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Abstract – A breeding goal accounting for the effects of genotype by environment interaction
(G × E) has to define not only traits but also the environment in which those traits are to be
improved. The aim of this study was to predict the selection response in the coefficients of a
linear reaction norm, and response in average phenotypic value in any environment, when mass
selection is applied to a trait where G × E is modelled as a linear reaction norm. The optimum
environment in which to test the selection candidates for a given breeding objective was derived.
Optimisation of the selection environment can be used as a means to either maximise genetic
progress in a certain response environment, to keep the change in environmental sensitivity at a
desired rate, or to reduce the proportion of animals performing below an acceptance level. The
results showed that the optimum selection environment is not always equal to the environment
in which the response is to be realised, but depends on the degree of G × E (determined by the
ratio of variances in slope and level of a linear reaction norm), the correlation between level and
slope, and the heritability of the trait.

mass selection / selection response / reaction norm / genotype by environment interaction

1. INTRODUCTION

Genotype by environment interaction (G × E) is becoming increasingly im-
portant due to the globalisation of animal breeding. With G × E, the pheno-
typic expression of a trait in different environments, such as countries, climatic
zones or production systems, is genetically not the same trait. In such cases,
the breeding goal should define not only the traits but also the environment in
which those traits are to be improved.
∗ Corresponding author: Rebecka.Kolmodin@hgen.slu.se
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The reaction norm model, where the phenotype is described as a continu-
ous function of an environmental variable [14] is useful for studying G × E,
especially when phenotypes change gradually over an environmental scale [8],
e.g., production level or a climatic variable. In the range of environments nor-
mally encountered by a population of domestic animals, it is often reasonable
to assume that reaction norms are linear functions of the environment, as has
been found for milk production traits and fertility in dairy cattle [2, 11].

In animal breeding, a substantial research effort has been devoted to data
analysis using reaction norm models or statistically similar random regression
models [2, 7, 11], whereas a limited effort has been made for the optimisation
of breeding programmes for those situations. Kirkpatrick and Bataillon [10]
have derived equations for the maximisation of selection response in the phe-
notypic value in a specified environment to mass selection on a trait affected by
G × E. Their approach was to derive optimum index weights for observations
recorded in different environments, modelling a covariance function without
any assumptions of the shape of the reaction norm. Another approach is to
model G × E as a linear reaction norm. The advantage of this model is that se-
lection response can be predicted not only in the phenotypic expression in any
environment, but also in the environmental sensitivity of the trait (robustness
or responsiveness to changes in the environment, the slope of a linear reaction
norm). Selection response in reaction norm coefficients has previously been
described in terms of a selection gradient, expressing the covariance between
the coefficients and fitness [8, 9].

The objective of this study was to describe selection response of a trait af-
fected by G × E in terms of the selection index theory. Equations were derived
for the prediction of genetic change in reaction norm coefficients depending on
the environment in which the animals were tested. The response in the average
phenotypic value in any environment can be calculated knowing the genetic
change in reaction norm coefficients. With mass selection and G × E, the vari-
ables available for the optimisation of selection response are selection inten-
sity and the selection environment, which affect the accuracy of selection. The
focus of this study was to derive prediction equations to find the optimum envi-
ronment in which to test the selection candidates for a given breeding objective.

2. METHODS AND RESULTS

The selection index theory was combined with a reaction norm model
and the Bulmer effect. Equations will be derived for the prediction of ge-
netic change in reaction norm parameters at equilibrium genetic parameters.
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From these equations, other equations will be derived in order to find the op-
timum selection environment for (i) maximising genetic progress in a certain
environment, (ii) keeping the change in environmental sensitivity at a desired
rate, or (iii) reducing the proportion of animals performing below an accept-
able level. The equations were the main results of this study. The results are
illustrated in connection to their derivation in the methods and results section.
The implications of the results will be discussed in the discussion section.

2.1. The linear reaction norm model

The model was a linear reaction norm function for a single trait. In the fol-
lowing, the intercept and linear coefficient of a linear reaction norm will be
referred to as level and slope. The phenotype of an individual j in an environ-
ment k was modelled as

y jk = b0 + b1xk + a0 j + a1 j xk + e0 j + e1 j xk (1)

where y jk is the phenotypic value, b0 is the population average level (inter-
cept) in the average environment, b1 is the population average slope, xk is the
effect of environment k on the phenotype, a0 j and a1 j are the true breeding
values for level and slope, respectively, and e0 j and e1 j are the environmental
(residual) effects on level and slope, respectively. The term b0 + b1xk represent
the population average reaction norm. The intercept b0 is positioned in the av-
erage environment so that E(x) = 0, and breeding and environmental values
are expressed as deviations from the average reaction norm. As is common
in animal breeding, covariances between residuals of different individuals and
covariances between breeding values and residuals were assumed to be zero.
If there are reasons to assume that this is not true, the model could be extended
by the inclusion of an effect of a common environment, e.g., for individuals of
the same litter.

The slope of a linear reaction norm is a measure of sensitivity towards en-
vironmental change, which can be treated as a trait of the animal [8]. Genetic
variation for the trait environmental sensitivity results in G × E and a genetic
correlation <1 between phenotypic values of another trait measured in two
different environments.

Note that both the genetic and the environmental effects are assumed to be
linear functions of the environmental value. Consequently, also genetic and en-
vironmental variances change with the environment. The phenotypic variance
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in environment k, σ2
yk

, i.e., the variance of equation (1), was

σ2
yk = σ
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+ σ2

e0
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kσ
2
e1

= x′kGxk + x′kExk = x′kPxk (2)

where x′k is a row vector
[
1 xk

]
of the environment k and G, E and P are the

genetic, environmental and phenotypic (co)variance matrices, respectively, of
the reaction norm parameters.
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where σ2
a0

and σ2
e0

are the genetic and environmental variances of level, σ2
a1

and σ2
e1

are the genetic and environmental variances of slope, and σa0a1 and
σe0e1 are the genetic and environmental covariances between level and slope,
and P = G + E. The heritability in environment k becomes x′kGxk/x′kPxk.

2.2. Population parameters

To illustrate the theoretical results that will be derived in the following sec-
tions, a Fortran 90 deterministic simulation programme was written. The in-
finitesimal model was assumed. Input values for the simulation were genetic
and environmental parameters for the base population. The base population
total phenotypic variance was set to 1.0 in the environment of the intercept of
the reaction norm. Due to the variance of the slope, the genetic, environmental
and, consequently, also the phenotypic total variance changed with the envi-
ronment. The genetic and phenotypic total variances in three environments are
shown in Table I. When there was no correlation between level and slope, the
variance increased symmetrically with increasing distance from the environ-
ment of the intercept. With a non zero correlation between level and slope, the
variance changed asymmetrically at the two sides of the environment of the
intercept.

To illustrate varying degrees of G × E, the genetic correlation between the
trait expressed in the environment of the intercept and an environment deviat-
ing 1 SD was set to 0.95, 0.80, and 0.60, corresponding to ratios of the genetic
variances of slope and level of 0.11, 0.56, and 1.77, respectively, assuming
the genetic and environmental correlations between level and slope are zero
(Tab. I). Two other values, −0.4 and 0.4, were also studied for the correlation
between level and slope. The correlation between level and slope had little
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Table I. The correlation between the level and slope (r (level, slope), genetic and environmental correlations assumed equal), variance
ratio between slope and level, genetic correlation between the expression of a trait in the environment of the intercept and an environment
deviating 1 SD from the environment of the intercept (rg (x = 0, x = 1)), and the base population total genetic variance (σ2

G, assuming
h2 = 0.5 in the environment of the intercept) and total phenotypic variance (σ2

P) in the environment of the intercept (x = 0) and an
environment deviating 1 SD from the environment of the intercept (x = −1 and x = 1) assuming h2 was constant over the range of
environments.

r (level, slope) −0.4 0 0.4

Variance ratio 0.11 0.56 1.77 0.11 0.56 1.77 0.11 0.56 1.77

rg (x = 0, x = 1) 0.94 0.76 0.55 0.95 0.8 0.6 0.97 0.84 0.65

σ2
G |x = −1 0.82 1.05 1.65 0.56 0.78 1.39 0.29 0.51 1.12

σ2
G |x = 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

σ2
G |x = 1 0.29 0.51 1.12 0.56 0.78 1.39 0.82 1.05 1.65

σ2
P |x = −1 1.38 1.83 3.04 1.11 1.56 2.77 0.84 1.29 2.50

σ2
P |x = 0 1 1 1 1 1 1 1 1 1

σ2
P |x = 1 0.84 1.29 2.50 1.11 1.56 2.77 1.38 1.83 3.04
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influence on the genetic correlation between the trait expressed in the environ-
ment of the intercept and an environment deviating 1 SD when the variance
in the slope was small (a small variance ratio, little G × E), but a larger in-
fluence with a larger variance in the slope (larger variance ratio, more G × E)
(Tab. I). The genetic and environmental correlations between level and slope
were assumed to be equal.

Two values of base population heritability in the environment of the inter-
cept were studied: 0.2 and 0.5. For the illustration of selection response in
level and slope and in Table I, the genetic and environmental variance ratios
of slope and level were set to be equal. Then the genetic and environmental
variances were affected proportionally by the environmental effect and heri-
tability was constant over the environmental range. For the illustration of se-
lection response of the total phenotypic value in a specified environment and of
the optimum selection environment, the environmental variance of slope was
increased so that heritability decreased with an increasing distance from the
intercept, being 5% lower at 1 SD from the intercept.

The Bulmer effect was accounted for by an iterative reduction of the genetic
parameters until equilibrium was established (App. A). The equilibrium values
were used for calculations of selection response, accuracy of selection, and op-
timum selection environment. Mass selection with 10% of the males and 10%
of the females selected was assumed. The selection response is expressed in
phenotypic SD-units of the trait expressed in the environment of the intercept.

2.3. Genetic change

2.3.1. Genetic change in reaction norm parameters

The genetic change in the reaction norm parameters, level and slope, when
selecting on the phenotypic value yk is a function of the selection environ-
ment, k. From the regression of the breeding values for level and slope on the
phenotypic selection differential in environment k, it follows that

[
∆a0 ∆a1

]
= x′kGi/σyk (3)

where ∆a0 and ∆a1 are the selection responses in level and slope, respectively,

i is the selection intensity, and σyk =
√

x′kPxk is the phenotypic standard

deviation in environment k.
The accuracy of selection is the correlation between the selection criterion

(the phenotypic value) and the reaction norm parameter

ryk,a0 =
(
σao + xkra0,a1σa1

)
/σyk (4)
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and

ryk,a1 =
(
ra0,a1σao + xkσa1

)
/σyk (5)

for level and slope, respectively, and where ra0 ,a1 is the genetic correlation
between level and slope. The accuracies can be substituted into equation (3)
to give ∆a0 = iryk,a0σa0 and ∆a1 = iryk,a1σa1 , which agrees with the classi-
cal ∆G = irIAσA where rIA is the correlation between the index and the true
breeding value and σA is the genetic standard deviation [5].

The selection responses in level and slope over a range of environments are
shown in Figure 1 for a heritability that is constant over the environmental
scale. As expected, the selection environment had a larger effect on the selec-
tion response with a higher variance in slope, i.e., a the higher degree of G×E.
The correlation between level and slope affected the shape and location on the
environmental axis of the response curve. The maximum selection response in
level was achieved with selection in the average environment. When the cor-
relation between level and slope was positive, the response in level was higher
with a selection environment that was better than the average environment than
in a selection environment that was worse, and vice versa with a negative cor-
relation. Selection response in slope was always the highest with a selection
environment that was better than average and with a positive correlation be-
tween level and slope. With the lower level of heritability (0.2) the response in
both level and slope was smaller and less affected by the environmental value,
but the shape of the response curve was the same as with the higher level of
heritability (0.5) (not shown). The intermediate level of G × E (variance ra-
tio 0.56, not shown) yielded results that were intermediate between the high
and low level of G × E shown in Figure 1.

2.3.2. Genetic change in other environments

The genetic change in a defined environment, l, is a function of both the en-
vironment of selection, k, and the environment, l, where the results of selection
are expressed. When multiplying equation (3) by xl we get

∆Gl = x′kGxli/σyk (6)

where ∆Gl is the genetic change in environment l, xl is a column vector

[
1
xl

]
,

and x′kGxl is the covariance between the selection criterion yk and the genetic
merit in environment l.
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(a)

(b)

Figure 1. Selection response in (a) level and (b) slope of a linear reaction norm as a
function of the selection environment, degree of genotype by environment interaction
(variance ratio between slope and level, 0.11, open symbols, or 1.77, filled symbols),
and correlation between level and slope (−0.4, 0.0, or 0.4). Heritability was constant
0.5 over the environmental range. Selection response is expressed in phenotypic SD
units per generation and the selection environment as deviation in environmental SD
units from the average environment.
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The accuracy of selection, rkl, is the correlation between the selection crite-
rion yk and the genetic merit in environment l, a0 j + a1 j xl.

rkl =
x′kGxl

σykσAl

(7)

where σAl =
√

x′lGxl is the standard deviation of the genetic merit in envi-

ronment l. Note that combining equations (6) and (7) gives ∆Gl = irklσAl , as
expected.

The genetic correlation, rg1,2 , between the genetic merit in two environ-
ments 1 and 2, is

rg12 =
x′1Gx2√

x′1Gx1

√
x′2Gx2

(8)

where x′1Gx2 is the covariance between the genetic merit in environment 1

and 2, and
√

x′1Gx1 and
√

x′2Gx2 are the standard deviations of the true

breeding values in environments 1 and 2, respectively.
The selection response in environment l as a function of the selection envi-

ronment k is illustrated in Figure 2 for a heritability of 0.5 in the environment
of the intercept and 5% lower 1 SD from the intercept. Figure 2 shows that
maximum gain was achieved when the selection environment was close to the
response environment, but not necessarily equal. The correlation between level
and slope affected the shape of the response curve. Heritability (0.2 or 0.5 in the
environment of the intercept) affected the magnitude of response (not shown).
As for the response in level and slope, the selection environment had a larger
effect on the selection response when there was a higher variance in slope / and
a higher G × E (environmental effect with variance ratio 1.77 > 0.56 > 0.11,
variance ratio 0.56 not shown). This sensitivity of the response to the selec-
tion environment was asymmetric when level and slope were correlated, i.e.,
the cost of a sub-optimal selection environment depended on which side of
the optimum environment was the actual selection environment. With a con-
stant heritability the maximum genetic gain was achieved when the selection
environment was equal to the response environment (not shown).

2.3.3. Maximising genetic progress

A breeding goal that defines a goal trait and the environment in which the
trait is to be improved can be expressed as the expected phenotypic value,
y jl, in environment l where the animals are expected to perform in the future,
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(a)

(b)

Figure 2. Selection response in genetic merit in (a) the average environment and (b)
an environment deviating +1 SD unit from average as a function of the selection envi-
ronment, degree of genotype by environment interaction (variance ratio between slope
and level, 0.11, open symbols, or 1.77, filled symbols), and correlation between level
and slope (−0.4, 0.0, or 0.4). Heritability was 0.5 in the average environment and 5%
lower 1 SD unit from average. Selection response is expressed in phenotypic SD units
per generation and the selection environment as deviation in environmental SD units
from the average environment.
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E(y jl) = a0 j + a1 j xl. The selection criterion is the phenotypic value, y jk, in the
selection environment k. The optimum selection environment, kopt, that gives
the highest ∆Gl is found by solving ∂∆Gl/∂xk = 0. The derivation is shown in
Appendix B.

For the general case,

xkopt = x′lG

σp0 p1

−σ2
p0


/
x′lG

−σ2

p1

σp0 p1

 . (9)

When there is neither a genetic nor an environmental correlation between level

and slope the expression simplifies to xkopt =
σ2

p0
σ2

a1
xl

σ2
a0
σ2

p1

=
h2

1

h2
0
xl, when h2

0 is

defined as σ2
a0
/σ2

p0
, and h2

1 as σ2
a1
/σ2

p1
. When the genetic and environmental

variance ratios are equal so that heritability is constant over the environmen-
tal range xkopt simplifies to xkopt = xl. Note that the latter result agrees with
the classical expression for correlated response, CRl = ihkrgk,lσAl [6]. At a
constant heritability, the response in trait expression in environment l, CRl, to
selection on trait expression in environment k is maximised when the genetic
correlation between trait expression in the two environments, rgk,l is unity, i.e.,
the environments are equal.

Equation (9) shows that the optimum selection environment is a function
of the equilibrium genetic parameters. The equilibrium genetic parameters de-
pend on the efficiency of selection which, in turn, depends on the selection
environment. Therefore the optimum selection environment depends on the
environment in which the equilibrium genetic parameters have been obtained.
To find the equilibrium optimum selection environment, an optimum selection
environment was first calculated using equation (9) and base population pa-
rameters. Then the equilibrium genetic parameters in this environment were
calculated and used to calculate a new optimum environment. This procedure
was iterated until the optimum environment did not change between rounds.
In our simulation, equilibrium was reached after 1−5 iterations with a conver-
gence criterion of less than 0.1% change in an optimum environment between
rounds.

The equilibrium optimum selection environment for different response en-
vironments is shown in Figure 3a. The optimum selection environment was
not equal to the response environment and their relationship was not precisely
linear. With more G×E (higher variance ratio) and/or a flatter heritability func-
tion (2% difference between heritability in average and deviating environment,
not shown) the optimum selection environment was closer to the response en-
vironment, than with the lower variance ratio and/or a more curved heritability
function.
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To investigate the need for an iterative solution of xkopt , xkopt was calcu-
lated also using base generation parameters, and the results were compared to
the solution using equilibrium parameters. Figure 3b shows that the optimum
selection environment calculated from base population parameters was close
to the equilibrium optimum selection environment. With a higher variance in
slope, the difference between the optimum selection environment calculated
using the base population or equilibrium parameters was even smaller than that
shown in Figure 3b. Thus the calculation of xkopt directly from base generation
parameters is probably sufficient for practical applications.

2.3.4. Keeping environmental sensitivity constant

Selection for high phenotypic value in combination with a continuous im-
provement of the environment and in the presence of G × E has been shown to
increase the environmental sensitivity of a population [12]. In modern animal
production systems, genetic improvement and improvements of feeding and
management occur simultaneously. A restriction of the genetic change in en-
vironmental sensitivity can be included in the breeding objective to avoid that
the animals become increasingly sensitive to, e.g., feed quality or disease.

Since the genetic change in slope is a function of the selection environ-
ment, k, it is possible to find a selection environment that gives no change in
slope. This environment can be found numerically from a plot of ∆a1 over xk

(Fig. 1b). It can also be found analytically as the environment where there is
no covariance between the selection criterion and the true breeding value for
the slope. From equation (5) we get σy jka1 = σa0a1 + xkσ

2
a1

. Equating this to
zero gives xk∆a1=0 = −σa0a1/σ

2
a1

or, rearranged, xk∆a1=0 = −ra0,a1σa0/σa1 . In
words, the selection environment that gives no change in slope is “minus the
correlation between level and slope, scaled by the ratio of the genetic standard
deviations of level and slope”. Note that, if there is a positive correlation be-
tween level and slope, xk∆a1=0 must be negative, i.e., worse than the average
environment.

2.3.5. Desired gains in level and slope

Keeping the slope constant, as in 2.3.4., is a special case of desired gains
for level and/or slope. For the general case, a desired ratio, δ, between the
change in slope and level can be specified. From equation (3), it follows that

δ = ∆a1
∆a0
=
σa0a1+xkσ

2
a1

σ2
a0
+xkσa0a1

. Solving for xkδ , the selection environment where this
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(a)

(b)

Figure 3. (a) The equilibrium optimum selection environment for a given response
environment as a function of the degree of genotype by environment interaction (vari-
ance ratio between slope and level, 0.11, open symbols, or 1.77, filled symbols), and
correlation between level and slope (−0.4, 0.0, or 0.4). Heritability was 0.5 in the av-
erage environment and 5% lower 1 SD unit from average. The response environment
is expressed as deviation in environmental SD units from the average environment.
(b) The equilibrium optimum selection environment for a given response environ-
ment (open symbols) and the optimum selection environment calculated from base
population parameters (filled symbols). The variance ratio was 0.11 and heritability,
correlation between level and slope, and environmental values as in (a).
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Figure 4. Illustration of the proportion, p, of animals performing below a defined
acceptable phenotypic level, τy, and the environmental truncation point, τx, below
which the phenotypic value falls below the threshold.

ratio is achieved, gives xkδ
= (σa0a1 − δσ2

a0
)/(δσa0a1 − σ2

a1
). If no change in

slope is desired, then δ = 0 and xk
δ
= −σa0a1/σ

2
a1

, as shown in the previous
section.

2.3.6. Reducing the proportion of animals performing
below an acceptable level

The main interest might not be in all cases to increase the level or to re-
duce the slope. For traits related to animal welfare, it may be more relevant to
avoid poor animal performance. Besides the suffering of the animal and po-
tential costs and worries for the farmer, poor animal performance may reduce
consumer acceptance of the production system. Therefore, an objective may
be to reduce the proportion, p, of animals that perform below an acceptable
phenotypic level, say τy (Fig. 4).

Consider the population average reaction norm, E(yk) = b0 + b1xk. The ani-
mals in an environment xk < τx = (τy − b0)/b1 are expected to perform below
the acceptance level τy, where τx is the environmental truncation point, below
which yk|τx falls below the phenotypic threshold τy = b0 + b1τx. The breeding
objective, H, is to reduce the proportion p, thus H = −p, which is a non-linear
function of level and slope. The selection criterion is the phenotypic value in
the selection environment k. The problem is to find the selection environment
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that yields the largest reduction of p. The first step is to find the optimum
weights, v0 and v1, for level and slope. The breeding objective can be approx-
imated by a linear function of level and slope, H ≈ v0a0 + v1a1. Values for v0
and v1 are obtained by taking the partial derivatives of −p with respect to level
and slope, and calculating the values of the derivatives at the current popula-
tion mean (b0 and b1). The relationship between reaction norm parameters and
p arises solely via τx, so that partial derivatives can be obtained via τx

v0/1 =
∂(−p)
∂τx

∂τx

∂b0/1
· (10)

The partial derivatives are ∂(−p)/∂τx = −ϕ(τx), ∂τx/∂b0 = −1/b1, and
∂τx/∂b1 = (b0 − τy)/b2

1, where ϕ is the density function of the distribution
of the environmental values. The resulting weights are v0 = ϕ(τx)/b1 and
v1 = ϕ(τx)(τy − b0)/b2

1. Since the scaling of the weights does not affect the
selection response, v0 and v1 may be divided by ϕ(τx)/b1 to give v0 = 1 and
v1 = (τy−b0)/b1 = τx. Thus, the linearised breeding objective is H = a0+a1τx.
Note that this breeding goal corresponds to genetic gain in environment τx,
which shows that maximising the reduction of p is the same as maximising the
selection response in environment τx. Consequently, the environment of selec-
tion that maximises −∆p can be found by substituting xl by τx in equation (9).

The result that minimising p is the same as maximising the genetic change
in environment τx can be derived also in a more intuitive manner as follows:
The intercept of a reaction norm can be defined in any environment without
changing the reaction norm itself (see the discussion section). If the intercept
is defined at the environmental truncation point τx, instead of in the average
environment, the rotation of the reaction norm (change in slope) around this
intercept does not affect τx. For small changes in level and slope, the shift
of the truncation point τx, and hence, the change in p is determined entirely
by the change in level/phenotypic value in the environment τx. This argument
extends directly to higher-order reaction norms, meaning that also for quadratic
and cubic reaction norms, maximising −∆p is identical to maximising ∆G in
the environment τx. Equation (9) will need extension to higher-order reaction
norms, though.

3. DISCUSSION

The described theory is a tool for understanding the effects of G × E on se-
lection response as a function of the environment of selection and the environ-
ment where selection response is to be realised. In the case of mass selection,
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the derived equations can be used to solve the problem stated by Falconer [4]
whether to select under the conditions in which the breed is required to live,
or if it would be better to select “under some other conditions, for example
under conditions more favourable for the expression of the desired character”.
The old thesis that “the character required is best selected for under environ-
mental conditions which favour its fullest expression” [6] may suggest that one
should select in the environment, which maximises heritability. Equation (9),
however, shows that the optimum selection environment depends on, besides
the environment where selection response is to be realised, three factors: the
degree of G × E (determined by the ratio of variances in slope and level), the
correlation between level and slope, and the heritability of the trait. The results
show that the optimum selection environment is neither always equal to the en-
vironment in which selection response is to be realised, nor to the environment
where heritability is the highest (Fig. 2).

The numerical illustrations show the relations between genetic and environ-
mental parameters and selection response. The ratio between the variances in
slope and level determines the magnitude of the environmental effect on selec-
tion response. With a high variation in slope, i.e., a high degree of G × E, the
environmental value has a large effect on selection response. For prediction of
selection response for a few generations of selection, which is often of interest
in animal breeding, the prediction equations derived in this paper are relevant
even when the conditions of the infinitesimal model do not hold exactly.

The equations presented here enable the breeder to quantify the value of data
recording in a particular environment, and also to quantify the losses due to
data recording in sub-optimal environments. The small difference between the
optimum selection environment calculated using a base population or equilib-
rium parameters suggests that the optimum environment can, for convenience,
be calculated from base population parameters without losing much in genetic
gain.

It is important to realise that with a reaction norm the correlation between
level and slope depends on the location of the intercept on the environmental
scale [13]. Consider the phenotypic reaction norm y jk = b0+b1xk+ p0 j+ p1 j xk,
where p0 j and p1 j are the phenotypic values of level and slope of individual j.
A non-zero correlation between p0 j and p1 j can be removed by redefining the
intercept in such a way that the phenotype y jk at the new intercept has no
covariance with p1 j . The environment where this occurs is found by solving
σy jk,p1 j

= σp0 j+p1 j xk ,p1 j
= 0, which gives xk = −σp0 p1/σ

2
p1

. If the original
intercept is at xk = 0, then the environment where level and slope are not
correlated is at xk = −σp0 p1/σ

2
p1

. Hence, the new value of the intercept is
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b∗0 = b0 − b1σp0 p1/σ
2
p1

, and the slope is the same as for the original reaction
norm. Thus, to remove a correlation between level and slope, a positive corre-
lation requires shifting the intercept an amount σp0 p1/σ

2
p1

downwards on the
environmental scale, whereas a negative correlation requires shifting the inter-
cept the same amount upwards on the environmental scale. A zero correlation
can be achieved simultaneously on the genetic and environmental levels only
when ra0a1 = re0e1 and heritability is constant over the environmental scale.

Due to the dependency of the correlation between level and slope on the
location of the intercept on the environmental scale, estimates of the correla-
tion between level and slope should be interpreted with caution. To facilitate
the comparison of results from different reaction norm studies, authors should
report where the intercept was defined. We agree with the recommendation
of van Tienderen and Koelewijn [13] to define the intercept in the average
environment.

For species where the breeding population comprises almost the entire pop-
ulation, such as dairy cattle, the selection environment cannot simply be cho-
sen. With progeny testing, the accuracy is generally rather high, so that the
optimum environment for data recording will depend less on heritability and
more on the genetic correlation with the breeding goal. Equation (9) does not
apply to progeny testing. Instead one can argue that the optimum environment
to record progeny information will be close to the environment where the pop-
ulation has to perform in the future. Then, when progeny testing of sires is
combined with a nucleus herd for selection of cows, a near optimum solu-
tion would be to have the nucleus animals in an environment as indicated by
equation (9), and the progeny in an environment similar to the expected future
environment of production animals.

A problem arises if the environment that would give the maximum selection
response is not an ethically acceptable environment for testing animals. Testing
animals in the optimum environment for improving disease resistance, or to
reduce the proportion of animals performing very poor, might be comparable
to doing a challenge test. A major benefit in animal health and farmer economy
in coming generations could justify such a test, though for practical as well as
ethical reasons it should be done only with a small part of the population.

In order to be more applicable to practical animal breeding, the theory pre-
sented here needs to be extended to include multiple trait evaluations, more
complicated selection schemes, such as selection on BLUP procedure breed-
ing values, and non-linear reaction norm functions. Here we have assumed that
animals are in a single environment, whereas a distribution of animals across
environments is more realistic. Such a model would be useful for searching for
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an optimum distribution of selection candidates over different environments,
to optimise the use of testing capacity.
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APPENDIX A: EQUILIBRIUM GENETIC PARAMETERS

Applying the results of Bulmer [1] the equilibrium genetic parameters were
found using the following equations iteratively:

σ2
a0/1

(t + 1) =
1
4
σ2

a0/1
(t)∗
(
1 − kmr2

yi,a0/1

)
+

1
4
σ2

a0/1
(t)∗
(
1 − k f r

2
yi,a0/1

)

+
1
2
σ2

a0/1
(t = 0) (11)

where σ2
a0/1

(t) is the genetic variance in level/slope in generation t, km/ f =

im/ f (im/ f − dm/ f ), where im/ f is the selection intensity of males/females, re-
spectively, and dm/ f is the standardised deviation of the truncation point from
the mean for males/females, respectively, ryi ,a0/1is the correlation between the
phenotype and the true breeding value of level or slope (accuracy, Eqs. (4)
and (5)), and 1/2σ

2
a0/1

(t = 0) is the Mendelian sampling variance. Note that
since the accuracies depend on the selection environment, so do the equilib-
rium genetic parameters.

The covariance between level and slope, σa0a1 , in generation t + 1 is:

σa0a1(t + 1) =
1
4
σm,a0a1(t) +

1
4
σ f ,a0a1(t) +

1
2
σa0a1(t = 0) (12)

where σm/ f ,a0a1 is the covariance contributed from the males/females, respec-
tively. From Cochran [3] it follows that

σm/ f ,a0a1 (t + 1) =

σa0a1(t) − km/ f

[
σ2

a0
(t) + xiσa0a1(t)

] [
σa0a1(t) + xiσ

2
a1

(t)
]
/σ2
y|xi

(13)

where the terms between the square brackets represent the covariances between
the phenotype and the true breeding value for level and slope, respectively.
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APPENDIX B: MAXIMISING ∆G

The selection environment that maximises genetic progress in the goal en-
vironment is found by solving ∂∆G/∂xi = 0. Start from equation (6), in scalar
notation ∆G = [σ2

a0
+σa0a1 (xk + xl) +σ2

a1
xkxl]i/σyk . The selection intensity is

independent of the selection environment and can therefore be ignored. Since
the selection environment that maximises ∆G is the same environment that
maximises ∆G2, ∆G2 can replace ∆G to make the calculations easier. To sim-
plify the notation let σ2

a0
= a, σ2

a1
= b, σa0a1 = c, σ2

e0
= d, σ2

e1
= e, σe0e1 = f ,

σ2
p0
= g, σ2

p1
= h, σp0 p1 = j, xl = l, and xk = x. Then

∆G2 =
a2 + 2acl + c2l2 + 2a(bl + c)x + 2cl(bl + c)x + (bl + c)2x2

g + 2 jx + hx2
=

u
v
·

Now take the derivative with respect to x,
∂ u
v

∂x =
v ∂u∂x−u ∂v∂x
v2

= 0. To find the

solution we only need to consider the numerator, v∂u∂x − u ∂v∂x = 0. The partial
derivatives needed are ∂u/∂x = 2(c + bl)2 x + 2(c + bl)(a + cl) and ∂v/∂x =
2hx + 2 j.

To solve the resulting second-order equation v∂u/∂x − u∂v/∂x = x2[ j(c +
bl)2−h(c+bl)(a+cl)]+ x[g(c+bl)2 −h(a+cl)2]+g(c+bl)(a+cl)− j(a+cl)2 = 0
we factorise it into

v∂u/∂x−u∂v/∂x = [(c+bl)x+(a+cl)][( j(c+bl)−h(a+cl))x+g(c+bl)− j(a+cl)].

The valid solution comes from equating the second term between square brack-
ets to zero, giving x =

[
j(a + cl) − g(c + bl)

]/[
j(c + bl) − h(a + cl)

]
. Expressed

in original terms, the solution is xkopt =
σp0 p1 (σ2

a0
+σa0a1 xl)−σ2

p0
(σa0a1+σ

2
a1

xl)

σp0 p1 (σa0a1+σ
2
a1

xl)−σ2
p1

(σ2
a0
+σa0a1 xl)

, or in

matrix notation xkopt = x′lG
[
σp0 p1

−σ2
p0

]
/x′lG

[−σ2
p1

σp0 p1

]
. That this extreme was in-

deed the maximum of the function was verified by plotting ∆G over xl.
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