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Abstract – A quantitative trait depends on multiple quantitative trait loci (QTL) and on the in-
teraction between two or more QTL, named epistasis. Several methods to detect multiple QTL
in various types of design have been proposed, but most of these are based on the assumption
that each QTL works independently and epistasis has not been explored sufficiently. The ob-
jective of the study was to propose an integrated method to detect multiple QTL with epistases
using Bayesian inference via a Markov chain Monte Carlo (MCMC) algorithm. Since the mixed
inheritance model is assumed and the deterministic algorithm to calculate the probabilities of
QTL genotypes is incorporated in the method, this can be applied to an outbred population
such as livestock. Additionally, we treated a pair of QTL as one variable in the Reversible jump
Markov chain Monte Carlo (RJMCMC) algorithm so that two QTL were able to be simultane-
ously added into or deleted from a model. As a result, both of the QTL can be detected, not
only in cases where either of the two QTL has main effects and they have epistatic effects be-
tween each other, but also in cases where neither of the two QTL has main effects but they have
epistatic effects. The method will help ascertain the complicated structure of quantitative traits.

Bayesian inference / multiple QTL / epistasis / outbred population / mixed inheritance
model

1. INTRODUCTION

It may be more realistic that interlocus interactions (epistasis) between two
or more quantitative trait loci (QTL), as well as the main effects of QTL them-
selves, play an important role in expressing a quantitative trait, and the im-
portance of exploring epistatic effects has been discussed recently [17, 30].
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Then, several statistical methods for the detection of epistatic QTL, using a
maximum-likelihood [25] or least squares approach [6], were proposed. Since
these are multiple-dimensional search approaches, however, many computa-
tions are involved. Additionally, these are based on the assumption that the
QTL number is fixed, and it may not be appropriate to apply these methods to
data where the QTL number is unknown. Then, several improved methods have
been proposed to detect multiple epistatic QTL, incorporating a genetic algo-
rithm [1], extending the composite interval mapping [12, 30], and adopting a
one-dimensional search [10]. At this stage, genome-wide levels of significance
and the confidence interval of estimates have to be calculated by using, for ex-
ample, the permutation test [2] and bootstrap method [24], in which millions
of computations are required.

Alternatively, the Bayesian approach via Markov chain Monte Carlo
(MCMC) algorithms such as the Gibbs sampler [4] and the Metropolis-
Hastings (MH) algorithm [8, 15], has been drawing attention as a new and
promising approach and was initially used to map QTL by Thaller and
Hoeschele [20, 21]. Additionally, owing to the advent of the Reversible jump
Markov chain Monte Carlo (RJMCMC) algorithm [5], the number of QTL
itself has become estimable, and several methods using the approach were de-
veloped [9, 18, 19, 22, 26]. Yi and Xu [27] developed a revolutionary Bayesian
method to map multiple epistatic QTL in a population derived from two in-
bred lines, and by simulation studies. They showed that the method detects
QTL accurately when either of the two QTL has main effects and they have
epistatic effects, but when neither of the two QTL has main effects but they
have epistatic effects, the pair of QTL may not be able to be detected by
the method. Additionally, their method is applicable only to an F2 population
derived from two inbred lines.

The objective of this article was to propose an integrated method using
Bayesian inference via MCMC algorithms for the detection of multiple QTL
with epistasis under the mixed inheritance model in an F2 population derived
from two divergent breeds, such as cattle and swine. In this method, by treat-
ing a pair of QTL as one variable in the RJMCMC algorithm, the proposed
method will work well, not only in cases where either of the two QTL has
main effects and they have epistatic effects, but also in cases where neither of
the two QTL has main effects but they have epistatic effects. We briefly evalu-
ated the propriety of the proposed method by simulation studies. By using this
method, we can simultaneously estimate the number, locations and effects of
QTL, whether epistasis exists among the QTL or not, and also the extent to
which the polygenic effect affects a quantitative trait.



Detection of multiple QTL with epistasis 417

2. MATERIALS AND METHODS

2.1. Mixed inheritance model

In this article, we assumed an F2 population generated from two breeds
such as swine, cattle and so on, which were the upward- and downward-
selected breeds in which different marker alleles were not completely fixed
while different alleles at QTL were fixed in each breed.

Here, y represents a vector for the phenotypic values of a quantitative trait.
The vector y can be described as

y = Xβ +
l∑

i=1

Qiδi +

m∑

j=1

W jγ j + Zu + e (1)

where,

Qi =



pik (QQ) − pik (qq) pik (Qq)
. .

. .

. .


, δ′i =

[
ai di

]
,

W′j =



pj1k (QQ) − pj1k (qq)

pj1k (Qq) . . .

pj2k (QQ) − pj2k (qq)

pj2k (Qq) . . .

pj1k (QQ) pj2k (QQ) + pj1k (qq) pj2k (qq) − pj1k (QQ) pj2k (qq)
−pj1k (qq) pj2k (QQ) . . .

pj1k (QQ) pj2k (Qq) − pj1k (qq) pj2k (Qq)

pj1k (Qq) pj2k (QQ) − pj1k (Qq) pj2k (qq) . . .

pj1k (Qq) pj2k (Qq)



,

and γ′j =
[
aj1 dj1 aj2 dj2 aaj ad j da j dd j

]
.

In these equations, β, u (∼N(0, Aσ2
u)) and e (∼N(0, Iσ2

e)) are vectors of the
overall mean and/or covariates, polygenic effect and environmental effects, re-
spectively, where A is the numerator relationship matrix, and σ2

u and σ2
e are

polygenic and environmental variances, respectively. X and Z are design ma-
trices relating β and u to y, respectively. l and m represent the numbers of
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Table I. The symbols used to denote all the parameters in this article.

Symbol Meanings

µ Overall mean

σ2
e Environmental variance

σ2
u Polygenic variance

l Number of QTL with the only main effect

m Number of pair of epistatic QTL

θ Location of QTL

a Additive effect

d Dominance effect

aa Epistatic effect (additive-additive)

ad Epistatic effect (additive-dominance)

da Epistatic effect (dominance-additive)

dd Epistatic effect (dominance-dominance)

QTL and pairs of epistatic QTL, respectively. δi is the vector of additive ge-
netic and dominance effects of the ith QTL, and γ j is the vector of additive
and dominance effects of the first and second QTL in the jth pair, and epistatic
effects of the pair. Qi is the matrix of probabilities of the ith putative QTL
genotypes, and W j is the matrix of probabilities of two epistatic QTL geno-
types and coefficients of epistatic effects in the jth pair, in which pik(QQ) and
pik(qq) are the conditional probabilities that the individual k has two alleles
derived from breeds 1 and 2 for the ith QTL, respectively. pik(Qq) is the condi-
tional probability that the individual k is heterozygous. In this article, instead
of sampling QTL genotypes as one of the parameters, these probabilities are
calculated deterministically by the method proposed by Haley et al. [7], using
only the marker genotypes. These effects are based on the model proposed by
Cockerham [3], except that the QTL genotype probabilities are used instead of
the QTL genotypes themselves.

For the convenience of the readers, the symbols used to denote all the
parameters in this article and their meanings are shown in Table I.

2.2. Statistical analyses

In this study, the Bayesian approach via the Gibbs sampler, the MH algo-
rithm and the RJMCMC algorithm were used. The posterior distributions for
all the parameters involved can be generated from these algorithms.
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2.2.1. Updating all the parameters except the number of QTL

For the overall mean β, main and epistatic effect of QTL δ and γ, polygenic
effects u, and polygenic variance σ2

u, the Gibbs sampler was used. In this al-
gorithm, the new value of a parameter is sampled from the distribution con-
ditioned on the current values of all the other parameters and the phenotypic
values.

A new value of β is sampled from the normal distribution

N



ησ2
e

τ2
+ X′

(
y − l∑

i=1
Qiδi −

m∑
j=1

W jγ j − Zu
)

σ2
e

τ2
+ X′X

,
1

σ2
e

τ2
+ X′X



,

where η and τ2 are prior mean and variance for the overall mean, respectively.

New values of δ and γ are sampled from the normal distribution

N


(
T−2σ2

e + Q′iQi

)−1
Q′i

y − Xβ −
∑l

i′�i
Qi′δi′ −

m∑

j=1

W jγ j − Zu

 ,

σ2
e

(
T−2σ2

e + Q′iQi

)−1



and

N


(
T−2σ2

e +W′jW j

)−1
W′j

y − Xβ −
l∑

i=1

Qiδi −
∑m

j′� j
W j′γ j′ − Zu

 ,

σ2
e

(
T−2σ2

e +W′jW j

)−1
 ,

respectively.

The prior for the genetic effects is assumed to be distributed as N (0,τ2), and
T represents a diagonal matrix whose diagonal elements are τ. Qi and W j are
determined based on the genotypes of flanking markers.
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New values of u are sampled from the normal distribution

N



(
Z′Z + A−1σ

2
e

σ2
u

)−1

Z′
y − Xβ −

l∑

i=1

Qiδi −
m∑

j=1

W jγ j

 ,

σ2
e

(
Z′Z + A−1σ

2
e

σ2
u

)−1

·

A new value of σ2
u is sampled from the inverted χ2-distribution

u′A−1u

χ2 (q − 2)
,

where q is the order of A.
For QTL locations θ and environmental variance σ2

e , the MH algorithm has
been used. At the initial step of the algorithm, an arbitrary value for a parame-
ter k, noted by k[1], is determined and after implementation of the same proce-
dures for all the other parameters in turn, the subsequent value for k is sampled
from a symmetric uniform distribution on the interval [k[1] −d, k[1]+d], where
d is a predetermined tuning parameter, updated with a probability min (1, λ).
λ represents the ratio of likelihood when newly proposed values are substituted
for previous values. If new proposals are accepted, these unknown parameters
are updated, but if not, the previous values remain unchanged. By repeating
this procedure many times, posterior distributions for θ and σ2

e were gener-
ated. Once θ was sampled, the conditional probabilities pik(QQ), pik(qq) and
pik(Qq) were also determined.

2.2.2. Updating the number of QTL

Updating the number of QTL and epistatic QTL pairs, noted by l and m,
respectively, needs a change in the dimension of the linear model, so the
RJMCMC algorithm was used. The prior distribution of the number of QTL
is the Poisson distribution with a mean µl+m, and with lmax and mmax being set
as the upper limits of QTL number and QTL pair number, respectively. In this
article, we treated an epistatic QTL pair in the same way as a QTL with only
a main effect. Therefore, if a QTL has both a main effect and epistasis with
other QTL, the QTL is treated as one of a QTL pair and its main effect be-
longs to the vector γ. The new proposals can be one of the five following with
the probability pa, pae,pm,pd, and pde: to add one QTL (noted by proposal 1),
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to add one pair of QTL (noted by 2), to leave the QTL number unchanged
(noted by 3), to delete one QTL (noted by 4), and to delete one pair of QTL
(noted by 5). In this study, pa, pae, pm, pd, and pde are all equal, being one-
fifth. When both l and m are 0, pd is 0 and when l and m are lmax and mmax,
respectively, pa is 0. When the new proposal is 1, the location and the effects
of a new QTL are sampled and the likelihood is recalculated, and the proposal
is accepted with the probability

min


1, λ · p (l + m + 1) · p (δl+1)

p (l + m)
·

pd

l + m + 1
pa · p (δl+1|y, φ,Ql+1)


, (2)

where ϕ = (l,m, θ, δ, γ, Q, W, σ2
u, σ2

e), and the likelihood ratio λ is as follows;

λ =

n∏
k=1

1√
2πσ2

e

· exp



−

(
y − Xβ − l∑

i=1
Qiδi −

m∑
j=1

W jγ j − Ql+1δl+1 − Zu
)2

2σ2
e



n∏
k=1

1√
2πσ2

e

· exp



−

(
y − Xβ − l∑

i=1
Qiδi −

m∑
j=1

W jγ j − Zu
)2

2σ2
e



·

When the new proposal is 2, the proposal is accepted with the probability

min


1, λ · p (l + m + 1) · p (γm+1)

p (l + m)
·

pd

l + m + 1
pa · p (γm+1|y, φ,Wm+1)


· (3)

The updating step follows that of proposal 1, except that new locations and
effects are sampled for two QTL.

When the proposal is 3, only the other parameters in the model are updated.
When a proposal is 4, one of the QTL in the model is excluded with equal
probability. The proposal is accepted with probability

min


1, λ · p (l + m − 1)

p (l + m) · p (δ*)
· pa · p (δ*|y, φ*)

pd

l + m


, (4)
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where

λ =

n∏
k=1

1√
2πσ2

e

· exp



−

(
y − Xβ − l∑

i=1
Qiδi −∑m

j′� j W j′γ j′ − Zu
)2

2σ2
e



n∏
k=1

1√
2πσ2

e

· exp



−

(
y − Xβ − l∑

i=1
Qiδi −

m∑
j=1

W jγ j − Zu
)2

2σ2
e



,

and ϕ* denotes ϕ without δ j, i.e., the effect of the deleted QTL.
For proposal 5, one of the pairs of QTL in the model is excluded with equal

probability. The proposal is accepted with a probability

min


1, λ · p (l + m − 1)

p (l + m) · p (γ∗) ·
pa · p (γ ∗ |y, φ∗)

pd

l + m


· (5)

The complete sampling outline is as follows:

(a) updating µ using the Gibbs sampler;
(b) updating l or m using the RJMCMC algorithm;
(c) updating θ using the MH algorithm;
(d) updating δ and γ using the Gibbs sampler;
(e) updating u using the Gibbs sampler;
(f) updating σ2

u using the Gibbs sampler;
(g) updating σ2

e using the MH algorithm.

2.3. Simulation study

As mentioned above, an F2 population generated from upward- and
downward-selected breeds was assumed. Ten sires and 400 dams were picked
up from each breed, noted by breed 1 and 2, respectively. Each dam has one
progeny when they are randomly mated, and that the 400 progeny, noted by F1,
are male or female with a probability of 0.5. F2 individuals were generated by
intercrossing the F1 individuals randomly. At that time, each dam has three
progeny, therefore the number of individuals in the F2 population is expected
to be 600, but in most cases, the number of females in the F1 generation is not
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Breed 1   Breed 2

P

F

F 3(200 )

1

2

2

1

Each dam has one progeny.
The sex ratio is set to .5.

Each dam has three progeny.
As the number of  F  females is not exactly half of

the total number of individuals, then the number of F
individuals also fluctuates slightly from 600.

400

40010 �

�� �

Figure 1. Diagram of the structure of a simulated crossbred population.

exactly half of the total number of individuals, then the number of the indi-
viduals in the F2 generation fluctuates slightly from 600. Details are shown in
Figure 1.

The number of alleles in each breed was set to three, and two of them were
common in both breeds. Each allele frequency was as follows: In breed 1, the
frequencies of alleles 1, 2, and 3 were 0.8, 0.1, and 0.1, respectively. In breed 2,
the frequencies of alleles 1, 2, and 4 were 0.1, 0.8, and 0.1, respectively.

In this study, we implemented simulation studies for four cases. In case 1,
no QTL were set and only a polygenic effect exists. In case 2, one QTL with
only a main effect and one pair of QTL with both main and epistatic effects
between each other were present. In case 3, one QTL with only a main effect
and two pairs of QTL with an epistatic effect were set, and for one of the two
pairs, neither QTL has the main effect. In case 4, which is the most compli-
cated situation, the same number of QTL were located at the same position as
in case 3. One QTL has epistatic effects with the other two, and none of the
three QTL has the main effect. The other two QTL have the respective main
effects. The overall mean of the phenotypic values was set to 100, and it was
assumed that there were two chromosomes, each of which were 100 cM long
and both had eleven marker loci, one every 10 cM. The polygenic and envi-
ronmental variances were 25 and 75, respectively. These situations and values
were common in all cases. The locations and effects of QTL are presented in
Table II. Phenotypic values were available only for the F2 population and the
pedigree information was used for the three generations.

The chain was run 50 000 rounds totally, and in order to eliminate the effect
of a serial correlation, the chain was thinned and saved one sample per 10 cy-
cles, so 5000 samples were finally saved per replicate. In total, 25 replicates
were carried out for the respective cases, where the means, medians and modes
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Table II. The true values of the parameters set in respective cases.

Parametera True value

case 1
l/m 0/0

case 2
l/m 1/1

QTL1 QTL2 QTL3
θ [1, 37.0]b [1, 88.0] [2, 83.0]
a 4.0 4.0 4.0
d 3.0 3.0 3.0
aa 7.0
ad 5.0
da 0.0
dd 0.0

case 3
l/m 1/2

QTL1 QTL2 QTL3 QTL4 QTL5
θ [2, 52.0] [1, 37.0] [2, 18.0] [1, 88.0] [2, 83.0]
a 5.0 4.0 0.0 0.0 0.0
d 2.0 3.0 0.0 0.0 0.0
aa 7.0 7.0
ad 0.0 5.0
da 0.0 0.0
dd 0.0 0.0

case 4
l/m 2/2

QTL1 QTL2 QTL3 QTL4 QTL5
θ [1, 37.0] [2, 52.0] [1, 88.0] [2, 83.0] [2, 18.0]
a 4.0 5.0 0.0 0.0 0.0
d 3.0 2.0 0.0 0.0 0.0
aa 7.0 7.0
ad 5.0 0.0
da 0.0 0.0
dd 0.0 0.0

a See Table I.
b The former figure represents the chromosome number, and the latter represents the position
(cM) of the QTL.
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of posterior distributions were recorded. The prior distributions for µ was set
to the normal distribution N (100, 82), and for δ and γ, the prior was set to N
(0, 82). The mean of the prior Poisson distribution of the number of QTL and
QTL pair number µl+m was 3, and in case 3, to check the influence of µl+m on
the estimates, two additional different prior means (µl+m = 2 and 5) were used.
For the updating of θ and σ2

e via the MH algorithm, the tuning parameter d was
set to 2.5. For σ2

e , the range from which the values were sampled was from 0 to
the phenotypic value. The upper limits of QTL and QTL pair numbers, noted
by lmax and mmax, were set to 4 and 3, respectively. The calculations started
with the null model (l[1] = m[1] = 0), but for all the other parameters, the initial
values were decided arbitrarily. In case 3, the different initial values, l[1] = lmax

and m[1] = mmax, were also used to investigate the influence of this factor.

3. RESULTS

Table III represents the posterior distributions of the QTL number in each
case. Table IV represents the modes of the posterior distributions of all the
other parameters in these cases. Since both the mean and the median were
hardly different from the mode, the former are not shown here.

In case 1, neither the QTL with the main effect nor pairs of epistatic QTL
were detected, which is consistent with true situations. The result indicates
that the method can avoid type II errors in the absence of QTL and QTL pairs.
In case 2, QTL pairs with both strong main and epistatic effects, which are
relatively easy to detect, were mapped accurately. In cases 3 and 4, it is shown
that the probabilities that the same number of QTL and QTL pairs as the true
ones existed were extremely high (from 0.832 to 0.902), i.e., that the estimated
QTL number corresponded to the true one. Especially, it should be noted that
the proposed method succeeded in detecting epistatic QTL pairs without main
effects. To help the understanding of the readers, Figure 2 shows histograms of
the posterior distributions for locations of epistatic QTL in one of the replicates
of cases 3 and 4.

Additionally, even if as in case 4, QTL that have epistatic effects with two
QTL at the same time, or maybe more, were also detectable. For the other
parameters, though only the environmental variance component was consider-
ably overestimated, it is clear that the overall mean, the positions and effects
of QTL, and polygenic variance were also accurately estimated. For compar-
ison, one of the simulated data set in case 3 was analyzed using conventional
interval mapping. Figure 3 shows that the QTL with the main effect, such as
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Table III. The posterior distributions of the QTL (l) and QTL pair number (m) in each
case.

m
l 0 1 2 3
case 1
0 0.851 (0.080)a 0.000 (0.001) 0.000 (0.000) 0.000 (0.000)
1 0.143 (0.076) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
2 0.006 (0.005) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
3 0.000 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
case 2
0 0.000 (0.000) 0.001 (0.004) 0.006 (0.017) 0.000 (0.000)
1 0.000 (0.000) 0.901 (0.034) 0.003 (0.010) 0.000 (0.000)
2 0.000 (0.000) 0.082 (0.027) 0.000 (0.001) 0.000 (0.000)
3 0.001 (0.004) 0.004 (0.003) 0.000 (0.000) 0.000 (0.000)
4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
case 3 (µl+m = 2)b

0 0.000 (0.000) 0.000 (0.001) 0.013 (0.030) 0.000 (0.001)
1 0.000 (0.000) 0.002 (0.003) 0.902 (0.036) 0.002 (0.006)
2 0.000 (0.000) 0.004 (0.007) 0.074 (0.029) 0.000 (0.000)
3 0.000 (0.000) 0.001 (0.002) 0.002 (0.002) 0.000 (0.000)
4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
case 3 (µl+m = 3)
0 0.000 (0.000) 0.001 (0.001) 0.008 (0.014) 0.000 (0.000)
1 0.000 (0.000) 0.003 (0.003) 0.902 (0.033) 0.001 (0.008)
2 0.000 (0.000) 0.001 (0.002) 0.081 (0.031) 0.000 (0.000)
3 0.000 (0.000) 0.000 (0.000) 0.003 (0.004) 0.000 (0.000)
4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
case 3 (µl+m = 5)
0 0.000 (0.000) 0.000 (0.001) 0.005 (0.011) 0.000 (0.000)
1 0.000 (0.000) 0.002 (0.004) 0.832 (0.065) 0.004 (0.014)
2 0.000 (0.000) 0.003 (0.005) 0.139 (0.058) 0.000 (0.001)
3 0.000 (0.000) 0.001 (0.001) 0.013 (0.010) 0.000 (0.000)
4 0.000 (0.000) 0.000 (0.000) 0.000 (0.001) 0.000 (0.000)
case 4
0 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.005 (0.024)
1 0.000 (0.000) 0.001 (0.003) 0.012 (0.022) 0.007 (0.022)
2 0.001 (0.002) 0.016 (0.024) 0.888 (0.053) 0.001 (0.003)
3 0.001 (0.002) 0.002 (0.003) 0.064 (0.036) 0.000 (0.000)
4 0.000 (0.000) 0.000 (0.000) 0.002 (0.002) 0.000 (0.000)

a The figure is the average of 25 replicates.
b The figure in parenthesis represents the standard deviation.
c µl+m is the prior mean for l and m.
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Table IV. The posterior distributions of the overall mean, the locations and effects of
QTL, polygenic and environmental variances.

a See Table I.
b The figure is the average of 25 replicates.
c The figure in parenthesis represents the standard deviation.
d The figures in brackets represent the chromosome number and the estimated position (cM) of
the QTL.
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Figure 2. Histograms of the posterior distributions for locations of epistatic QTL. The
results in one of the replicates of case 3 (a) and case 4 (b) are shown, respectively.
Two triangles of the same color indicate the true positions that are epistatic, and the
arrows indicate the positions of QTL with only main effects. For convenience of ex-
planation, the two chromosomes are presented as if they were connected to each other.
The segment from the point of 100 cM to the right end represents chromosome 2.

Figure 3. LOD scores plotted against the whole genome using conventional interval
mapping. The simulated data set used was the same as in Figure 2 (a). Two triangles
of the same color indicate the true positions that are epistatic, and the arrows indicate
the positions of QTL with only main effects. For convenience of explanation, the two
chromosomes are presented as if they were connected to each other. The segment from
the point of 100 cM to the right end represents chromosome 2.



Detection of multiple QTL with epistasis 429

Figure 4. The traces of samples for QTL number (l) and QTL pair number (m) against
the iteration number. (a) and (b) show the results when l[1] = m[1] = 0 and l[1] = lmax

and m[1] = mmax, respectively. The thin line and the bold line indicate QTL number
and QTL pair number, respectively.

QTL1 and QTL2, were detectable under the single-QTL model, but epistatic
QTL without main effects could not be detected.

In case 3, it is also shown that since µl+m was larger, the posterior distribu-
tions of l and m tended to shift to slightly larger values but the influence was
not so strong as to alter their modes. For all the other parameters, quite similar
results were yielded regardless of prior means. This indicates that the method
is robust, if not perfect, to prior means of QTL number.

We also checked the influence of starting values, including the mixing be-
havior of the RJMCMC algorithm. The results are shown in Figure 4. Whether
starting with l[1] = m[1] = 0 or l[1] = lmax and m[1] = mmax, though models
which were quite different from the true one were sampled in the burn-in pe-
riod, along iterations of the sampler, l and m gradually got closer to the true
values, and finally the correct model was reached. The appropriate mixing be-
havior of the RJMCMC algorithm was observed for l, whereas for m, the sam-
pler did not frequently move to the other models. However, the extent was not
so serious, and this is not surprising because ten parameters were involved for
a pair of QTL, whereas for a single QTL only three were involved. This prob-
lem can be overcome by sufficient iterations of sampling and by lengthening
the interval at which the samples are stored.

4. DISCUSSION

Generally, it may be more likely that a quantitative trait is controlled by
multiple QTL with different modes of inheritance and effects of various sizes,
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which may have some epistatic effects on one another. To ascertain the com-
plicated mechanism of quantitative traits, conventional methods considering
only one QTL at a time, such as interval mapping [13] and composite inter-
val mapping [11, 29], have seemed to be inadequate and these may increase
the risk of both type I and type II errors. Therefore, it is necessary to develop
a more sophisticated method, in which the multiple QTL are simultaneously
taken into account. Since Bayesian approaches via MCMC algorithms have
been generally used as an alternative to maximum-likelihood and least squares
methods, several methods to detect multiple QTL have been developed in an
F2 population derived from two inbred lines such as mice and Drosophila [18],
in a crossbred population such as swine [19], in a granddaughter design such
as dairy cattle [22], and in a population with a more complex pedigree [9].

These methods are all based on the assumption that each QTL contribute
independently to a quantitative trait. The estimation of the number of QTL it-
self has been emphasized too much, while epistatic effects among them have
hardly been explored. Yi and Xu [27] developed an epoch-making method to
map multiple epistatic QTL using the Bayesian inference via MCMC algo-
rithms.

However, the authors stated that their method may not be adequate in cases
where neither of two QTL has the main effect but they have the epistatic effect.
Traits on which neither of two epistatic QTL has the main effect have been
discussed in several articles, and epistatic loci that do not have the main effect
do not seem to be negligible components in quantitative traits. van Wezel [23]
showed that mice homozygous for the STS allele at the D18Mit57 marker
and having at least one BALB/c allele at D17Mit72, and mice homozygous
for the STS allele at the D17Mit72 marker and homozygous for BALB/c allele
at the D18Mit57 marker were more susceptible to colon tumors, and stated that
the two loci had the strong reciprocal interaction, but neither had the significant
main effect. Li et al. [14] reported that, on three grain yield components in
rice, the majority of epistatic markers did not appear to have individual effects.
Then, by treating a pair of epistatic QTL as one variable in the RJMCMC
algorithm, we have made it possible for two QTL to be added to or deleted
from the model simultaneously. As a result, not only pairs of QTL that have
both the main and the epistatic effects but also those that have no main effects
but have significant epistatic effects are also detectable.

Moreover, the method proposed by Yi and Xu is designed for an inbred
population, which can be obtained easily in crops and experimental animals.
Because of a long generation interval, the risk of inbreeding depression, and
great cost for feeding and management, it is very difficult to produce an
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inbred line by repeating consanguine mating in livestock. This is the reason
why the method cannot be directly applied to complicated data in livestock,
therefore, additional careful considerations and appropriate algorithms are re-
quired. Then, as is often the case with livestock such as cattle and swine, the
model used assumes that putative QTL are diallelic with alternative alleles
fixed in two parental breeds but alleles at marker loci are not completely fixed.
We have also incorporated the deterministic approach to calculate the probabil-
ities of QTL genotypes [7], which has little effect on the accuracy of estimation
and save us considerable computing time [16, 27].

Additionally, by setting the mixed inheritance model in which a random
genetic effect, along with a multiple QTL with a moderate or large effect, is in-
cluded, the method is able to take into account QTL that are segregating within
each breed and a large number of polygenes with minute and individually
undetectable effects.

In this study, an integrated system for detecting multiple epistatic QTL in an
outbred population under the mixed inheritance model has been established.
Recently, to overcome the drawback of the previous method [27], Yi et al. [28]
have developed a more elaborate and robust method which can add or delete
QTL two by two, and unlike our method, two QTL added into the model at
the same time are not necessarily deleted together. In addition to removing in-
significant effects of QTL (whether main or epistatic) from the model and to
retaining the appropriate mixing behavior, effect indicators, which take a value
one if QTL have significant main effects and zero otherwise, were used as
additional parameters in the method. However, their method is principally de-
signed for populations with only two genotypes, e.g., a backcross population,
double haploid lines and recombinant inbred lines, and of course does not take
a polygenic effect into account. They also stated that for an F2 population in
which higher-order epistatic effects are involved, the number of parameters and
computational load will largely increase. In our method, epistatic QTL with-
out significant main effects can be detected in a relatively simple way in an F2

population, without any additional variables.

Of course, by some brief modifications, our method can be extended for
different types of design, such as the half-sib population. The method is also
robust to prior distributions and starting values, and the RJMCMC algorithm
mixes reasonably. The mixing behavior of the RJMCMC algorithm depends
on the way in which the effects of QTL added newly to the model are gener-
ated [27]. Especially, in the case of a large number of unknown parameters,
sampling values for new parameters from uniform distributions, without any
regards for the current values of the other parameters, resulted in a seriously
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low acceptance rate, i.e., “sticky” (data not shown). By conditioning the proba-
bility density function for a parameter on the current values of the other param-
eters and the phenotypic values, the mixing behavior is improved and appro-
priate convergence to the posterior distributions can be attained. As mentioned
above, the results obtained by simulation experiments were almost consistent
with the true values, and it gave researchers evidence that the system proposed
in this study will work well in real cases.
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