Genet. Sel. Evol. 38 (2006) 265-279 265
© INRA, EDP Sciences, 2006
DOI: 10.1051/gse:2006003

Original article

Parallel computations on pedigree data
through mapping to configurable computing
devices

John M. HENSHALL", Bryce Alvin LITTLE

FD McMaster Laboratory Chiswick, CSIRO Livestock Industries, Armidale,
New South Wales 2350, Australia

(Received 16 August 2005; accepted 18 November 2005)

Abstract — Pedigree data structures have a number of applications in genetics, including the
estimation of allelic or haplotype probabilities in humans and agricultural species, and the es-
timation of breeding values in agricultural species. Sequential algorithms for general purpose
CPU-based computers are commonly used, but are inadequate for some tasks on large data sets.
We show that pedigree data can be directly represented on Field Programmable Gate Arrays
(FPGA), allowing highly efficient massively parallel simulation of the flow of genes. Operating
on the whole pedigree in parallel, the transmission of genes can occur for all individuals in a sin-
gle clock cycle. By using FPGA, the algorithms to estimate inbreeding coefficients and allelic
probabilities are shown to operate hundreds to thousands of times faster than the corresponding
sequentially based algorithms. Where problems can be largely represented in an integer form,
FPGA provide an efficient platform for computations on pedigree data.

FPGA / parallel computations / pedigree data

1. INTRODUCTION

Pedigree data structures combine information from multiple individuals al-
lowing genetic effects to be distinguished from environmental effects. The
structure is highly regular: in diploid species each individual has exactly two
parents, whose identity may or may not be known. Each individual may have
records of genotype, either molecular markers from a segment on the chromo-
some, or implied genotype through an observed presence or absence of a ge-
netically determined characteristic. Quantitative trait measurements may also
exist for some or all individuals.

Through the process of meiosis, at each locus, each (diploid) individual in-
herits exactly one allele (of two available) from each parent. Since each meiosis

* Corresponding author: john.henshall @csiro.au

http://www.edpsciences.org/gse or http://dx.doi.org/10.1051/gse:2006003

http://www.edpsciences.org/gse
http://dx.doi.org/10.1051/gse:2006003

266 J.M. Henshall, B.A. Little

event is a binary choice, the set of meioses can be represented as a set of meio-
sis indicators, each taking the value of zero or one. When coupled with a set of
genotypes for individuals without known parents (founders), this set of meiosis
indicators completely specifies the genotype of all individuals in the pedigree.
The likelihood of a set of meiosis indicators and associated set of genotypes for
founders is a function of the allele frequencies in the founders and, in the case
of multilocus pedigree data, the number of recombinations observed between
linked loci.

Sequential algorithms exist to process pedigree data. If the genotype at a
locus or at loci is known for some individuals, maximum likelihood (ML)
methods are used to estimate the genotype and identity by descent (IBD) prob-
abilities for the remaining individuals (e.g. [3, 16]). These tasks are relevant
in human and livestock species in order to estimate disease status (carrier vs.
non-carrier), to seek associations between marked loci and disease or other
phenotypic characteristics, and to reconstruct haplotypes (the set of linked loci
on a chromosome). Since exact ML methods require that the likelihood be
evaluated for every possible combination of meioses, algorithms have been
developed that exploit the structure of the data to speed up the computations
(e.g. [1,2,8,9,11]), but even then, exact ML is not currently feasible for large
complex pedigrees (those with marriage or inbreeding loops). For these pedi-
grees, the estimates of the probabilities of interest can be obtained using sam-
pling based algorithms [4-6, 10, 17], the most simple of which is the gene
dropping algorithm [12], where alleles are simulated for founders and meiosis
indicators are simulated for individuals with parents. Genotype and IBD prob-
abilities can be estimated by accumulating samples that are consistent with the
observed data.

There may be thousands of individuals, genes or marked loci in the pedigree,
and sequential algorithms typically use loop constructs to iterate through the
data. Often the problem is combinatorial, and the computational cost comes
from the need to process large numbers of loops within loops. Some of the
sequential algorithms could be parallelised by running them on clusters; with
essentially each processor in the cluster performing sequential computations
for a part of the outermost loop. In this case, the speedup (time taken using the
serial implementation divided by the time taken using the parallel implemen-
tation) is at best the number of processors used in the parallel implementation.

An alternative to using a cluster of processors to parallelise an algorithm
is to use a processor that can internally parallelise the data structure. It is not
cost effective to manufacture a processor that can only be used for pedigree
data, especially since it is likely that each data set would require a custom

Parallel computations on pedigree data 267

designed processor. However, processors that can be reprogrammed to suit
specific analysis tasks are available, and are becoming more powerful. Field
Programmable Gate Arrays (FPGA) consist of an array of reprogrammable
logic cells that can be configured to represent fine grained data structures.
Salwinski and Eisenberg [15] show their use for biological data, using them
for in silico simulation at the molecular level, where the parallelism is the re-
sult of many reactions occurring in the cell simultaneously.

In pedigree data, meiosis events for other than the direct ancestors of an
individual cannot affect the individual’s genotype. In this paper we show that
this allows meioses to be simulated in parallel for layers of individuals in a
pedigree, and that the FPGA is an ideal tool for this simulation. We show that
algorithms such as gene dropping can be implemented on FPGA, with a new
sample for the whole pedigree achievable each clock cycle. We also discuss the
implementation of FPGA based parallelisation of more sophisticated sampling
algorithms for pedigree data.

2. MATERIALS AND METHODS
2.1. FPGA representation of a pedigree

The essential elements of our FPGA representation of a pedigree appear in
Figure 1. Individuals are represented by modules, which are arranged in lay-
ers (0:m), with founders (modules for individuals without parents) in layer O
and descendants in subsequent layers. Each layer represents one generation.
Where individuals produce descendants over more than one generation, mod-
ules, called holders, are utilised to pass on the alleles while remaining syn-
chronised with the rest of the alleles dropping through the pedigree. Holders
have only one parent but may have multiple progeny, and contain only mem-
ory to store the two alleles as they pass through the module. Modules other
than holders contain data and storage for the results from computations on the
individual.

At each clock cycle, alleles for founders are generated. These may be ran-
dom, fixed or generated in a systematic way (e.g. enumerating a set). Meiosis
indicators are also generated for each descendant module, and may also be ran-
dom or systematic. Computations on founder, descendant and holder modules
are completed in one clock cycle of the system, during which each descendant
receives one allele from each of its parent modules, or both alleles from its
single parent module in the case of a holder. The holder modules ensure that
all alleles in layer i at cycle ¢ dropped through layer (i — 1) at cycle (— 1) and

268 J.M. Henshall, B.A. Little

Layer 0
Allele
* * * I * * | | Generator
Founder Founder Founder | Founder
Layer 1
\ Descendant / \ Descendant / Holder Descendant ‘.‘-“‘/
/ \ / \ / y
A | & | | 4 Inheritance
Generator
Layer 2
.
Holder | Descendant | Descendant 7\ Descendant |
- A)] .- Inherltance
Generator
4
y
Layer 3
Y \
Holder Descendant / Holde Descendant X
X / ‘_ f / b
A | 4 Inheritance
Generator
\ \
Diploid Switches & Flags

Figure 1. Pipelined FPGA representation of pedigree.

originated in layer O at cycle (¢ — i), allowing the system to be pipelined. That
is, at any clock cycle, modules in the same layer are processing the same sam-
ple, but modules in different layers are not, with as many samples propagating
through the pedigree as there are layers. When the alleles drop through layer
m the sample is complete. Since this occurs during each clock cycle, a new
sample for the whole pedigree is generated each clock cycle.

Parallel computations on pedigree data 269

Paternal Alleles Maternal Alleles
Paternal : Maternal
Switch | Paternal Allele Maternal Allele _ Switch
(from e Switch Switch - (from
Inheritance | Inheritance
Generator) \ ¢ l Generator)

Haploid Register «—— Clock— Haploid Register

\

. Comparator

‘ Equivalence
Flag

Equivalence Clock
Counter

—_— _————
Diploid Haploid Switches & Flags

Figure 2. Individual module for estimating inbreeding coefficients.

2.2. Example applications
2.2.1. Estimating inbreeding coefficients

The first application considered is the estimation of inbreeding coefficients.
This is a problem for which efficient sequential algorithms exist (e.g. [14]),
but it serves well to introduce the methods. The coefficient of inbreeding (F)
for an individual can be described as the probability that the alleles carried at
a random locus are IBD. As such, the gene dropping algorithm estimates F
as the proportion of samples for which the alleles inherited by an individual
are IBD. For this problem, the structure of a descendant module appears in
Figure 2. All that is required is a comparator to check whether the alleles are
IBD and a counter to increment when they are. Founder modules are assigned
a constant pair of alleles, with only one copy of each allele occurring in layer O.
Meiosis events can be either pseudo random or, if computationally feasible, the
complete set of possible meiosis events can be enumerated to produce an ex-
act solution. When programmed on an FPGA, the allele transmission between
parents and offspring, the comparison for all individuals and the increment-
ing of the counters all take place in a single clock cycle. This is regardless of

270 J.M. Henshall, B.A. Little

Table I. Pedigree used for estimation of inbreeding coefficients (F).

ID Father Mother F
1 0 0 0
2 1 0 0
3 0 2 0
4 1 0 0
5 1 2 0.25
6 0 2 0
7 5 0 0
8 0 2 0
9 3 8 0.125

10 3 6 0.125

11 7 4 0.09375

12 3 8 0.125

13 5 2 0.375

14 3 6 0.125

15 11 4 0.296875

16 7 2 0.1875

17 13 4 0.15625

18 13 16 0.34375

19 9 16 0.171875

20 0 16 0

21 3 2 0.25

22 11 0 0

23 13 0 0

24 15 18 0.173828

25 19 18 0.332031

26 5 14 0.1875

27 19 16 0.382813

28 25 18 0.501953

29 7 28 0.277344

30 21 8 0.1875

31 23 2 0.21875

32 15 28 0.160156

the number of the individuals in the pedigree, provided that the FPGA is large
enough to store all of the individual modules.

Pedigrees of 32 individuals (Tab. I) and 60 individuals (not shown) were
used to compare the FPGA implementation of the gene dropping algorithm
with a sequential implementation of the gene dropping algorithm.

Parallel computations on pedigree data 271
2.2.2. Estimating genotype probabilities

The second application considered is the estimation of single locus geno-
type probabilities where marker information is available on some individuals.
Again, the gene dropping algorithm is applied, but founder modules differ from
those used to estimate F in that alleles are no longer unique, and are sampled
from a distribution. By sampling alleles in the founder layer from the appropri-
ate multinomial distribution, the calculation of the component of the likelihood
due to the allele frequencies in the founder layer is avoided, and a test for con-
sistency with the observed data is all that is required. Where inconsistencies
between the sampled and observed genotype are identified, the likelihood of
the sample is zero, otherwise it is non-zero and the sample can be accumulated.
The results can no longer be accumulated in the individual’s module because
whether the likelihood is zero is not known until alleles have dropped through
layer m. The storage for results for all individuals is in a terminal layer of al-
lele counters below layer m, with holder module chains of appropriate length
connecting individual modules to modules in the terminal layer (Fig. 3).

The valid allele signals from all descendants are compared and only if they
are all valid is the master valid signal set to on, allowing the count of all alleles
in the sample to proceed. Founder modules are identical to descendant mod-
ules apart from the source of alleles. On completion, the probability that an
individual has a particular genotype is the proportion of samples of non-zero
likelihood for which the individual had that particular genotype.

This algorithm was applied to an inbred pedigree of 11 individuals, with four
alleles of equal frequency in the founder layer and with genotypes assumed
known for four individuals. The pedigree appears in Table II. The algorithm
was also applied to a 20 individual pedigree (not shown) that included one
additional individual with known genotype.

2.2.3. Multi-locus pedigree data

The final application considered is the estimation of genotype probabilities
for multiple linked loci. Here the likelihood is a function of the allele fre-
quency in the founder layer and consistency with observed data as before, but
also of the number of recombinations in the sample and the assumed recombi-
nation rate. Again the calculation of the component of the likelihood due to the
allele frequency in the founder layer is avoided by sampling from the appro-
priate multinomial distribution. Similarly, the calculation of the component of
the likelihood due to recombinations is avoided by sampling recombinations

272 J.M. Henshall, B.A. Little

Paternal Alleles Maternal Alleles
Paternal m ; ; m / Maternal
Switch ., Paternal Allele / \ Maternal Allele / Switch
(from \ \ Switch / Switch 7 (from
Inheritance E / /' Inheritance
Generator) . ¢ ‘ Generator)

Haploid Register -« Clock—» Haploid Register

Alleles propagated
via Holders to o

. = Alleles for
Terminal Layer = Descendants

Allele Counter

-
Test Valid T , *— Tests from
Valid Flag VElGIAIHE B other
Allele Test Etiogal Allele
-,
Descendants Counters
-—

(Paternal X Maternal) Master Valid Flag

Allele Counter Matrix

[Clock

r. — -

Diploid & Haploid Switches & Flags

Figure 3. Individual module, chains of holders and module from terminal layer for

estimating genotype probabilities.

from the appropriate binomial distribution. Instead of counting alleles as in
Figure 3, the inheritance of haplotypes, or sets of alleles at linked loci on one

chromosome, are counted.

This algorithm was applied to the pedigree of four individuals in Table III.
The assumed recombination rate between the two loci was 0.125; allele fre-
quency assumptions were not required for the founder layer since for these
individuals, genotype was known. Speed was compared to a sequential version

of the same algorithm.

Parallel computations on pedigree data 273

Table II. Single locus pedigree used for estimation of genotype probabilities.

ID Father Mother Genotype
I 0 0 AB
2 0 0 AD
30 0 ?

4 2 1 ?

5 2 3 ?

6 2 4 DD
7 5 4 CD
8§ 5 3 ?

9 6 7 ?
10 8 7 ?

11 10 9 ?

Table ITI. Multi-locus pedigree used for estimation of genotype probabilities.

ID Father Mother Genotype

1 0 0 A-A B-B
2 0 0 c-CcCc-C
3 1 2 A-A C-C
4 1 2 B-?7C-?

2.3. Hardware and software

A Xilinx Spartan 3 (XC3S400) FPGA operating at 50 MHz was used for
the FPGA computations. Software was written in VHDL and Picoblaze™
Assembler. VHDL is a hardware description language that allows any digi-
tal electronics circuit to be represented in a text format. The FPGA was con-
figured using VHDL, after pre-processing the pedigree data to identify valid
and invalid allele combinations. This was done to minimise the space required
for storage of results on the FPGA rather than to speed up the algorithms.
Likewise, the VHDL was adjusted to minimise the size of the FPGA space
required. A Picoblaze soft processor was configured to provide an interface to
the general purpose computer. Picoblaze is the VHDL code for an 8-bit micro-
processor. It is available for general use, royalty free from the FPGA manu-
facturer, Xilinx. The Picoblaze processor is programmed into the FPGA along
with a controlling programme. The allele and inheritance generators used cel-
lular automata random number generators [7], chosen because of their suit-
ability for implementation on an FPGA, as well as their ability to produce high
quality pseudo-random numbers.

274 J.M. Henshall, B.A. Little

Table IV. Comparison of FPGA and general purpose CPU: estimating inbreeding
coeflicients.

Number of Samples Samples per Speed Samples per Samples per Speed
individuals per s s (50Mhz advantage s (3.8 GHz s(390 Mhz advantage
in (3.0 Ghz FPGA) for FPGA Pentium)* FPGA)™ for FPGA®
pedigree Pentium)
32 575000 50000 000 87 728 000 390 000 000 536
60 301 000 50000 000 166 380 000 390 000 000 1030
1000 17500 50000 000" 2860° 22 150 390 000 000 17 500

4 Estimate only by extrapolation shown in italics.
® Maximum clock speed estimate is 390 Mhz for Xilinx Virtex 4 devices.

The general purpose CPU used for comparison was a 3 GHz Pentium 4. The
parallel algorithms were coded in sequential form in Delphi™, and run on the
PC for a direct comparison.

At the time of writing, a circuit board for connection to a PC, containing the
50 MHz Xilinx Spartan 3 (XC3S400) FPGA and all necessary hardware and
software, cost approximately half as much as a 3 GHz Pentium 4 and circuit
board. High performance FPGA such as the 390 MHz Xilinx Virtex 4 cost a
similar proportion of the cost of a high performance CPU such as a 3.8 GHz
Pentium 4. The largest Xilinx Virtex 4 is approximately 25 times larger than
the Xilinx Spartan 3 (XC3S400) FPGA and could potentially process pedi-
grees with 1500 individuals for the inbreeding problem or 500 individuals for
estimating genotype probabilities.

3. RESULTS
3.1. Estimating inbreeding coefficients

For the pedigree in Table I and the pedigree of 60 individuals, the compar-
ison of the FPGA implementation with the sequential implementation of the
gene dropping algorithm appears in Table IV. The FPGA has a speed improve-
ment over the sequential algorithm of 166 times for the tested processors on
the pedigree of 60 individuals. In addition to the sampling speeds observed us-
ing the available FPGA and CPU, speeds were estimated for high performance
FPGA and CPU that were not available to us, but that are on the market. We es-
timate that these FPGA could store pedigrees of up to 1500 individuals. For the
CPU implementation, the estimate assumed a reduction in the time per sam-
ple proportional to the increased CPU speed, and an increase in sample time

Parallel computations on pedigree data 275

Table V. Comparison of FPGA and general purpose CPU: estimating genotype prob-
abilities.

Number of Valid Valid Speed Valid Valid Speed
individuals samples samples advantage samples per samples per advantage
in pers pers for FPGA s (3.8 GHz s(390 Mhz for FPGA®
pedigree (3.0 Ghz (50 Mhz Pentium)* FPGA)®
Pentium) FPGA)
11 127 6100 48 161 4600 295
20 8 635 80 10 4950 495

2 Estimate only by extrapolation shown in italics.
b Maximum clock speed estimate is 390 Mhz for Virtex 4 devices.

proportional to the increase in the number of individuals. For the FPGA, the
estimated number of samples per second is simply the number of clock cycles
per second. For a pedigree of 1000 individuals the high performance FPGA is
potentially 17 500 times faster than a high performance CPU.

3.2. Estimating genotype probabilities

Again, comparisons and storage could be performed in a single clock cycle
so a new sample was produced each clock cycle. The comparison of the FPGA
and sequential implementations of gene dropping appear in Table V. The speed
advantage of the FPGA over the general purpose CPU would be 295 times if
high performance CPU and FPGA were used. This increased to 495 times for
the pedigree of 20 individuals with one additional genotyped individual. For
these pedigrees, 0.0122% and 0.00127% of samples had non-zero likelihood,
respectively.

3.3. Multi-locus pedigree data

Table VI contains the number of samples per second for the FPGA and se-
quential implementations for the pedigree of four individuals. Even for this
small pedigree, the speed advantage would be 322 times with high perfor-
mance FPGA, and such FPGA could store a larger pedigree, in which case the
speed improvement would be greater.

4. DISCUSSION

With increasing amounts of molecular marker data being generated from in-
dividuals in human and livestock pedigrees, the estimation of allelic, IBD and

276 J.M. Henshall, B.A. Little

Table VI. Comparison of FPGA and general purpose CPU: estimating multi-locus
genotype probabilities.

Number of Valid Valid Speed Valid Valid Speed
individuals samples samples advantage for samples per samples per s advantage
in pers pers FPGA s (3.8GHz (390 Mhz for FPGA®
pedigree (3.0 Ghz (50 Mhz Pentium)® FPGA)®

Pentium) FPGA)
4 119 500 6256 000 52 151 400 48 800 000 322

4 Estimate only by extrapolation shown in italics.
® Maximum clock speed estimate is 390 Mhz for Virtex 4 devices.

haplotype probabilities is becoming common place, and the analyses are po-
tentially the rate limiting step. In this paper, we have shown that, for the sim-
ple algorithm of gene dropping, fine grained parallelisation using FPGA is
possible, and it produces considerable speed improvements over equivalent
sequential algorithms. This is because, with the FPGA implementation, each
individual is allocated what is effectively a dedicated single purpose processor,
and the speed improvement is of the order of the number of individuals. The
custom configuration of FPGA holds great potential for performance increases
for processing highly regular data structures such as pedigrees.

There is an important difference between the estimation of inbreeding co-
efficients and the other examples presented. With the estimation of inbreeding
coefficients, a given number of samples produces estimates of the same level
of precision, regardless of the size of the pedigree. So, a parallel implemen-
tation, which produces the same number of samples per second regardless of
the size of the pedigree, produces estimates of the same precision regardless
of the size of the pedigree. This is not the case with the estimation of allelic
probabilities. Adding individuals to the pedigree increases the complexity of
the problem as well as the size of the problem. For example, using gene drop-
ping on pedigrees with a similar proportion of known genotypes, as the num-
ber of individuals increases the proportion of samples that are consistent with
the observed data falls, so fewer samples are accumulated. In large datasets,
where the complete set of meioses cannot be enumerated, samples of low like-
lihood may far outnumber samples of moderate or high likelihood. Achieving
the speed improvements described here to gene dropping will not be enough
to address this problem, even if FPGA of sufficient size are available.

However, more sophisticated sequential algorithms (e.g. [1,2,4-6,8,10,17])
than gene dropping [12] have been proposed, and are currently applied to
datasets, although for some of these, the size of the analyses that can be at-
tempted is still restricted. These algorithms operate by enumerating the set of

Parallel computations on pedigree data 277

samples of high likelihood or sampling from this set. It is possible that some of
these may be implemented on FPGA, if FPGA of sufficient size are available,
in which case speed improvements similar to those described here should be
achievable.

FPGA are suited to analyses in which the data can be represented in a reg-
ular, structured way. Operations such as integer addition, logical and, or, and
exclusive or, shift operations, counters and memory storage can be completed
in a single clock cycle, allowing pipelining. Operations such as floating point
arithmetic can also be completed in a single clock cycle, although the clock
speed may need to be lowered. The main problem with floating point oper-
ations is the large amount of FPGA circuitry that is required, so algorithms
that avoid such operations are favoured. For example, where the likelihood
(or something proportional to it) must be calculated, an algorithm such as the
Metropolis Hastings [13] algorithm may be preferable to an algorithm such
as importance sampling. Although the likelihood is a real number, the storage
for results remains the same as for gene dropping algorithms if the Metropolis
Hastings algorithm is used, that is, an integer counter for each allele or haplo-
type for each individual. With importance sampling the likelihood, a floating
point number, is added for each allele or haplotype, and the storage require-
ments are significantly increased.

There is considerable scope to perform computations on pedigree data on
the hybrid circuit boards that are now becoming available. These boards con-
tain one or more FPGA closely coupled to one or more general purpose CPU.
The design of algorithms that exploit the FPGA for integer and bit operations
in parallel while performing floating point operations on the general purpose
CPU will be challenging, but if successful, systems based on hybrid boards
may be superior to either FPGA or CPU based analysis systems. An FPGA
could generate hundreds of millions of samples for a given set of parame-
ters, while on the CPU, a sequential algorithm accumulated the results from
previous FPGA runs and determined the optimal set of parameters for the next
FPGA run. Some of the hybrid circuit boards are designed to be assembled into
arrays, which may help overcome the limitations on the size of pedigree that
can be fitted onto a single FPGA. Using an FPGA coupled to a CPU may also
allow analyses on pedigrees that are too large to be stored on the FPGA. Sub-
sets of the pedigree may be loaded into the FPGA for processing, in which case
the speed advantage of the FPGA could remain constant for pedigrees larger
than the maximum that can be stored on the FPGA. If this can be achieved
then even the FPGA that are available today may be suitable for large live-
stock pedigrees, and may offer advantages over sequential algorithms.

278 J.M. Henshall, B.A. Little

In the examples presented, the pedigree and associated genotype data were
directly coded in VHDL, and reprogramming of the FPGA was required for
each pedigree. That few geneticists currently have skills in programming lan-
guages for FPGA, such as VHDL, could slow the adoption of FPGA for anal-
yses on pedigree data, particularly since some knowledge of digital electronics
is useful, and learning VHDL is not as easy as learning a new sequential com-
puter language. However, it may be possible to program the basic structure of
a general pedigree into an FPGA, and have actual pedigree data loaded at run
time by people unskilled in programming FPGA. In addition, it is likely that
suites of tools for programming algorithms for pedigree data onto FPGA will
be developed. These may have interfaces closer to the sequential programming
languages familiar to many geneticists.

It may not be possible to implement on FPGA some of the sequential al-
gorithms currently used for analysis of pedigree data. Small increases in the
complexity of the modules cause significant reductions in the number of mod-
ules that can be accommodated on the FPGA, and the FPGA available today
severely limit the size of the pedigree dataset that can be analysed. However, as
with general purpose CPU, the size and speed of FPGA are increasing, and in
the future FPGA will be available that allow parallel computations on datasets
for which current sequential algorithms cannot produce exact solutions.

5. CONCLUSION

In this paper we have shown that pedigree data can be represented in layers
allowing pipelined parallel simulation of the flow of genes. This representation
can be implemented on FPGA, and one sample for the whole pedigree can be
produced each clock cycle, regardless of the size and complexity of the pedi-
gree, provided that the pedigree can be stored on the FPGA. In the example of
gene dropping, this produces a considerable increase in sampling speed over
equivalent sequential implementations. Given a sufficiently large FPGA, more
complicated algorithms may be implemented, allowing similar speed improve-
ments, increasing the size of dataset on which analysis may be attempted.

REFERENCES

[1] Abecasis G.R., Cherny S.S., Cookson W.O., Cardon L.R., Merlin — rapid anal-
ysis of dense genetic maps using sparse gene flow trees, Nat. Genet. 30 (2002)
97-101.

[2] Cottingham R.W. Jr, Idury R.M., Schaffer A.A., Faster sequential genetic linkage
computations, Am. J. Hum. Genet. 53 (1993) 252-263.

(4]
(5]

[14]
[15]

[16]

[17]

Parallel computations on pedigree data 279

Elston R.C., Stewart J., A general model for the genetic analysis of pedigree
data, Hum. Hered. 21 (1971) 523-542.

Guo S.W., Thompson E.A., A Monte Carlo method for combined segregation
and linkage analysis, Am. J. Hum. Genet. 51 (1992) 1111-1126.

Heath S.C., Markov chain Monte Carlo segregation and linkage analysis for oli-
gogenic models, Am. J. Hum. Genet. 61 (1997) 748-760.

Henshall J.M., Tier B., Kerr R.J., Estimating genotypes with independently sam-
pled descent graphs, Genet. Res. 78 (2001) 281-288.

Hortensius P.D., McLeod R.D., Card H.C., Parallel random number genera-
tion for VLSI systems using cellular automata, IEEE T. Comput. 38 (1989)
1466-1473.

Kruglyak L., Lander E.S., Complete multipoint sib-pair analysis of qualitative
and quantitative traits, Am. J. Hum. Genet. 57 (1995) 439-454.

Lander E.S., Green P., Construction of multilocus genetic linkage maps in hu-
mans, Proc. Natl. Acad. Sci. USA 84 (1987) 2363-2367.

Lange K., Matthysse S., Simulation of pedigree genotypes by random walks,
Am. J. Hum. Genet. 45 (1989) 959-970.

Lathrop G.M., Lalouel J.M., Julier C., Ott J., Multilocus linkage analysis in hu-
mans: detection of linkage and estimation of recombination, Am. J. Hum. Genet.
37 (1985) 482-498.

MacCluer J.W., Vandeberg J.L., Read B., Ryder O.A., Pedigree analysis by
computer-simulation, Zoo. Biol. 5 (1986) 147-160.

Metropolis N., Rosebbluth A., Rosenbluth M., Teller A., Teller E., Equations
of state calculations by fast computing machines, J. Chem. Phys. 21 (1953)
1087-1092.

Meuwissen T.H.E., Luo Z., Computing inbreeding coefficients in large popula-
tions, Genet. Sel. Evol. 24 (1992) 305-313.

Salwinski L., Eisenberg D., In silico simulation of biological network dynamics,
Nat. Biotechnol. 22 (2004) 1017-1019.

Sobel E., Lange K., Descent graphs in pedigree analysis: applications to hap-
lotyping, location scores, and marker-sharing statistics, Am. J. Hum. Genet. 58
(1996) 1323-1337.

Thompson E.A., Monte Carlo likelihood in genetic mapping, Stat. Sci. 9 (1994)
355-366.

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. FPGA representation of a pedigree
	2.2. Example applications
	2.3. Hardware and software

	3. RESULTS
	 3.1. Estimating inbreeding coefficients
	3.2. Estimating genotype probabilities
	3.3. Multi-locus pedigree data

	4. DISCUSSION
	5. CONCLUSION
	REFERENCES

