees of freedom and scale parameter s2

ε = 0.015 was used. Priors
for parameters γ0, γ1 and γ2, that describe the course of the residual variance
σ2

εm
in the second model, were assumed independent of each other and normally

distributed with standard deviations of 1.5 (γ0), 0.1 (γ1) and 0.01 (γ2).

2.3. Variance component estimation

For the estimation of (co)variance components our own programs were
used, applying Bayesian methodology using Gibbs sampling [9]. The joint
posterior distribution of the parameters given the data is the product of the
likelihood and the prior distributions of all parameters [8]. From there,
marginal distributions are derived easily, as they only have to be known up
to proportionality. This results in normal distributions for fixed and random
regressions and in inverse Wishart distributions for the (co)variance matrices
for additive genetic and permanent environmental effects. For model 1, with a
constant residual variance, the marginal distribution of σ2

ε is a scaled inverted
Chi-square distribution. The parameters γ0, γ1 and γ2, that describe the course
of the residual variance σ2

εm
in the second model, had to be sampled via a

Metropolis-Hastings algorithm [12,19], as their distribution is not a standard
one. In each round of Gibbs sampling, a new set of parameters γi was sampled
with a random-walk Metropolis algorithm [21]. Deviations from the current
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parameter values were generated from independent normal proposal densities
with zero mean and fixed standard deviations (0.04, 0.002 and 0.00002 for γ0,
γ1 and γ2, respectively). The acceptance probability for this set of candidate
points depends only on the ratio of the product of the likelihood and the prior
densities of the parameters to be sampled, evaluated at the candidate points and
the current parameter values. In each round of Gibbs sampling, this in-built
Metropolis-Hastings algorithm was run until a new set of parameters γ0, γ1 and
γ2 was accepted.

Mixed model equations (MME) were processed block wise by means of
Cholesky decomposition and backsubstitution when generating new solutions
in the Gibbs sampler. For each combination of data sets (French Landrace and
Large White) and models (constant and variable residual variance), four Gibbs
chains were run, with 250 000 samples each.

2.4. Post-Gibbs analysis

Burn-in for the first chain of model 1 was determined by the coupling
chain method [13]. For this, a shorter chain (100 000 samples) was run with
different starting values for (co)variance components and fixed and random
effects, but identical pseudo random number sequence. Line plots of samples
of (co)variance components from every 100th round of Gibbs sampling were
used to monitor convergence of the chains to identical sample values. For the
other three chains of model 1 and the four chains of model 2 the same burn-in
period was adopted and checked graphically on the single chains only. The
coupling chain method could not be used for model 2, because in each round
of Gibbs sampling the in-built Metropolis-Hastings sampler for parameters γ0,
γ1 and γ2 may cause a shift in the pseudo random number sequence relative
to coupled chains. For all graphical analysis of Gibbs chains the statistical
software package S-Plus [18] was used.

Effective sample size [23] of samples after burn-in was estimated for each
chain using estimates of Monte Carlo variance obtained by the method of initial
monotone sequence estimator [10]. This estimator was preferred by Geyer [10]
over the initial positive sequence estimator, because it makes large reductions
in the worst overestimates while doing little to underestimates.

Samples from the burn-in period were discarded and posterior means cal-
culated from the remaining samples of each chain served as estimates of
(co)variance components. Heritabilities and genetic and phenotypic correl-
ations of regression coefficients were calculated from estimates of posterior
means of (co)variance components as well as from samples from every 100th
round of Gibbs sampling after burn-in. Density plots of calculated samples
of heritabilities and correlations were made in S-Plus [18] to illustrate their
distributions.
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The concept of heritability for regression coefficients is comparable to the
heritability of a trait averaged over the whole testing period (e.g. average
daily feed intake), it should clearly be distinguished from the heritability of a
single measurement as defined in a simple repeatability model. The phenotypic
covariance matrix used for calculating heritabilities and phenotypic correlations
of regression coefficients is defined as the sum of additive genetic (G0) and
permanent environmental (P0, L0, E0) covariance matrices. Residuals εghijkm

(daily deviations from the fitted curve) in model (1) are expected to sum to zero
within each animal, as any overall deviation from zero should be incorporated
into the intercept of the fitted polynomial. The variance of these residuals
depends on the length of the (time) interval which is specified rather arbitrarily
(one day, one week, the entire growing period) when recording feed intake.
Residuals are not part of regression coefficients and therefore the residual
variance is excluded from the phenotypic covariance matrix of these artificial
traits. It must be included in the definition of the phenotypic variance (and
thus influence the heritability) of a single record of the trait evaluated with a
random regression model, though.

For the whole testing period, additive genetic and permanent environmental
variances of weekly means of daily feed intake were computed from posterior
means of (co)variance components as (shown for additive genetic variance):

σ2
Gm
= φ′mG0φm (5)

where σ2
Gm

is the additive genetic variance for the day on test dm; G0 is the
estimate of posterior mean for the additive genetic covariance matrix of regres-
sion coefficients and φ′m =

(
1 dm d 2

m

)
is a row vector containing regression

covariables for the day on test dm.
Daily variances calculated based on estimates of (co)variance matrices of

additive genetic and the three permanent environmental effects as well as the
residual variance were summed to get model estimates of phenotypic daily
variances. These estimates of genetic and phenotypic daily variance were used
to calculate heritabilities for weekly means of daily feed intake. Estimates of
variances and heritability for weekly means of daily feed intake were plotted
for the whole testing period.

The fit of the two models with different modelling of the residual variance
was judged based on phenotypic daily variances. Model estimates calculated
as shown above were compared to phenotypic daily variances calculated from
data corrected for fixed effects included in the model. Two different methods
were used to correct data for fixed effects. On the one hand estimates of
fixed regression curves obtained with the respective models were used, and on
the other hand fixed effects were estimated for each test day separately with
analysis of variance function “aov” in S-Plus [18] using a fixed effect model.
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2.5. Eigenfunctions and eigenvalues

In order to assess the potential for genetic changes of the feed intake curve,
genetic eigenfunctions and eigenvalues were calculated from additive genetic
(co)variance matrices G0. In order to allow for meaningful comparisons
between the eigenvalues, eigenfunctions have to be adjusted to a norm of
unity [15]. Therefore, estimates of genetic (co)variance matrices G0 of regres-
sion coefficients were transformed into (co)variance matrices of regression
coefficients based on normalised orthogonal polynomials. For this purpose
normalised Legendre polynomials were used [15]:

C = ΦG0Φ
′ = Φ1KΦ′1

K = (
Φ′1Φ1

)−1
Φ′1ΦG0Φ

′Φ1
(
Φ′1Φ1

)−1
(6)

C is a matrix containing genetic (co)variances between daily measurements
of feed intake of dimension n × n, where n is the number of days with
measurements; G0 is the genetic (co)variance matrix between random regres-
sion coefficients using quadratic polynomials; K is the genetic (co)variance
matrix between random regression coefficients using normalised second order
Legendre polynomials; Φ is a matrix of n rows by three columns contain-
ing covariables for quadratic polynomials and Φ1 is a matrix of n rows by
three columns containing covariables for normalised second order Legendre
polynomials.

After transformation of G0 into K, eigenvalues and eigenvectors were
calculated from K with S-Plus [18]. The three resulting eigenvectors were
multiplied with Φ1 in order to obtain the three eigenfunctions evaluated for
the n corresponding days with measurements. The corresponding eigenvalues
indicate how much of the genetic variance of a population is explained by a
given eigenfunction [15]. Therefore, eigenvalues were transformed to a percent
scale, with their sum equal to 100%.

3. RESULTS AND DISCUSSION

3.1. Behaviour of Gibbs chains

The coupled chains with identical pseudo random number sequence [13], to
determine burn-in with model 1, resulted for both data sets in identical samples
within 40 000 rounds of Gibbs sampling. In order to be on the safe side for
model 2, another 10 000 samples were discarded.

When graphically checking whether Gibbs chains had converged to a sta-
tionary distribution within the 50 000 rounds of burn-in chosen, an irregular
pattern was discovered for both breeds in one of the four chains run under
model 1. Especially (co)variance components of additive genetic, litter and
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Figure 1. Gibbs samples of additive genetic, litter and individual permanent envir-
onmental covariance between linear and quadratic regression coefficients from every
100th round of the Gibbs chain with irregular behaviour under model 1 for Large
White (left panel) and French Landrace (right panel) data.

individual permanent environmental effects of linear and quadratic regression
coefficients were affected. This is illustrated in Figure 1 with samples of
covariances between linear and quadratic regression coefficients. For Large
White, the affected chain behaves “normal” for somewhat more than 50 000
rounds, before the additive genetic effect absorbs most of the covariance of
litter and individual permanent environmental effects. Towards the end of
the chain, partition of covariance among effects is again about the same as in
round 50 000 (Fig. 1). Other (co)variances show a similar pattern. Only the
variance of the intercept regression coefficient (for all effects) and permanent
environmental effects of the pen (for all (co)variances) were not affected.
For French Landrace the change in partition of (co)variances occurred after
150 000 rounds, as shown in Figure 1 for the covariance between linear and
quadratic regression coefficients. For the remaining rounds, fluctuations of
samples were rather large compared to earlier rounds and not as stable as in the
affected period of the Large White chain. For French Landrace, the variance
of the intercept regression coefficient was also affected, but no changes in
pen and litter (co)variances were found. For both breeds none of the other
Gibbs chains showed a similar pattern, neither the three other chains run with
model 1, nor the four chains run with model 2. For these chains a burn-
in period of 50 000 rounds of Gibbs sampling seems to be sufficient by far.
They seem to have reached their stationary distribution already after a few
thousand rounds. The reasons for this strange behaviour discovered in two
Gibbs chains are not entirely clear. With the proper prior distributions chosen
for random effects and (co)variance components, property of the posterior
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distribution should be guaranteed. Gibbs sampling programs were carefully
checked for errors, and were found to work correctly. Pseudo random number
sequences used were different for the affected chains of the two breeds, and
showed no problems when used for the other model-breed combinations. We
therefore believe that the Gibbs sampler reached this different configuration of
(co)variance distribution among additive genetic and permanent environmental
effects for regression coefficients in the affected chains just by chance. This
configuration may be supported by the data with some low probability, but is
not likely to represent the true state of nature. Slow mixing of Gibbs chains
may be the reason why the sampler got stuck in this configuration for so many
rounds of Gibbs sampling. Because samples of (co)variances left what is
believed to be the true highest density region of the stationary distribution for
a substantial number of rounds, we decided not to use the affected chains for
inferences on model parameters. Increase in additive genetic and decrease in
permanent environmental (co)variance of regression coefficients would have
had a major impact on estimates of heritabilities. To guarantee a fair comparison
of results between the two models, one additional Gibbs chain was run for both
breeds with model 1, which behaved completely normal for both breeds. Thus,
inferences on model parameters are based on four chains with a total of 800 000
samples (after burn-in) for all four model-breed combinations.

Sums of estimates of effective sample size of the four chains run for each
model-breed combination are shown in Tables III (Large White) and IV (French
Landrace). For all model-breed combinations, the lowest estimates of effective
sample size were found for estimates of additive genetic (co)variance compon-
ents. Low estimates of effective sample size indicate slow mixing of Gibbs
chains, which is considered the main reason for the long burn-in period that
was chosen. Within effects, the estimates are the lowest for variances of linear
and quadratic regression coefficients and their covariance, with the exception
of permanent environmental effect of pens for Large White (both models)
and individual permanent environmental effects under model 2 for both breeds.
Highest estimates of effective sample size were found for parameters describing
the residual variance and for (co)variances of permanent environmental effects
of pens. On average, permanent environmental effects of pens were estimated
based on records of 6.5 animals for Large White and 4.1 animals for French
Landrace, respectively. For all other random effects of regression coefficients
the average number of animals with records per level of effect is much lower.
The number of animals with records was 1.9 per litter for Large White and
1.8 per litter for French Landrace, respectively, one per level of individual
permanent environmental effect and considerably less than one per level of
additive genetic effect (0.31 for Large White and 0.33 for French Landrace,
respectively, including ancestors in the pedigree). Mixing of Gibbs chains
for (co)variance components of random regression coefficients thus seems to
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Table III. Sums of estimates of effective sample size for elements of covariance
matrices of intercept, linear and quadratic regression coefficients for daily feed intake
(both models), the constant residual variance (model 1) and parameters γi describing
the course of the residual variance under model 2, based on samples after burn-in of
four Gibbs chains (800 000 samples total). Large White data.

Model Effect / element (1,1) (2,1) (2,2) (3,1) (3,2) (3,3)

Model 1

Additive genetic 250 265 58 241 52 52
Perm. env. pen 20 451 18 198 20 113 18 523 21 703 23 717
Perm. env. litter 1983 254 90 243 88 87
Ind. perm. env. 800 692 493 594 431 396
Residual variance 199 702

Model 2

Additive genetic 216 128 51 106 53 61
Perm. env. pen 20 102 19 180 21 121 20 277 22 475 25 498
Perm. env. litter 1 527 282 105 291 109 115
Ind. perm. env. 505 329 484 253 443 414
γ0, γ1, γ2 38 025 33 130 34 576

Table IV. Sums of estimates of effective sample size for elements of covariance
matrices of intercept, linear and quadratic regression coefficients for daily feed intake
(both models), the constant residual variance (model 1) and parameters γi describing
the course of the residual variance under model 2, based on samples after burn-in of
four Gibbs chains (800 000 samples total). French Landrace data.

Model Effect / element (1,1) (2,1) (2,2) (3,1) (3,2) (3,3)

Model 1

Additive genetic 635 259 196 222 205 245
Perm. env. pen 18 064 9 874 2 910 8 846 2 651 2 781
Perm. env. litter 3 506 1 147 546 931 529 554
Ind. perm. env. 1 028 996 1 260 1 071 1 394 1 446
Residual variance 189 164

Model 2

Additive genetic 636 275 140 267 199 207
Perm. env. pen 17 138 10 380 2 656 9 568 2 414 2 523
Perm. env. litter 3 558 1 683 3 58 1 507 347 366
Ind. perm. env. 1 235 1 370 850 1 162 764 715
γ0, γ1, γ2 24 512 10 598 10 954

depend on the amount of information available in the data to estimate each level
of the random effect considered. For most parameters, estimates of effective
sample size are not high enough to allow for accurate density estimates. For
this purpose at least a few thousand independent samples from the posterior
distribution are required [20]. Therefore only estimates of posterior means will
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Table V. Heritabilities (bold), genetic (above diagonals) and phenotypic (below diag-
onals) correlations of intercept, linear and quadratic regression coefficients for daily
feed intake.

Model \ Breed Large White French Landrace

Intercept 0.14 0.01 0.02 0.30 −0.62 0.36
Model 1 Linear −0.47 0.11 −0.84 −0.48 0.04 −0.27

Quadratic 0.29 −0.89 0.11 0.31 −0.91 0.03

Intercept 0.14 −0.04 0.10 0.21 −0.51 0.26
Model 2 Linear −0.52 0.06 −0.73 −0.53 0.04 −0.36

Quadratic 0.33 −0.89 0.06 0.36 −0.92 0.04

be given and density plots of every 100th sample can only give an indication
of distributions.

3.2. Heritabilities and correlations

Estimates of heritabilities and correlations of regression coefficients for
daily feed intake are shown in Table V. French Landrace pigs showed a quite
high heritability for the scalar regression coefficient with model 1, which was
reduced substantially under model 2, but still remained higher than for Large
White pigs. Heritabilities for linear and quadratic regression coefficients were
higher for Large White pigs than for French Landrace, but also reduced under
model 2 compared to model 1 (Tab. V). These heritabilities already show that
it is easier to change the overall level (associated with the intercept regression
coefficient) than the shape of feed intake curves (associated with linear and
quadratic regression coefficients).

Phenotypic correlations were very similar for both breeds and also between
models, whereas genetic correlations differed substantially between breeds
(Tab. V). For French Landrace, genetic correlations between the intercept
and linear as well as quadratic regression coefficients were more in line with
phenotypic correlations than for Large White. Differences between genetic and
phenotypic correlations between linear and quadratic regression coefficients
were smaller in Large White than in French Landrace. The reason for these
differences may be found in (co)variance components of individual permanent
environmental regression coefficients, as pen and litter explain only a small
part of permanent environmental variation (data not shown).

Eissen [6] estimated heritabilities and correlations of feed intake curve para-
meters in a two step approach. First he fitted linear polynomials depending on
days on test to daily feed intake records of growing Duroc pigs. Afterwards, he
used an intercept, linear regression coefficient and residual standard deviation of
the fit for individual pigs in a multivariate analysis. For both intercept and linear
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regression coefficient, he found a heritability estimate of 0.32, which, except
for the intercept of French Landrace, is much higher than our estimates for the
corresponding parameters (Tab. V). His estimates of genetic and phenotypic
correlations between the intercept and linear regression coefficient are −0.38
and−0.62, which are in the same range as our estimates, except for the genetic
correlations of Large Whites (Tab. V).

Density plots (Figs. 2 and 3) of heritabilities and correlations calculated from
every 100th sample of (co)variances indicate how accurate these parameters
can be estimated from our data. Phenotypic correlations were estimated very
well for all model-breed combinations, as can be seen from their high and
narrow density plots. On the contrary, density plots of genetic correlations
(note the different scales) are flat over almost the whole parameter space. This
indicates, that information on genetic parameters is very limited in both data
sets, which may also be the reason for the slow mixing of genetic parameters.
Differences between models in the shape of density plots of correlations are
small and must be interpreted carefully, as estimates of effective sample size
were very low for additive genetic (co)variances (Tabs. III and IV). A little
difference can be found for the genetic correlation between linear and quadratic
regression coefficients in Large Whites (Fig. 2), which shows a little peak close
to the lower end of the parameter space in model 1 and not in model 2.
For phenotypic correlations only positions of means differ slightly. Density
plots of heritabilities are intermediate in height and width compared to genetic
and phenotypic correlations. Heritabilities show more accentuated peaks for
linear and quadratic regression coefficients than for the intercept regression
coefficient. This may be due to the fact that these low heritabilities are situated
close to the lower limit of the parameter space.

3.3. Course of variances and heritabilities

Figures 4 and 5 show the course of the additive genetic variance, the sum
of the three permanent environmental variances and the residual variance for
weekly means of daily feed intake estimated with models 1 and 2 for Large
White and French Landrace growing pigs. As litter and pen explain only a
very small part of the total variation, permanent environmental variances were
summed to reduce the number of lines in the figures. Variances were plotted
for the first eleven weeks on test only, as there are substantially fewer animals
with records in weeks 12 and 13 (Tab. I). The course of variances was quite
similar for both models, except for the residual variance, which was constant
in model 1, while it started low in model 2 and got quite high towards the end
of the testing period. For both breeds, the sum of permanent environmental
variances for model 1 was smaller in the beginning and larger towards the
end of the testing period than for model 2. Under model 2, lower residual
variance in early test weeks was partly compensated by higher permanent
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Figure 2. Density plots of heritabilities, genetic and phenotypic correlations of inter-
cept, linear and quadratic regression coefficients for Large White, calculated from
every 100th Gibbs sample of covariance matrices used for inferences under model 1
and model 2 (8 000 samples each).

environmental variance, and vice versa for late test weeks. While the course
of genetic variance was similar for Large White and French Landrace pigs,
the pattern shown for the permanent environmental variance was different and
less regular than for the genetic variance. This also had an influence on the
course of heritabilities for weekly means of feed intake per day (Fig. 6), which
showed a different pattern for French Landrace than for Large White pigs.
The general rise of variance during the testing period may partly be due to the
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Figure 3. Density plots of heritabilities, genetic and phenotypic correlations of inter-
cept, linear and quadratic regression coefficients for French Landrace, calculated from
every 100th Gibbs sample of covariance matrices used for inferences under model 1
and model 2 (8 000 samples each).

fact that the feed intake capacity of animals increases with age and size, but
it may also be influenced by variable length of testing periods, as less (slower
growing) animals have records in the last two or three weeks (Tab. I). Because
length of testing periods of individual pigs depends on body weight gain, fit
of polynomials for faster growing pigs is based on less records than for the
slower growing pigs. As accuracy of polynomial fit can only be guaranteed
between the first and last record of an individual pig, daily variance may be
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Figure 4. Course of variances for daily feed intake (kg) of Large White growing pigs
for models 1 and 2.
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Figure 5. Course of variances for daily feed intake (kg) of French Landrace growing
pigs for models 1 and 2.

overestimated for late weeks because polynomials of fast growing pigs are not
accurate any more.

The heritabilities found in this study were substantially lower than the
estimate of 0.42 for average daily feed intake found by Labroue et al. [17] for
the same data. Most of this difference may be explained by the difference in
methodology, as the residual variance (around curves) is reduced by averaging
daily feed intake over the whole testing period. Compared to the model with
weekly means of daily feed intake that was used here, the residual variance is
reduced by a factor equal to the average number of weeks that animals were on
test. In her Ph.D. Thesis, Labroue [16] also estimated heritabilities for weekly
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Figure 6. Course of heritabilities for daily feed intake (kg) of Large White and French
Landrace growing pigs for models 1 and 2.

means of feed intake in weeks 2, 6 and 10 of the testing period based on the
same data. These estimates are lower than the estimate for average daily feed
intake, but on average still 0.1 higher than our results (Fig. 6), except for the
slightly lower estimate of heritability in week 6 for the French Landrace. These
differences cannot be explained by reduction of residual variance, as weekly
means of daily feed intake were used in both studies. One possible reason is
the differences in effects included in the models. Labroue [16] used a fixed
effect for group size, while group effects were included as a random permanent
environmental effect of the pen in this study. But as variance of permanent
environmental effect of pens is small compared to additive genetic variance,
this explains only about ten percent of the differences in heritability estimates.

Our heritability estimates for weekly means of daily feed intake are slightly
lower than the values found by Von Felde et al. [25]. Heritability estimates of
Hall et al. [11] for four biweekly means of daily feed intake lay in between the
ones found here and those of Von Felde et al. [25]. They are comparable to
our results for Large White pigs, if the reduction of the residual variance due to
biweekly means (compared to weekly means) is accounted for. The estimate
of de Haer and de Vries [3] for heritability of average daily feed intake lies in
the middle range of our estimates for weekly means of daily feed intake, while
estimates from other studies are higher [6,11,17,25].

3.4. Model fit

Estimates of feed intake curves for fixed effects of sex (Fig. 7) were almost
identical for both models. For males, fit of polynomials with estimates from
single test weeks was very good for the first eight test weeks, while differences
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Figure 7. Course of weekly means of daily feed intake (kg) for males and castrates
of Large White (left panel) and French Landrace (right panel) growing pigs estimated
with models 1 and 2, as well as from data of each test week separately.

got more pronounced as the number of animals with records decreased. For
castrates, fit of polynomials was better in late test weeks than for males. As
castrates grow slower on average than males, a higher proportion of castrates
had records in late test weeks, which led to a better fit of polynomials in
late test weeks. Phenotypic variances of weekly means of daily feed intake
(Fig. 8) were very similar for both methods of correcting data for fixed effects.
Therefore only results of the analysis of variance are shown, using a fixed effects
model for each test week separately. As expected from the model, estimates
from model 2 were closer to estimates from data corrected for fixed effects
(sex and batch) for the first eight weeks of the testing period than estimates
from model 1. For the remaining five weeks, estimates from model 1 are better,
except for the last week of the French Landrace. Differences between breeds in
phenotypic variance estimated from corrected data for last test weeks occurred
only by chance, as a few castrated French Landrace pigs with big differences
in weekly means of daily feed intake happened to be paired in two batches.
Generally, model estimates of phenotypic variance were too high for later test
weeks, where the number of animals with records was reduced (Tab. I). This
supports that polynomials fitted to feed intake records of fast growing pigs
may be inaccurate after they finished the test and therefore cause overestimated
daily variances for late weeks (see Sect. 3.3 and Figs. 4 and 5).

For both breeds, curves of residual variances of models 1 and 2 intersect
between weeks 6 and 7 (Figs. 4 and 5). The constant residual variance in
model 1 is likely to overestimate the true residual variance in the first and
to underestimate it in the second half of the testing period. The quadratic
polynomial used to fit the natural logarithm of the residual variance of each test
day in model 2 (equation (3)), results in an almost perfect fit of phenotypic test
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Figure 8. Course of phenotypic variance for weekly means of daily feed intake (kg)
of Large White (left panel) and French Landrace (right panel) growing pigs estimated
with models 1 and 2, as well as from data corrected for fixed effects (sex and batch) of
each test week separately.

day variance for the first eight weeks of the testing period (Fig. 8). Afterwards,
the phenotypic test day variance estimated with model 1 fits the estimates
from data of single test days corrected for fixed effects better. This is just
because in late test weeks the underestimated residual variance of model 1 partly
compensates for the overestimated daily variance due to random regression
coefficients, which is even higher with model 1 than with model 2 (Figs. 4
and 5). Therefore model 2 is preferred over model 1.

3.5. Genetic eigenfunctions and eigenvalues

Any conceivable evolutionary change in a populations mean feed intake
curve can be written in terms of a weighted sum of the eigenfunctions. The
rate at which a population will evolve from its current mean feed intake curve
to some new curve favoured by selection is determined by the eigenvalues
associated with eigenfunctions responsible for that change. A large eigenvalue
indicates that a change corresponding to that eigenfunction will happen rapidly,
while a small eigenvalue indicates that the change will be slow [15].

Eigenfunctions calculated from estimates of genetic (co)variance matrices
of random regression coefficients do not differ much between models and are
also very similar for the two breeds (Fig. 9). Between 83 and 90% of the
genetic variance for the course of daily feed intake is explained by the first
eigenfunction, without change of signs but increasing difference from zero
during the testing period. This means that selection in one direction at any
time during the testing period will cause a response in the same direction over
the whole period, which would be bigger for the last than for the first weeks of
the testing period. The second eigenfunction changes signs shortly after nine
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Figure 9. Eigenfunctions for daily feed intake (kg) of Large White (left panels)
and French Landrace (right panels) growing pigs for models 1 (upper panels) and 2
(lower panels). Eigenvalues transformed to a percent scale (legend) indicate relative
importance of corresponding eigenfunctions.

weeks of the testing period, which is when the fastest growing pigs already
reached the desired slaughter weight. Its response to selection would be bigger
in the beginning than towards the end of the testing period, while the opposite
applies to the first eigenfunction. The third eigenfunction changes signs earlier
in the testing period, but explains less than one percent of the variance in
feed intake curves, which is negligible. Selection for higher feed intake in the
beginning of the testing period, and constant or lower feed intake towards the
end, would involve the second (for increasing feed intake in the beginning), as
well as the first eigenfunction (for decreasing feed intake towards the end of
the testing period). Much more weight would have to be placed on the second
eigenfunction, as its associated eigenvalue is much smaller than that of the first
eigenfunction. Changing feed intake curves by selection in the desired way
thus seems to be difficult, although not impossible.

4. CONCLUSIONS

Random regression coefficients provide more information on daily feed
intake of growing fattening pigs than a simple mean over the whole testing
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period. The amount of information is comparable to a multivariate analysis of
weekly means of feed intake per day, taken over the whole testing period. The
advantage of the random regression model is, that fewer parameters (traits) are
needed to describe this information. But it is not sure, whether this additional
information can be used to improve efficiency of lean growth. Flat posterior
distributions of genetic correlations indicate, that information on genetic regres-
sion coefficients (especially linear and quadratic) seems to be limited in the
data. This may be because the number of animals with records was quite low
compared to the high number of levels of genetics effects to be estimated.
This lack of information and the complexity of the random regression model
seem to be the main reasons for the slow mixing of Gibbs chains of genetic
(co)variances. From heritabilities of random regression coefficients of feed
intake curves we conclude that changes of the overall level are easier to achieve
than changes of slope or inflexion of feed intake curves. Genetic eigenfunctions
also reveal that an improvement of feed efficiency by selection on the shape of
feed intake curves seems difficult. For a final assessment of possible routes of
improvement of efficiency of lean growth by means of selection on feed intake
curve parameters, correlations with other traits might be helpful, such as with
daily gain, feed conversion ratio and carcass traits. For this, further research is
needed.
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