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Abstract – This paper considers the use of disease resistance genes to control the transmission
of infection through an animal population. Transmission is summarised by R0, the basic
reproductive ratio of a pathogen. If R0 > 1.0 a major epidemic can occur, thus a disease control
strategy should aim to reduce R0 below 1.0, e.g. by mixing resistant with susceptible wild-type
animals. Suppose there is a resistance allele, such that transmission of infection through a
population homozygous for this allele will be R02 < R01, where R01 describes transmission in
the wildtype population. For an otherwise homogeneous population comprising animals of these
two groups, R0 is the weighted average of the two sub-populations: R0 = R01ρ+ R02(1− ρ),
where ρ is the proportion of wildtype animals. If R01 > 1 and R02 < 1, the proportions of
the two genotypes should be such that R0 ≤ 1, i.e. ρ ≤ (R0 − R02)/(R01 − R02). If R02 = 0,
the proportion of resistant animals must be at least 1 − 1/R01. For an n genotype model the
requirement is still to have R0 ≤ 1.0. Probabilities of epidemics in genetically mixed populations
conditional upon the presence of a single infected animal were derived. The probability of no
epidemic is always 1/(R0 + 1). When R0 ≤ 1 the probability of a minor epidemic, which
dies out without intervention, is R0/(R0 + 1). When R0 > 1 the probability of a minor and
major epidemics are 1/(R0 + 1) and (R0 − 1)/(R0 + 1). Wherever possible a combination of
genotypes should be used to minimise the invasion possibilities of pathogens that have mutated
to overcome the effects of specific resistance alleles.
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1. INTRODUCTION

Disease resistance is perhaps the major challenge facing animal geneticists.
The long-term sustainability of many livestock sectors will depend upon having
animals resistant to certain infectious diseases. In some cases, this might even
become a requirement imposed upon livestock industries. Genetic variation in
host resistance exists for many diseases [3] and much research effort is now
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directed towards finding disease resistance genes. An example of success is
the identification of PrP gene controlling resistance of sheep to scrapie [4].
Many sheep industries in Western Europe are now required to select for scrapie
resistance.

To design effective breeding strategies utilising resistance genes it is neces-
sary to understand the impact these genes have on the transmission of infection,
or disease severity, should animals become infected. Critical is the distinction
between (i) resistance, the animal’s ability to resist infection or moderate
the parasite lifecycle and (ii) tolerance, the animal’s ability to withstand the
pathogenic effects of infection, i.e. disease. Improving tolerance will reduce
the impact of infection, but it will have little direct effect upon the transmission
of infection. Conversely, improving resistance will reduce the transmission of
infection and therefore the severity of disease in the population. Deployment
of resistance genes will only be worthwhile if it can be demonstrated that
they will substantially reduce probability of epidemics, should the infectious
agent be present, or the severity of an epidemic, should an epidemic take hold.
Therefore, both genetic and epidemiological theory will be required to develop
breeding strategies utilising resistance genes. For example, it has been shown
that it is not necessary to make all animals genetically resistant to protect a
population as a whole from epidemics [13], with the required proportion of
resistant animals being a function of the infectiousness of the disease.

This paper provides a general framework for deriving strategies for util-
ising disease resistance genes in domestic livestock populations, particularly
when the focus in on sporadic diseases caused by bacterial or viral infections
with direct animal-to-animal transmission. Pathogen evolution in response to
changing host genotype is often raised as a risk with genetic control strategies.
Thus, this paper also considers scenarios under which pathogen evolution
is more likely, and the impact that these scenarios have upon recommended
strategies for utilising genes.

2. METHODOLOGY

2.1. Background

Transmission of infection through a population may be summarised by R0,
the basic reproductive ratio. R0 may be defined as the number of secondary
infections caused by the introduction of a single infected animal into an oth-
erwise wholly susceptible population [1]. Deterministic expectations are such
that if R0 is greater than 1.0 it is expected that an epidemic will occur upon
the introduction of an infected animal in an otherwise healthy population, but
if R0 ≤ 1.0 an epidemic is not expected [6]. Stochastic chance events ensure
that for R0 values greater than 1.0, there is a possibility that there will be no
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epidemic, or a minor epidemic which dies out without intervention (e.g. [14]).
Likewise, for R0 ≤ 1.0, minor epidemics can arise.

By definition, a population comprised solely of genetically resistant animals
results in the pathogen having an R0 of less than 1.0. This is irrespective of R0

in the population of genetically susceptible wild-type animals. Therefore,
a rational aim of a disease control strategy is to reduce R0 in the target
population to below 1.0. This may be achieved by selecting animals for
enhanced resistance or, in the case of discrete levels of resistance, by mixing
genetically resistant animals with susceptible wild-type animals. This paper
considers the case of resistance expressed in terms of categories, e.g. when one
or a small number of genes confer resistance, and when resistance may either
be complete (i.e. R0 < 1) or partial (i.e. R0 > 1).

2.2. Required proportions of resistant animals

Under assumptions of no spatial heterogeneity and equal contact amongst
animals of different genotypes, i.e. a fully mixing genetically heterogeneous
population, R0 for the population as a whole will be the weighted average of the
R0 values within each subgroup [7]. Assume that for a given disease, if the host
population comprises animals with a wild-type genotype, then transmission of
infection is described by R01. Now suppose that a resistance allele, r, is
found, such that if the host population comprises animals homozygous for
this allele transmission is altered to R02, where R02 < R01. Our objective is
to use judicious selection of animals to construct a mixed population where
R0 =

(
R01ρ1 + R02(1− ρ1)

)
, where ρ1 is the proportion of wildtype animals.

Hereafter this is called the two-genotype model.
The two-genotype model can be extended to the general case of n genetic

categories. These categories might represent animals that are combinations of,
say, homozygous for the susceptibility allele, heterozygous and homozygous
for the resistance allele, across several loci. Now there are n levels of resistance,
denoted by R01 . . .R0n, and a different proportion of animals (ρ1,ρ2, . . . ρn)

corresponding to each of these groups. Thus, R0 = (R01ρ1 + R02ρ2 + · · ·
· · · + R0nρn).

Consider the two-genotype model. There are three possible scenarios.
Firstly, R01 < 1 in which case there is no disease problem. Secondly,
R02 > 1 in which case the population will be susceptible to epidemics no
matter what the genetic make up of the population. To minimise the probability
or severity of epidemics, ρ1 should be set to zero, reducing the epidemic
risk by having all animals homozygous for the resistance allele. Thirdly,
R01 > 1 and R02 < 1. Here, the requirement is to reduce R0 below 1.0, where
R0 = R01ρ1 + R02(1− ρ1). Thus:

ρ1 = (R0 − R02)/(R01 − R02) (1)
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where ρ1 is the proportion of wild-type genotypes in the population, and R0 is
some desired value between 0 and 1. For the threshold case where R0 is 1.0
and R02 is 0 (i.e. complete resistance) the proportion of resistant animals must
be at least 1 − 1/R01. This is conceptually equivalent to the proportion of
animals requiring vaccination, under the assumption of a completely effective
vaccine used in a fully mixed population [2], and it is also the result found by
MacKenzie and Bishop [13].

For the n genotype model, there is no single explicit solution to the number
of animals required of each genotype. Rather, the aim is simply to combine
the genotypic classes such that R0 < 1. For example, for a 3 genotype model,
the requirement is simply to find values of ρ1 and ρ2 that solve the equation
(obtained by rearrangement):

ρ1 + ρ2(R02 − R03)/(R01 − R03) = (R0 − R03)/(R01 − R03) (2)

Desired solutions to the n genotype model will usually combine as many of the
genotypes as feasible, unless some are highly susceptible. There will usually be
sound biological, production and epidemiological reasons why this should be
the case, including minimisation of pathogen co-evolution risks, as discussed
below.

2.3. Probability of epidemics

The threshold R0 = 1 describes the value at which the probability of
major epidemics becomes non-zero. However, above this threshold there
is a probability of no epidemic occurring, and below the threshold there is a
probability that a minor epidemic can occur. These probabilities, conditional
upon the presence of a single infected animal, can be derived from epidemic
theory appropriate to directly transmitted viral or bacterial infections. In such
cases, transmission of infection can be described using an SIR model [2]. In
this model, a population of N animals is made up of S susceptible, I infected
and R recovered/removed animals. The model assumes no births, deaths or
migration and full mixing between all animals in the population. Given a
transmission rate, β, and a recovery rate γ, the rate of change of the numbers
of animals in each category is described by the following equations:

dS/dt = −βSI

dI/dt = βSI− γI

dR/dt = γI.

The transmission rate, β, can be described specifically as R0γ/N [2]. Genetic
heterogeneity can be incorporated by replacing S, I and R with Si,t, Ii,t and
Ri,t which represent the number of susceptible, infected or recovered animals
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of genotype i at time t such that Si,t + Ii,t + Ri,t = Ni,t, under the assumption
that the transmission rate is genotype dependent. With this assumption, and
also assuming that the recovery rate is not genotype dependent, the genotype
dependent transmission coefficients are denoted by βi = R0iγ/Ni where R0i is
the basic reproductive ratio of the pathogen in a population with genotype i.

These equations can be re-specified in a stochastic setting [15]. This is the
first step in deriving epidemic probabilities, as it allows us to determine the
probability of each type of event, i.e. the probability that a susceptible animal is
infected and moves to the infected category or that an infected animal recovers.
In a population where R0 < 1.0, a minor epidemic is defined as one where there
is more than a single infected animal. The probability of a minor epidemic
upon the introduction of a single infected animal can be estimated from the
probability that the first event, after the introduction of an infected index case, is
an infection rather than a recovery. Following the methodology of MacKenzie
and Bishop [14] it is first necessary to construct the “rate” (K), of all possible
events. In a situation where there is a single infected animal of genotype i, the
possible events, in a population with two genotypes, i and j, are:

(i) infection of an animal with genotype i = βiSici,i

(ii) infection of an animal with genotype j = βjSjcj,i

(iii) recovery of the infected animal = γ

where cj,i is the contact rate between animals with genotype i and animals with
genotype j, which is simply the proportion of animals of type j animals in the
population. Therefore,

K = βiSici,i + βjSjcj,i + γ. (3)

The probability of no epidemic is the probability that the first event is
the recovery of the single infected animal, i.e. γ/K. The probability that an
epidemic occurs is 1 − (γ/K). For R0 < 1 this is the probability of a minor
epidemic, and for R0 > 1 it is the combined probability of a major or a minor
epidemic.

The probability of no epidemic may be solved using the two-genotype model.
Let x1 be the number of animals with the wild-genotype and x2 be the number
of resistant animals in the population, then β1 = R01γ/S1 and β2 = R02γ/S2

are the transmission rates in groups of animals with the wild-genotype and
resistance genotype respectively. With a single infected animal of the wild-
type genotype, the contact rate between this animal and the susceptible animals
of each genotype is proportional to the number of animals of each genotype,
which is defined above (equation (1)) in terms of R0 values. Therefore c1,1 =
(R0−R02)/(R01−R02) and c2,1 = (R01−R0)/(R01−R02), regardless of the R0

value. Substituting into equation (3) the probability of no epidemic is obtained
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as:

γ

K
= γ[(

R0 − R02

R01 − R02

)(
R01γ

S1

)
S1 +

(
R01 − R0

R01 − R02

)(
R02γ

S2

)
S2 + γ

]
= 1(

(R0 − R02)R01 + (R01 − R0)R02

R01 − R02
+ 1

)
= 1

(R0 + 1)
· (4)

Therefore, the probability of a minor epidemic (R0 ≤ 1.0) and the probability
of a minor or a major epidemic (R0 > 1.0) is R0/(R0 + 1). At R0 = 1.0,
the probabilities of either no epidemic or a minor epidemic are both 0.5. By
inference, these results apply generally to any n genotype model.

When R0 > 1.0, the probabilities of major and minor epidemics may
be determined from the basic stochastic threshold theorem, presented by
Renshaw [15] and derived from extinction probabilities. In the case where
an epidemic occurs and is started by a single infected animal, the probabilities
of it being minor or major are γ/Nβ and (1 − γ/Nβ). Using the relation-
ship R0 = Nβ/γ, this yields probabilities of minor and major epidemics of
1/(R0 + 1) and (R0 − 1)/(R0 + 1), respectively.

2.4. Robustness of results to parameter estimation

The models described above assume precise knowledge of the transmission
rate. However, this is unlikely to be the case. As an example, assume that the
transmission rate in a population entirely composed of the resistant genotype,
is R02, and is known accurately. However, assume that R01, describing trans-
mission in a population entirely composed of the wild-type genotype, has been
underestimated by a proportion δ. Therefore, R∗01 = R01 + δR01, is the actual
value of the basic reproductive ratio in the resistant population, and the true
transmission in a mixed population is R∗0 = (ρR∗01 + (1 − ρ)R02). However,
ρ will have been determined under the expectation that the basic reproductive
ratio is R0 = (ρR01+(1−ρ)R02), and the error in R∗0 and ρ is easily calculated.

The changes in epidemic probabilities are derived similarly. Using the
methodology above, the probability of no epidemic is 1/(R0+ δR01ρ+ 1), and
the probability of a minor epidemic (or major and minor epidemic if R∗0 > 1.0)
is (R0 + δR01ρ)/(R0 + δR01ρ + 1). When R∗0 > 1.0, this breaks down into a
probability of a minor epidemic of 1/(R0 + δR01ρ+ 1) and a probability of a
major epidemic of (R0 + δR01ρ− 1)/(R0 + δR01ρ+ 1).
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3. STOCHASTIC VERIFICATION

3.1. Methodology

The formulae derived above may be verified by means of stochastic simu-
lation, using the methodology outlined by MacKenzie and Bishop [14] for a
SIR model. In brief, there are two components to a stochastic SIR epidemic
model – the inter-event time and the event type. The mean time until the
next event is a function of the total number of infected individuals on the
farm (Y), the total number of susceptible individuals in contact with infected
animals (X), β, and γ, and is given by 1/(Y(γ + βX)). The inter-event time
is thus drawn from an exponential distribution as − ln(r)/(Y(γ + βX)), where
r is a random number in [0, 1]. This distribution yields the correct expected
inter-event time as verified by calculating the expected value of − ln(r), noting
that

∫
ln(r)dr = r ln(r)− r.

Given a contact rate of cxy between the X susceptible and Y infectious anim-
als, then the probability that the event is an infection is βYXcxy/Y(βXcxy + γ)
and a recovery is γY/Y(βXcxy + γ). This methodology can be extended
to allow heterogeneity between animals, assuming there are n genotypes of
animals, as described in [14]. Heterogeneity in either the recovery rate (γ)
or the transmission coefficient (β) is easily incorporated, and in this case γ is
assumed constant and β1 and β2 correspond to R01 and R02, respectively.

The model is implemented by introducing a single infected animal of geno-
type i, the index case. The inter-event time is calculated, the type of the first
event is determined and the epidemic commences. The epidemic runs until
there are no more infected animals on the farm. By recording the number of
simulations that result in epidemics, the probability that an epidemic will occur
and the size of epidemics can be determined. When the population is composed
of mixtures of susceptible and resistant animals as described above, such that
R0 < 1.0, all epidemics are minor epidemics, thus if the number of infected
animals is greater than 1, a minor epidemic has occurred.

To calculate R0, the output from the model was used to construct a
next-generation matrix M describing the disease transmission rates between
groups [5]. Epidemics were simulated with each genotype in turn being the
index case. The element mij of M is the number of secondary infections in
genotype j animals caused by the index case of genotype i. The mijth element
of the matrix obtained is divided by the number simulations performed for each
index case being genotype i. R0 is estimated as the dominant eigenvalue of
M [6].

R0 and probabilities of no, minor or major epidemics were calculated for
various combinations of R01 and R02. Each probability was estimated from
the average of 5000 stochastic simulations in a population of 1000 animals.
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Figure 1. The simulated probability of no, minor or major epidemics in a genetically
homogeneous population for expected R0 values between 0.0 and 1.0.

Observed R0 values were calculated from M matrices constructed from 50
replicates per simulation.

3.2. Probabilities of epidemics

Figure 1 shows the probability of no epidemic or minor epidemics in a single
genotype population when R0 is less than 1.0. As R0 increases the probability
of a minor epidemic increases and the probability of no epidemic decreases,
both approaching 0.5 as R0 approaches 1.0. The points fit the expected values
of 1/(R0 + 1) and R0/(R0 + 1), respectively.

Figure 2 gives the probability of no epidemic, a minor or a major epidemic
when the population is comprised of two genotypes. The expected basic
reproductive ratio in a population composed entirely of resistant animals is (a)
R02 = 0.0 and (b) R02 = 0.95. The proportions of susceptible and resistant
animals are set to produce an overall expected R0 = 1.0. As predicted by
theory, the probability that no epidemic occurs or that an epidemic is minor,
dying out with a small number of infected animals, is 0.5 and the probability
that an epidemic is major, infecting a large number of animals, is 0.0. R0 for
all simulations is 1.0, as expected.

3.3. Robustness of results to parameter estimation

To verify the theoretical results for the robustness of results to parameter
estimation, populations were constructed in which R0 was underestimated.
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Figure 2. Required proportions of resistant animals and resulting probability of no
epidemic, minor or major epidemics for a two-genotype population. Expected basic
reproductive ratio in the susceptible sub-population, R01, is given on the x-axis.
Expected basic reproductive ratio for the resistant sub-population is (a) R02 = 0.0,
(b) R02 = 0.95. The observed basic reproductive ratio (R0) for both populations is
close to 1.0 in all cases.

Two approaches were investigated. In the first, the transmission rate R01

(the wild-type genotype) was underestimated by δ = 1.0 and R02 = 0.0. In
the second, it was expected that in a population composed entirely of the
resistant genotype, R02 = 0.4, but in reality it had been underestimated by
δ = 1.0. In both cases, simulations were conducted for R01 in the range 1.0
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to 10.0. Again, each of the probabilities was estimated from the average of
5000 stochastic simulations in a population of 1000 animals.

The results are given in Figure 3. In both cases the error in estimation had
severe consequences insofar as the probability of a major epidemic rose above
zero and the probability of no epidemic fall below the expected value of 0.5.
The impact is particularly severe when it is R01 (for the wildtype genotype)
that is underestimated. The effect is much less severe when R02 of the resistant
genotype is underestimated, and for low R01 values this effect is trivial.

4. DISCUSSION

4.1. General nature of results

In this paper general strategies have been derived for utilising disease resist-
ance genes, specifically genes affecting the resistance of animals to infection.
As defined in this paper, resistance incorporates the transmission of infection
from animals, as well as their ability to withstand infection. In particular,
given knowledge of how each allele of the disease resistance gene affects the
transmission of infection through a population of animals homozygous for that
allele, then precise population structures can be set up to minimise the risk
of epidemics. Whilst the risk and severity of epidemics will be absolutely
minimised by making the population homozygous for the most resistant allele
or genotype, this is not a specific requirement.

As a general summary, the population structure should be manipulated so
that the overall R0 is less that 1.0. This will reduce the probability of major
epidemics to zero and reduce the probability of minor epidemics below 0.5,
given a single initial infectious animal. Minor epidemics, in turn, become
less likely as R0 reduces to zero. Defining appropriate population structures
is mathematically straightforward, as the overall R0 is simply the weighted
average of the subpopulations.

Defining optimal population structures requires knowledge of the trans-
mission characteristics of the pathogen, for each genotype. This is likely
to be difficult information to obtain with precision. However, quantifying the
impact of imprecise estimates is straightforward. The desirable outcome is that,
under scenarios investigated, imprecision in the estimate of R02 (the resistant
genotype) has less impact than imprecision in the estimate of R01 (the wildtype
genotype).

4.2. Application of results

The results can be applied, in principle, to any genes that influence the
resistance of animals to infections disease. However, in the case of endemic
diseases or diseases where there is a consistent and heavy force of infection, the
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Figure 3. Consequences of underestimating transmission rate when either (a) R01

(corresponding to the wild-type genotype) or (b) R02 (corresponding to the resistant
genotype) are underestimated, in terms of the probabilities of no, minor or major
epidemics. Both R01 and R02 have been underestimated by 100%, and details are
given in the text.
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assumption about an initial single infected animal breaks down and the epidemic
probabilities will alter. When there is more than a single initial infected animal,
the probability of an epidemic increases in proportion to 1− 1/Rα

0 , where α is
the initial number of infected animals (derived from Renshaw [15]).

Specific disease resistance genes are still relatively rare, however major
research efforts are currently underway to find such genes. Examples where
genes have been found include pre-weaning and post-weaning E. coli diarrhoea
in pigs [8], PrP alleles conferring scrapie resistance [4] and MHC haplotypes
conferring enhanced resistance to Marek’s disease. The results presented here
apply to each of these diseases. Selection for scrapie resistance has been
previously investigated using a model combining host genetics and disease
epidemiology [17], with the prediction that scrapie should be eradicated before
the population is completely genetically resistant. This agrees with the theory
presented here.

Confidence in finding of disease resistance genes may be gained from the
fact that when specific diseases are subjected to rigorous scrutiny, genetic
variation in host resistance is invariably seen. For example, there is documented
genetic variation in host resistance or tolerance for over 50 domestic livestock
diseases [3]. Even when there are no diseases of overriding importance, genetic
variation in liability to infection by certain classes of pathogen can still be
demonstrated [12]. Additionally, considerable genetic variation in immune
response has been demonstrated in a number of studies [10,9,16]. Hitherto,
strategies for utilising genes contributing to this variation were absent. This
paper provides a framework for developing these strategies.

4.3. Pathogen evolution considerations

Pathogen evolution potentially negates the attempts to use genetics to control
an infectious disease and it impacts upon genetic management strategies. Two
principles are important: (i) absolute risks of pathogen evolution are inestim-
able, only relative risks for different genetic management strategies may be
calculated; (ii) in general terms mutations make organisms less fit, unless there
is a niche in which the mutation is beneficial.

Consider a population of hosts selected for resistance and a supra-population
of wildtype hosts that forms the reservoir for the pathogens. There will not
be strong selection pressure for pathogen evolution in the managed population
if R0 is greater than 1.0, nor is there strong selection pressure in the supra-
population. More generally, selection pressures that do exist will be a trade-off
between pathogen transmission and virulence, i.e. host mortality induced by
infection [11]. However, genetic management strategies reducing R0 below
1.0 potentially create selective advantages for pathogens carrying specific
mutations. Of importance are both the mechanism and genetic heterogeneity
of host resistance, as both will influence relative risks.
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Genetic resistance has been formulated in terms of the transmission rate, β,
which is the product of susceptibility (probability of becoming infected) and
infectivity (transmission of infection to other individuals). If resistance is due to
a reduction in susceptibility and genetic management eliminates all epidemics,
then the pathogen cannot establish itself in the host population and evolution
risks are minimal. However, minor epidemics create a niche for pathogens
with specific mutations as the population maintains the pathogen for a short
period of time and evolution potentially gives the pathogen the ability to further
invade the population. Therefore, if resistance is due to reduced susceptibility,
genetic management strategies that reduce the probability of minor epidemics
will also reduce the probability of pathogen evolution. If resistance is due to
reduced infectivity, the dynamics alter. In this case, an infected animal may
already exist in the population, but this animal is unable to transmit infection
to other animals. Thus, the niche for evolution exists whether or not there
is a minor epidemic, however minor epidemics increase the opportunity for
evolution. The differing implications of reducing the probability of infection or
reducing subsequent transmission of infection have previously been illustrated
in the context of vaccine control by Gandon et al. [11]. Please note that
the arguments used here are for mutations affecting pathogen transmission;
much of the (co)evolutionary theory deals with long-term trade-offs between
pathogen transmission and virulence.

Genetic heterogeneity in resistance can be of two types: genetic differences
between different groups of animals or individual animals having resistance
alleles at more than one locus. In the case where different groups of animals
are resistant by different mechanisms, the arguments are the same as above,
except that the niche of newly susceptible animals is now much narrower
when the pathogen mutates successfully. The n genotype model is relevant
and, for the ith group, R0i is now larger than it previously was. Depending
upon the mix of genotypes, this may not have a substantial effect on overall
disease transmission dynamics: the greater the heterogeneity the less the overall
effect. Within-animal heterogeneity, i.e. two or more resistance mechanisms
per animal, will pose greater evolutionary challenges to the pathogen, as
two independent mutations will be required to overcome the hosts defence
mechanisms. Moreover, these mutations must occur in the same pathogen and
occur close together in time to overcome possible selective disadvantages of
mutations with no immediate benefit. Therefore, within-animal heterogeneity
in resistance is likely to reduce the risk of pathogen evolution.

4.4. Concluding remarks

Methodologies now exist for breeders to make appropriate use of disease
resistance genes, and in general terms it will not be necessary to fix the
favourable alleles within a population. However, application of these principles
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requires the breeder to understand the disease, the mechanisms of the gene and
the nature of the infectious challenge faced by animals. For example, these
strategies will not be appropriate if the gene confers tolerance of infection.
Furthermore, these strategies will not be appropriate if the force of infection
results from a continuous challenge from an essentially-infinite reservoir of
infection. Such situations have previously been considered by van der Waaij
et al. [18,19].

Breeders should also be aware that reliance upon a single gene (or allele)
increases the risk of pathogens evolving to overcome the genetic strategy.
However, this is no different from any other disease control strategy that relies
upon a single mechanism. Risks will be reduced by combining strategies and
utilising, where possible, more than one resistance gene.
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