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Abstract – An analysis of longevity in dairy cattle on a lactation basis is proposed. The
approach allowed each lactation to have its own baseline hazard function, which gives a better
description of the hazard than traditional analyses of the whole length of life. As a consequence,
the overall fit of the model to the data was improved and fewer time-dependent variables were
needed. Longevity on a lactation basis was defined from one calving to the next instead of from
the first calving to culling. However, no new information was added and it was still the overall
risk of being culled that was modelled. It is shown that no cow effect is needed in the lactation
basis model because a censored record is not complete, a cow can appear as uncensored only
once, and a cow cannot be censored after having been culled. Different subdivisions of the stage
of lactation effect were tested and the first ten days of lactation were shown to correspond to
an increased risk of being culled. There were no major differences in sire variance between the
longevity analysed on a lactation basis and longevity based on the entire length of life.

dairy cows / culling / frailty models / failure time analysis / heritability

1. INTRODUCTION

In many of the current genetic evaluation models for longevity (the length
of productive life) in dairy cattle that are based on survival analysis, a lactation
by stage of lactation (lactsta) effect is included as the time-dependent covariate
(in France, Germany, the Netherlands, Denmark, and Italy – see for example
Interbull Bulletin N◦ 21, and [5,6,20]). The value of such covariates varies
with time and has proven to lead to a more precise modelling of changes in
culling policies over time [4,6]. The stage of the lactation effect is included
to account for changes in the culling risk within lactation. The sole baseline
hazard function cannot account for these changes, in particular because after
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a same number of days of productive life, cows may have reached different
lactation numbers or lactation stages. In general, culling is more intense late
in lactation, when production is lower, when it is known whether the cow is
pregnant or not, and when her carcass value is higher [2,5,13]. Quite naturally,
there is an increased risk of culling with an advancing age. There are also
differences in the distribution of culling reasons between different lactations,
and the time for culling differs between lactations, e.g. in later lactations, more
cows are culled early in lactation [2].

The changes in classes of the lactsta factor are defined somewhat empirically
in order to model changes by a piecewise constant function. The interpretation
of the lactsta factor must be done after combining it with the baseline hazard
function. From such graphs it is tempting to conclude that the hazard pattern
is more or less the same for each lactation, with a regular increase of the risk
during the lactation, and that the regularity is partly broken by the arbitrary
choice of changes for the lactsta factor [5,7]. A more regular curve would
imply a more precise stage definition, i.e. more classes of stages in lactation,
but it would add considerably to the computational demand. An alternative
is to model the hazard for each lactation separately. The hypothesis is that a
model in which survival is looked at on a lactation basis rather than on the
entire length of productive life would result in a better description of the lactsta
factor, between as well as within lactations. This better description may mean
that the stage of the lactation effect is completely included in the baseline and
that therefore it is not needed in the model, or at least, that the number of stages
could be reduced [7].

Longevity is often measured by the use of the date of the first calving as the
starting point and the date of culling as the end-point [5,20]. For the alternative
model, each lactation of a cow is treated as one survival measure: the origin
point is the date of calving, the end-point is the date of culling or the date of
the next calving (whichever comes first), and the record is censored if the cow
has a next calving. Cows with more than one lactation will have repeat records
and therefore one would expect inclusion of a cow effect. However, this paper
will show that the approaches of likelihood construction are equivalent for the
two models, and that a cow effect is not needed in the lactation basis model. It
should be stressed that no new information is added when analysing longevity
on a lactation basis. The trait of interest is in both cases the overall risk of
failure. Applications of survival analysis on a lactation basis can be found in
epidemiology [2,12,13].

The expected attractive features of the lactation basis approach is that it
should allow a better fit of the model to the data – through a smoother description
of changes in risk along lactation – and an easier handling of the data: since it is
no longer necessary to consider the whole herdlife of a cow globally, lactations
can be processed separately, as it is often the case in national databases [7].
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Also, most effects in survival analyses models are defined within a lactation
and are handled as such. The main purpose of this study was to compare the
analysis of longevity on a lactation basis vs. the analysis on the entire length of
life, with respect to the fit of the model to the data and certain parameters.

2. MATERIALS AND METHODS

2.1. Data and definition of censoring

This study was based on survival information collected from altogether
733 492 cows from the Swedish milk recording scheme, which comprises
80–85% of all cows. Cows born between 1986 and 1996 of the Swedish Red
and White (SRB) breed were included. The longevity measure t was defined
in two ways: time from the first calving to culling or the end of data (PL), and
on a lactation basis as time from calving to next calving or culling (LACTPL).
The information on the length of the productive life consisted of calving and
culling dates. For the actual time period, the overall culling rate in Sweden for
SRB cows averaged 38% for all cows and 28% for first lactation cows [17].

The records of cows were excluded if they had: missing sire identification;
missing or erroneous herd identification; age at first calving outside 18–42
months; or incorrect calving or birth dates (altogether 145 040 cows). The
records of cows changing herds (9504 cows), and the records from herds with
fewer than five uncensored observations for productive life over the whole
period (7446 cows) were also excluded. Only records from sires with 50
daughters or more were kept (8720 cows were excluded). The sire effects were
considered as normally distributed random effects, since there has not been a
strong selection for longevity, something that might violate this assumption.
Cows in herds with uneven culling frequency (defined as herds having fewer
than five cullings in one year-season (ys), no cullings in the ys before, and
more than ten cullings in the ys before that) were excluded from the data set
(1002 cows). Such herds were assumed to report culling dates incorrectly. A
total of 2766 sires and 9210 herds were included in the analyses.

The following categories of records were considered as censored:

• cows still alive at the end of the study period;
• cows in herds disappearing from the recording system. Such herds had no

first calvings in the last year, 1996, and the cows were censored on 31st
December of the last year with any first calving in that herd (28 808 cows);
• cows sold to a new herd were censored on the last calving date (2983 cows).

Such cows may not be treated as any other cow in the purchased herd.
Excluding them from the analysis in their second herd is a precaution to
avoid potential biases;
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• cows with calving intervals, or interval between last calving and the end of
data, longer than 1.5 years were censored at the last calving date (18 764
cows). Such cows were assumed to have had a new calving or have been
culled, but the dates had not been reported. Cows censored at the first
calving date were excluded (10 034 cows), because they did not contribute
any information.

Since the zero values for the length of productive life cannot be handled,
cows culled or censored at the calving date (11 013 cows) were included with
the length of a productive life equal to one day for LACTPL. After these rules
were applied, about 37% and 72% of the records were (right-) censored, for PL
and LACTPL, respectively. In total 538 783 cows were analysed. The average
length of lactation was 344 and 239 days for censored and uncensored cows,
respectively. The average length of productive life (PL) of uncensored records
was 594 days.

2.2. Models

One preliminary LACTPL analysis was done with a Cox model [3] to:
(1) check the validity of the Weibull model; (2) decide how to handle the
effect of the stage of lactation in the lactation basis model; and (3) decide
if stratification by lactation should be implemented. The model used in the
Cox analysis was the same as described below for Weibull, except that the
baseline was left arbitrary and that the effect of the stage of lactation was
not included because it cannot be estimated in the Cox model. One baseline
hazard function, h0,s(t), was defined for each lactation (subscript 0 designates a
baseline hazard, subscript s relates to stratum s). A careful examination of the
baselines in a stratified Cox model is a way to check the proportional hazards
assumption. From each hazard function it is possible to semi-parametrically
estimate a baseline survivor function S0,s and if a Weibull model is adequate, a
plot of ln(− ln Ŝ0,s) versus ln t should give a straight line with a slope equal to ρ,
one of the two Weibull parameters [14]. Furthermore, if these lines computed
for different strata run parallel, the proportional hazard assumption holds and
a common baseline can be used over the strata. If there are segments that
are straight but with different slopes from one segment to the other, it may
be concluded that the Weibull assumption holds within the segment, but that
a change in the Weibull parameters is needed from one segment to the next,
which is what is done when a stage of lactation effect is included.

When the Weibull model was used, the intercept (ρ ln λ), ρ and the sire
variance, σ2

s were estimated simultaneously with the other fixed effects in the
model. The separate estimates of the random herd-year-season effects were not
of interest per se. They were considered here as nuisance parameters. Therefore
the herd-year-season effect was algebraically integrated out according to [8]
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and only its variance was estimated. For the Cox model, the herd-year-season
effect cannot be algebraically integrated out. It was therefore estimated but its
variance was assumed to be known from a Weibull analysis. Also, to maintain
computational feasibility and with virtually no consequences on the results, the
sire variance was fixed at the value obtained from a Weibull analysis.

The only difference in the statistical models between PL and LACTPL was
the number of the baseline hazard functions. For PL, one baseline hazard
function h0(t) was defined. For LACTPL, one, two or six different baseline
hazard functions h0,s(t) were defined, corresponding to one common baseline
for all lactations, first versus later lactations, or one baseline per lactation,
respectively. In the case of LACTPL there were repeated records for each
cow and therefore one would expect the inclusion of a cow effect as well.
In Appendix it is shown that this is not necessary. The construction of the
likelihood is completely equivalent for the two models. The reasons are that a
censored record is not complete, that a cow can appear as uncensored only once,
and that a cow cannot be censored after having been uncensored [18]. This
result can also be interpreted as the mere consequence of another presentation
of the same information, without any modification of its content: knowing that
an animal was culled during its 4th lactation is equivalent to considering that
it survived until the end of its first lactation, then survived until the end of its
second lactation given it was alive at the end of the 1st and so on, until culling
was observed during the 4th lactation.

The model applied to the individual m was:

h(t; xm, zm) = h0(t) exp{x′m(t)β+ z′mu}
where:

h0(t) is the baseline hazard; unspecified in the Cox analysis and assumed to
follow a Weibull hazard distribution (h0(t) = λρ(λ)tρ−1 = ρtρ−1eρ ln λ)
with parameters λ and ρ in the Weibull analyses, and t is the time in
days from the first calving for PL and days from the previous calving for
LACTPL;

β contains the possibly time-dependent covariates affecting the hazard,
with x′m(t) being the corresponding design vector, and

u is a vector of random variables with associated incidence vector z′m.

The independent covariates included in the model are as follows:

hys

The random time-dependent effect of the herd-year-season class; where
the years were from 1988 to 1996, seasons were January–July and August–
December. The hys-effect was assumed to follow a log-gamma distribution



310 A. Roxström et al.

with (without loss of generality, [11]) both parameters equal to γ. This effect
was algebraically integrated out in the analysis. This was not possible to do
with the Cox model [8] at least with the software used, and therefore γ = 4.9
(estimated from a Weibull analysis) was used.

lact-ys

Fixed the time-dependent effect of the lactation-year-season, the lactations
were from 1 to 6+, same season classes as above.

lact-age

Fixed the time-dependent effect of lactation-age at the first calving, classified
as 18–20, 21, 22, . . . , 39, 40–42 months (21 classes), the lactations were from
1 to 6+.

lact-stage-peak

Fixed the time-dependent effect of the lactation number – stage of lactation –
peak yield of the lactation class. The lactations were from 1 to 6+, stages
changed twice (at day 0, 11 or 0, 151), or three times (at day 0, 11, 151 or 0, 11,
306) per lactation. The peak test-day yield in a given lactation was expressed
as the deviation from her herdmates in that herd-year. Standardised deviations
were calculated using the herd-year mean (mhy) and the overall phenotypic
standard deviation of test-day peak yield within herd (SDhy, averaged over all
herds). The mhy and SDhy were calculated for the first lactation and all later
lactations separately. The cow’s actual peak yield in each lactation was used,
but in lactations after the first it was deviated from mhy of all later lactations.
These standardised deviations were used to place the cow in one of 13 classes,
the cut-off points chosen such that the classes were expected to contain (starting
from the lowest yields) 4 classes with 2.5% each, 1 class with 5%, 7 classes with
10% each, and 1 class with the remaining 15% of the observations. The reason
for the uneven division was to get a finer distinction between the production
classes in the lower part of the spectrum, which was shown to be beneficial
in [16]. Before the calculations, the peak yields were adjusted for day in
lactation up to day 60, based on a 4th degree polynomial estimated separately
for first and later lactations, in the same data. The rationale for this adjustment
was that we assumed (and this was corroborated in the data) that before day 60
true peak yield was not achieved even though it was the highest test-day yield
reported. The cows were not allowed to have information on peak class before
day 10 of lactation, i.e. until day 10, all the cows were in the same (dummy)
production class and after day 10 they switched to their true class. Cows with
missing information on peak yield (n = 94 304 lactations) were set to their
class in the previous lactation, or to the dummy class if it was the first lactation
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or if the previous lactation peak class was missing. In the Cox analysis this
effect was reduced to par-peak.

ys-stage-peak

Where year-season, stage of lactation and peak yield classes were defined
as described above. In the Cox analysis this effect was reduced to the ys-peak.

sire and mgs

Random time-independent effects of transmitting abilities of the cow’s sire
and maternal grandsire (0.5× sire effect, ignored if he was unknown); assumed
to follow a multivariate normal distribution with mean zero and variance Aσ2

s ,
where σ2

s is the variance among sires, and A is the relationship matrix. In the
Cox analysis, σ2

s was fixed to 0.048.
The three-way interaction between lactation, stage, and peak was included

because all cows had the same peak class during the first stage (the first 10
days). This creates a confounding between the dummy peak class and the
first stage of lactation. Since the effect of the first stage of lactation might
be different in different lactations, lact-stage-peak was included. Preliminary
analyses showed that the effect of the first stage of lactation was different in
different ys, and thus the ys-stage-peak was included as well.

Heritability was calculated in two ways: (1) h2
1 = 4σ2

s /(1 + σ2
s ) and (2)

h2
2 = 4σ2

s /(1 + σ2
hys + σ2

s ) according to [21]. Variance of hys (σ2
hys) was

the trigamma function evaluated at γ. The trigamma function is the second
derivative of the logarithm of the gamma function [14]. To compare models
with different numbers of parameters, the Akaike Information Criterion (AIC)
was calculated [1] and ([15] p. 386) (comparisons between (non nested) PL
and LACTPL models are valid since they are based on exactly the same
information). The most adequate model is the one that minimises:

AIC = −2 ln L+ 2p

where p is the total number of parameters estimated (i.e. number of levels
of fixed effects, number of variance components, including the paramet-
ers of the baseline hazard function), and where L is the maximum value
of the likelihood function (after deleting the sire – maternal grand sire
component of the model). All analyses were done using the Survival
Kit [9]. Details on how to process stratified frailty models and time-
dependent variables with the Survival Kit are given in the User’s Manual
(http://www.boku.ac.at/nuwi/software/softskit.htm).
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Figure 1. Survivor function
(
ln(− ln Ŝ0,s)

)
versus logarithm of days from previous

calving (ln t) from Cox analysis for various strata (lactations). A straight line indicates
that a Weibull model can be applied for that lactation; parallel lines indicate that
a common baseline across lactations can be used. Vertical lines show where the
boundaries for the stage of lactation effect were set in the analyses.

3. RESULTS AND DISCUSSION

3.1. Graphical tests

The plot of ln (ln Ŝ0,s(t)) against ln t (Fig. 1) suggested that the assumption
of a unique Weibull baseline hazard function was not plausible. However, the
lines were relatively straight up to ln t = 5.0, but to a lesser extent thereafter.
This suggested that the stage of lactation effect probably could not be ignored
and that a combination of a Weibull baseline hazard function and a within
lactation stage effect would result in a better fit.

Figure 1 shows that the slope of the curve changed somewhere in mid-
lactation (around 150 days, ln t = 5.0) and in the end of the lactation (around
300 days). It was not particularly easy to decide, based on the graph, exactly
where the stage boundaries should be set. Other boundaries and particularly
more stages might be warranted; however, the aim was to use as few stages
as possible for LACTPL. Therefore, four different subdivisions of the stage of
lactation were tested; either two stages of lactation or three stages of lactation
as described previously under the Models (Materials and Methods). When
plotting the hazards from the Cox model in each lactation (not shown) it was
clearly seen that there was a distinct increase during the first few days after
calving, thus justifying including a first stage 0–10 days after calving.

In Figure 1, first lactation differs from later lactations, which are all roughly
parallel. This indicated that two different baselines might be enough, one
for the first lactation and one for later lactations. Therefore, for LACTPL,
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three alternatives were tested: a single baseline hazard function, two baseline
hazard functions (first versus later lactations) or one baseline hazard function
per lactation, i.e. one, two, or six strata.

3.2. Model comparisons

The AIC resulting from the analyses of PL and LACTPL with different
numbers of strata and between different subdivisions of the stage of lactation
effect are summarised in Table I. It was concluded that it was not possible
to ignore the stage of lactation effect even if one stratum per lactation, as in
LACTPL with six strata, was applied. If only two stages were included, the best
definition was 0–150, 151-days of lactation. However, there was added benefit
from also including the early stage 0–10 days of lactation. This definition
(0–10, 11–150, 151-days of lactation) was actually the best of those studied,
regardless of whether it was PL or LACTPL that were analysed and regardless
of the number of strata in cases of LACTPL. Some combinations of strata and
number of stages which were expected to be very bad given the six strata results
were not run in order to save computation time.

There was a clear benefit of having six strata for LACTPL, irrespective of
the stage definition used. The reason was probably that the separate baseline
for each lactation gave a better fit to the data. However, the benefit of adding
strata was less than that of including extra stages in the model.

The sire variance was estimated only for the two models of PL and LACTPL
with the lowest AIC. There were minor differences between the models with
regards to sire variances, hys variances and heritabilities (Tab. II). The estimates
of the Weibull parameter ρ in Table II are not directly comparable with each

Table I. Increase in Akaike information criterion (AIC) a from analysis of longevity
based on the entire length of life (PL) and on a lactation basis (LACTPL) compared
with the best model (with AIC = 5219333).

LACTPL

Stage of lactation p b PL 1 stratum 2 strata 6 strata

0–10, 11–305, 306 847 27 666 11 206 11 631 10 401

0–10, 11–150, 151 861 2011 1403 1305 0

0–150, 151 837 3633 8398 6602 4935

0–10, 11 539 63 530 30 239

No stage effect 543 46 681
a AIC = −2 ∗ ln(maximum value of the likelihood function) + 2 ∗ total number of
estimable parameters (p).
b For the PL and LACTPL models with one stratum. For the models with 2 and 6
strata, 1 and 5 should be added to p, respectively.
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Table II. Parameters from analyses of longevity based on the entire length of life (PL)
and on a lactation basis (LACTPL) with stage of lactation effect partitioned at 0–10,
11–150, 151-days of lactation and six strata.

Trait

Parameter a PL LACTPL

ρ b 1.60 (0.005) 1.45 (0.007); 1.65 (0.010); 1.39 (0.010); 1.25 (0.012);
1.24 (0.017); 1.22 (0.021)

γ 4.83 4.88

σ2
hys 0.23 0.23

σ2
s 0.043 0.048

h2
1 0.165 0.183

h2
2 0.135 0.150

a ρ: shape parameter of the Weibull distribution (standard error of estimate within
parenthesis); γ: parameter of the Gamma distribution; σ2

hys: herd-year-season vari-
ance; σ2

s : sire variance; h2
1 (h

2
2): heritability without (with) herd variance included in

the denominator.
b One per parity (1–6+) for LACTPL.

other and with the slopes obtained in Figure 1. As already indicated, to properly
compare the hazards at different points in time the value of the baseline hazard
function at time t should be combined with the estimates of the time-dependent
stage of lactation effect(s) at that time: see [5,7,12] for examples. Estimates of
heritabilities of approximately 10% are consistent with the literature (reviewed
in [19]).

Data structure has a considerable impact when studying the effect of the
stage of lactation. Other studies [5,10] did not find the increased risk of culling
in early lactation reported in [2] and in the present study. The likely reason is
that in [5,10], the exact culling date was not available and the status (alive vs.
culled) of each animal was only based on test day information: cows actually
discarded before their first test-day were considered culled at the end of the
previous lactation, and the increased risk at the beginning of lactation could
not be found.

The conjecture was that a better modelling of the baseline hazard could be
achieved within lactation, and therefore LACTPL models were expected to
give a lower AIC than the PL models. However, after having concluded that
the exclusion of the stage of lactation effect was unsuitable, we found that
the result was dependent on how the stage of lactation effect was partitioned.
One reason why LACTPL was not always superior to PL might be that in the
Weibull distribution the hazard function invariably starts at zero at time zero.
Since the hazard was not negligible early in each lactation in the data, and since
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in the LACTPL model there is one hazard function per lactation, the overall fit
became worse than with PL where only one hazard function is estimated. It
might be worthwhile to consider applying some baseline distribution other than
Weibull, e.g., a U-shaped one, or a Cox model (if computationally feasible).

The approach may also lead to simpler data handling, since there will not be
any need for reconstruction of the whole life record. The number of elementary
records per cow will decrease because some within-lactation effects become
time-independent. Analysis on a lactation basis may help clear the way for
multiple-trait analysis and time-dependent sire by lactation effects [7].

In conclusion, the analysis of longevity on a lactation basis with a proper
accounting for the stage of lactation gave a better fit of the model compared
with the conventional analysis of longevity using PL. The reason for this is
probably an improved description of the data by the different baseline hazards
in different lactations.
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APPENDIX

Let θ be the vector of parameters to be estimated. Assume a proportional
hazards model with time-dependent covariates w(t). Consider first the case
where PL is analysed. The assumed hazard function at time t is:

h
(
t;w(t)) = h0(t) exp{w′(t)θ} (A.1)

where h0(t) is the baseline hazard function. Let LPL be the likelihood function.
In the case of random censoring, it has been shown (Kalbfleisch and Prentice,
1980) that:

LPL ∝
∏

i∈{unc.}
f ( yi)

∏

i∈{cens.}
S( yi) (A.2)
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where yi is censoring or failure time of animal i. S(·) and f (·) are the survivor
function and the density function associated with animal i, {unc.} and {cens.} are
the sets of uncensored and censored records. Given the relationships between
h(·), f (·), and S(·), (A.2) is more often written as:

ln LPL = constant+
∑

i∈{unc}
ln h( yi)+

∑

i

ln S( yi). (A.3)

The general formula for S(·) indicates that:

S( yi) = exp

{
−

∫ yi

0
h
(
u;w(u))du

}
. (A.4)

If animal i has a left truncated record with B being the time of left truncation
(i.e., the origin point is before the beginning of the time interval considered in
the analysis, which occurs at time B for animal i) and yi still being failure or
censoring time, one can show with a derivation similar to the one where (A.2)
was obtained, that S( yi) in (A.3) and (A.4) must be replaced in LPL by:

Ci = exp

{
−

∫ yi

B
h
(
u;w(u))du

}
. (A.5)

Now, consider that the PL record of animal i can be partitioned into Ni sub-
records (in our case, lactations). Let b1 = 0, b2, . . . , bNi be the beginning of
each of these sub-records (each calving date). The last (Ni) sub-record will
be considered as left truncated at bNi and censored or uncensored (as in PL) at
bNi+1 = yi. Each previous record will be considered as truncated at bj (with
bj = 0 for the first one) and censored at bj+1.

If all these sub-records are treated separately, still assuming that the propor-
tional hazards model (A.1) is true, then the contribution to ln h( yi) in (A.3) will
remain unchanged by the partition: it is still the hazard at failure time. The
computation of ln S( yi) in (A.3) can be decomposed as the sum of elementary
contributions, ln Cj, where for all sub-records before the last one:

Cj = exp

{
−

∫ bj+1

bj

h
(
u;w(u))du

}
, (A.6)

and for the last one:

CNi = exp

{
−

∫ yi

bLi

h
(
u;w(u))du

}
. (A.7)

Note that expression (A.7) does not requite the form of h
(
u,w(u)

)
to be the

same for two distinct intervals ]bi, bi+1[ and ]bj, bj+1[.
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Indeed, combining the contributions of all sub-records of animal i (that are
conditionally independent, given the covariates wi(·) of animal i) and noting
that:

Ni∏

j=0

Cj =
Ni∏

j=0

exp

{
−

∫ bj+1

bj

h
(
u;w(u))du

}
(with bNi+1 = yi)

= exp



−

Ni∑

j=0

∫ bj+1

bj

h
(
u;w(u))du





= exp

{
−

∫ bNi+1

b0

h
(
u;w(u))du

}
, (A.8)

it is clear that the contribution ln S( yi) in (A.3) is also unchanged. The
likelihood contribution of each record can be expressed as the product of the
contribution all sub-records: these sub-records are independent and therefore
are uncorrelated. Finally:

ln
(
LLACTPL(θ)

) = ln
(
LPL(θ)

)
. (A.9)

The two approaches for the construction of the likelihood are completely
equivalent.
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