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Abstract – Many of the functional traits considered in animal breeding can be analyzed as
threshold traits or survival traits with examples including disease traits, conformation scores,
calving difficulty and longevity. In this paper we derive and implement a bivariate quantitative
genetic model for a threshold character and a survival trait that are genetically and environ-
mentally correlated. For the survival trait, we considered the Weibull log-normal animal frailty
model. A Bayesian approach using Gibbs sampling was adopted in which model parameters
were augmented with unobserved liabilities associated with the threshold trait. The fully con-
ditional posterior distributions associated with parameters of the threshold trait reduced to well
known distributions. For the survival trait the two baseline Weibull parameters were updated
jointly by a Metropolis-Hastings step. The remaining model parameters with non-normalized
fully conditional distributions were updated univariately using adaptive rejection sampling. The
Gibbs sampler was tested in a simulation study and illustrated in a joint analysis of calving dif-
ficulty and longevity of dairy cattle. The simulation study showed that the estimated marginal
posterior distributions covered well and placed high density to the true values used in the simu-
lation of data. The data analysis of calving difficulty and longevity showed that genetic variation
exists for both traits. The additive genetic correlation was moderately favorable with marginal
posterior mean equal to 0.37 and 95% central posterior credibility interval ranging between 0.11
and 0.61. Therefore, this study suggests that selection for improving one of the two traits will
be beneficial for the other trait as well.

bivariate genetic model / survival trait / ordered categorical trait / Bayesian analysis

1. INTRODUCTION

Because of their economic and ethical importance, functional traits have
been given increasing priority in breeding programs for livestock during the
last decade. Functional traits can generally be regarded as those traits, which
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increase net income by reducing the cost of input rather than increasing the
output of saleable products. Numerous functional traits are considered in dairy
cattle breeding including longevity, conformation scores, calving difficulty,
and resistance to diseases (e.g. [10]). In pig breeding focus has mainly been
on leg characteristics [22, 30] and resistance to diseases [19].

As with many other traits, it is assumed that the genotypic value affecting
a functional trait results from the sum of a very large number of independent
contributions from independently segregating loci, each with a small effect.
The Central Limit Theorem leads to the result that the additive genetic value
is approximately normally distributed [4, 14]. However, phenotypically these
traits often have non-normal distributions, and many of the functional traits
considered in animal breeding can be analyzed as threshold traits or survival
traits with examples including disease resistance, conformation scores, calving
difficulty and longevity.

Analysis of threshold characters often relies on the threshold liability con-
cept first proposed by Wright [41]. Application of this model in animal breed-
ing dates back to Robertson and Lerner [34]. During the last decade, survival
analysis based on the proportional hazards model has become the method of
choice for inferring longevity [11]. Survival analysis was first proposed in an-
imal breeding by Smith and Quaas [35] for studying longevity of dairy cows.
Since then survival models have also been used to infer environmental and
genetic aspects of resistance to diseases in beef bulls [23], in fish [20] and in
pigs [19].

Knowledge of genetic parameters such as heritabilities and genetic corre-
lations are required to predict response to selection, to select among vari-
ous breeding programs based on e.g. their economic revenue, and to estimate
breeding values of selection candidates.

Multivariate quantitative genetic models for inferring an arbitrary number
of threshold characters, survival traits and linear Gaussian traits only exist for
censored linear Gaussian survival traits [25]. A recent methodology contribu-
tion includes a bivariate quantitative genetic model for a linear Gaussian trait
and a Weibull survival trait [8].

The objective of this study was to extend the methodology of Damgaard
and Korsgaard [8] to a bivariate quantitative genetic model of a threshold char-
acter and a survival trait that are genetically and environmentally correlated.
Firstly, the Bayesian model is presented and the fully conditional distributions
needed for implementing the Gibbs sampler are described. Secondly, the Gibbs
sampler is tested by simulation and a joint analysis of longevity and calving
difficulty of dairy cattle is presented for illustration of the model.
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2. MATERIALS ANDMETHODS

Let Y1i be a random variable of the ordered categorical trait of animal i for
i = 1, . . . , n, where n is the total number of animals with records. Y1i can take
values in one out of K for K ≥ 2 mutually exclusive ordered categories. The
outcome of Y1i is equal to k if τk−1 < L1i ≤ τk for k = 1, . . . ,K, where L1i

is a continuous unobserved random variable often denoted the liability and
τ = (τ0, τ1, . . . , τK) is a vector with K + 1 thresholds defined on the liability
scale with τ0 = −∞ and τK = ∞. For the survival trait let Ti and Ci be random
variables representing a survival time and a censoring time. In what follows, we
assume that all animals have records of both traits such that data on animal i is
given by (y1i, y2i, δ2i), where y1i is an observed value of Y1i, y2i is an observed
value of Y2i = min(Ti,Ci), and δ2i is the outcome of a censoring indicator
variable equal to 1 if Ti ≤ Ci and 0 otherwise. Later we consider the case
where data on one of the two traits are missing at random.

In this paper we augment the joint posterior distribution with the vector of
unobserved liabilities. By doing so the model specification is very similar to
the one already given for a bivariate model of a survival trait and a Gaussian
trait [8]. In this paper we define parameters and give the prior distribution and
the augmented posterior distribution. Regarding the fully conditional posterior
distributions we will only explicitly give them for liabilities and thresholds. For
the remaining parameters they are identical to the ones already given for a bi-
variate model of a Gaussian trait and survival trait [8] if the sampled liabilities
are considered as data from a Gaussian process.

The sampling distribution for the bivariate model will be represented by the
conditional hazard function of Ti and the joint distribution of L1 and e2

λi(t|θ, e2) = ρt(ρ−1) exp
{
x′2i(t)β2 + z

′
2ia2 + e2i

}
L1

e2

∣∣∣∣∣∣ θ ∼ N

((
X1β1 + Z1a1

0

)
,Re ⊗ In

)
(1)

where e2 with elements (e2i)i=1,...,n is a vector of residual effects of the sur-
vival traits on the log-frailty scale, which accounts for variation in log-frailty
not otherwise accounted for by the specification of the model with covariates
and random effects. Here λi(t|θ, e2) is the hazard function of Ti conditional
on model parameters (θ, e2), where θ = (ρ, β1, β2, τ, a1, a2, G, Re). The
Weibull baseline hazard function is generally given as λρρt(ρ−1) with parame-
ters ρ and λ. Here the term λρ is included on the log-frailty scale as ρ log(λ)
and is the first element of the vector β2. The p1 dimensional vector β1 and the
p2 dimensional vector β2 represent systematic effects of the threshold trait and
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the survival trait. a1 and a2 of dimension q are the vectors of additive genetic
effects, where q is the total number of animals in the pedigree, and the vectors
x′1i, x

′
2i, z

′
1i, z

′
2i are incidence arrays relating parameter effects to observations.

Finally G =
[
G11 G12

G21 G22

]
is the genetic covariance matrix, and Re=

[
R11 R12

R21 R22

]
is

the residual covariance matrix.

The time-dependent covariates of animal i are assumed to be left-continuous
and piecewise constant on the intervals hi(m−1) < t ≤ hi(m) for m = 1, . . . ,Mi,
where hi(0) = 0 and hi(Mi) = y2i, and hi(m) for m = 1, . . . , (Mi−1) are the ordered
time points at which one or more of the time-dependent covariates of animal i
changes. Finally Mi − 1 is the number of different time points with changes in
one or more of the time-dependent covariates associated with animal i.

Prior specification

A priori model parameters (β1b)b=1,...,p1
, (β2b)b=1,...,p2

, τ, ρ, (a1, a2,G) and
(e1, e2,Re) are assumed to be mutually independent. For K ≥ 3 we assume that
all elements of the residual covariance matrix Re are stochastic, implying that
only K − 3 thresholds can be identified [36]. We set τ1 = 0 and τK−1 = 1, and
assume a priori that the remaining unknown thresholds are distributed as order
statistics from a uniform (0, 1) distribution according to p(τ2, . . . , τK−2) = (K−
3)!I(τ ∈ Υ), where Υ = {(τ2, . . . , τK−2)|0 ≤ τ2 ≤ . . . ≤ τK−2 ≤ 1}. For the bi-
nary response (K = 2) it is necessary for reasons of identifiability to constrain
both the threshold and the residual variance component: we set τ1 = 0 and
Re22 = 1. Improper uniform priors are assigned to

(
β1b

)
b=1,...,p1

,
(
β2b

)
b=1,...,p2

and ρ over their range of positive support. The prior distribution of additive
genetic effects is by assumption of the additive genetic infinitesimal model [4]
assumed to be multivariate normally distributed

(
a′1, a

′
2

)′ |G ∼ N
(
0,G ⊗ Aq

)
,

where Aq is the additive genetic relationship matrix. Finally the covariance
matrices G and Re are a priori assumed to be inverse Wishart distributed ac-
cording to G ∼ IW(Fg, fg) and Re ∼ IW(Fe, fe).

2.1. Augmented posterior distribution

The augmented posterior distribution of (θ, e2,L1) is obtained using Bayes’
theorem. Here we augment the parameter vector with the vector of unobserved
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liabilities L1 = (L11, . . . , L1n)′ and posterior distribution is given by

p(θ, e2, l1|y1, y2, δ2) ∝ p(y1, y2, δ2|l1, θ, e2)p(θ, e2, l1) (2)

= p(y2, δ2|e2, θ)p(y1, l1, e2|θ)p(θ)

= p(y2, δ2|e2, θ)p(y1|l1, e2, θ)p(l1, e2|θ)p(θ)

where in the second step we used that (Y2, δ2) and (Y1,L1) are assumed to
be conditional independent given θ and e2. Further, conditional on (θ, e2),
censoring is assumed to be independent and non-informative [3] implying
that p(y2, δ2|θ, e2) ∝ ∏

i S i(y2i |θ, e2)
[
λi(y2i |θ, e2)

]δ2i , where S i(y2i |θ, e2) =

exp
{
−
y2i∫
0

λi(s|θ, e2)ds
}

is the conditional survival function. Under the assump-

tion of a proportional Weibull log-normal animal frailty model, p(y2, δ2|e2, θ)
is up to proportionality given by

ρ

n∑
i=1
δ2i

 n∏
i=1

yδ2i2i


(ρ−1)

exp


n∑
i=1

δ2i(x′2i(y2i)β2 + z
′
2ia2 + e2i)

 (3)

× exp

−
n∑
i=1

Mi∑
m=1

exp(x′2i(hi(m))β2 + z
′
2ia2 + e2i)(h

ρ
i(m) − hρi(m−1))

 .
It follows that the distribution p(y1|l1, e2, θ) is degenerate because the proba-
bility that a categorical record falls in a given category conditional on liabilities
and thresholds is completely specified. p(y1 |l1, e2, θ) is written as

n∏
i=1


K∑
k=1

I [τk−1 ≤ l1i < τk] I
[
y1i = k

] .
Finally, the conditional distribution of L1, e2|θ is multivariate normally dis-
tributed according to (1).

2.2. Fully conditional distributions

The fully conditional distributions of each or groups of model parameters
were obtained up to proportionality by retaining from the posterior distribu-
tion (2) the terms depending on the parameter of interest. By regarding the
sampled values of the liabilities as observations from a linear Gaussian trait,
the model parameters, with exception of thresholds, have fully conditional pos-
terior distribution which are identical to those given for a bivariate model of
a linear Gaussian trait and a survival trait [8]. For the liabilities assume that
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Y1i = k for k ∈ {1, . . . ,K} , then the fully conditional distribution of a liabil-
ity L1i for i = 1, . . . , n follows a truncated normal distribution on the interval
[τk−1 < l1i ≤ τk) with mean µl1i and variance Vl1i before truncation given by

µl1i = x′1i β1 + z
′
1ia1 + Re12R

−1
e22
e2i

Vl1i = Re11 − (Re12 )2R−1
e22
.

The fully conditional distribution of a threshold τk for k = 2, . . . ,K − 2 is
uniformly distributed on the interval

[
max {max {l1i|y1i = k} , τk−1} ,min {min {l1i|y1i = k + 1} , τk+1}] .

Note that this notation accommodates for the possibility of missing observa-
tions in one or more categories [1].

2.3. Model with missing observations

Missing observations for one of the two traits are often the case in field data.
If the observations are missing at random [27], then a common approach in
Bayesian analysis is to augment the joint posterior distribution with the resid-
ual effects associated with missing records (e.g. [36]). The augmented residuals
are treated as unknown parameters, so at each iteration of the Gibbs sampler
the augmented residual effects are sampled from their fully conditional pos-
terior distributions. This approach was described in details for the bivariate
model of a linear Gaussian trait and a survival trait [8]. Again if we regard the
sampled values of liabilities as observations from a linear Gaussian trait the
fully conditional distributions of augmented residuals are normally distributed
with the same mean and variance as those given for the bivariate model of a
linear Gaussian trait and a survival trait [8].

2.4. Implementation

A Gibbs sampler for the bivariate animal model (1) with no random en-
vironmental effects was implemented in Fortran 90 for data without missing
observations of the two traits. The implementation is an extension of the one
described already for a bivariate model of a linear Gaussian trait and a survival
trait [8] and will therefore only be described briefly in this study. Inferences of
model parameters were based on a single Gibbs chain. Updating of the model
parameters

(
β1, (τ)i=2,...,K−2 , (a1i)i=1,...,n ,G,Re

)
and of the liabilities (L1i)i=1,...,n
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for which the fully conditional distributions can be recognized in closed form,
was performed using standard methods. Note that the elements of the vector β1
and the elements of the matrices G and Re were jointly updated. The parame-
ters ((β2i)i=2,...,p2

, (a2i)i=1,...,n , (e2i)i=1,...,n) for which the fully conditional distri-
butions could not be recognized in closed form, were updated univariately us-
ing adaptive rejection sampling (ARS) [16]. Finally, the two Weibull baseline
parameters (ρ, β21) were updated jointly by a Metropolis-Hastings step [18,32]
using a large sample bivariate normal distribution as proposal distribution [8].

2.5. Simulation study

The proposed bivariate model was illustrated in a simulation study in which
the same model was used to generate and analyze data. Thus, focus was on the
estimation of parameters under conditions where all model assumptions were
satisfied.

Records of both traits were generated for 6000 animals after 100 unrelated
sires each having 60 offspring (balanced half-sib design) using the bivariate
model (1). The number of categories for the threshold character was three with
observed frequencies; 1: (32%), 2: (45%) and 3: (23%). Lifetimes higher than
1500 were right censored resulting in a data set with approximately 15% cen-
sored records. The model of the threshold character included a mean effect, a
sire effect and a residual effect. The model for the survival trait included the
two baseline Weibull parameters, a systematic effect with two levels, a sire
effect and a residual effect [8]. We adopted improper uniform priors for the
genetic sire covariance matrix (Gs) and the residual covariance matrix (Rẽ).

The model parameters used to simulate data and the results from the
Bayesian analysis are given in Table I. Starting values of the Gibbs sampler
of the sire and residual variances and of the two Weibull parameters were set
equal to the true values used in the simulation of data. All of the remain-
ing model parameters were initially set to zero. A Gibbs chain of length,
600 000 iterations, was run. The first 10 000 iterations were considered as
burnin and therefore discarded from the post Gibbs analysis. The interval be-
tween saved sampled values was 100, so that the total number of iterations kept
was 4900. Effective number of samples (Ne) of each parameter was calculated
by the method of batching based on 30 batches (e.g. [36]).
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Table I. Posterior summary statistics for the simulation study: marginal posterior
mode, mean, 2.5% and 97.5% percentiles, and effective sample size (Ne) of Weibull
parameters (ρ, β21), of time-independent systematic effects (β22, β23 = 0), of sire
variance components (Gs11, Gs22) and sire correlation (ρGs ), of residual variance com-
ponents (Rẽ11, Rẽ22) and residual correlation (ρRẽ).

Parameter True Mode Mean 2.5% 97.5% Ne

ρ 2.2 2.16 2.14 2.02 2.28 557
β21 −14.8 −14.20 −14.44 −15.33 −13.64 568
β22 −0.4 −0.35 −0.36 −0.45 −0.29 1945
Gs11 0.05 0.053 0.055 0.038 0.077 2538
Gs22 0.1 0.096 0.10 0.065 0.15 1798
ρGs 0.5 0.56 0.50 0.25 0.70 4293
Rẽ11 0.65 0.66 0.66 0.62 0.70 3051
Rẽ22 1.0 0.91 0.90 0.64 1.21 606
ρRẽ −0.20 −0.21 −0.20 −0.25 −0.16 3967

2.6. Example, calving difficulty and longevity

2.6.1. Data

Since 1985, Danish dairy farmers have recorded calving difficulty in one out
of five ordered categories; 1: easy without assistance, 2: easy with assistance,
3: difficult without veterinary assistance, 4: difficult with veterinary assistance,
and 5: caesarian delivery. Because of few observations, categories 3, 4, 5 were
grouped together so that calving difficulty in first lactation was defined by three
categories. Note that here we only analyzed calving difficulty in first lactation
with observed frequencies; 1 : 53%, 2: 38% and (3, 4, 5): 9%. Longevity was
defined as time from first calving until culling.

Data was extracted from the Danish national database for cattle [5] and con-
sisted of records of both traits from 16 345 Danish Holstein cows originating
from 33 herds. Only cows having their first calving in the period from Jan-
uary 1990 to June 2002 were included in the analysis. The herds were selected
so that the number of first calvings in 1990 was higher than 100 and in the
following years was within plus and minus 15% of the level in 1990. This
strategy was chosen in order to avoid herds with substantial changes in herd
size during the study period. Lifetimes of cows sold or still alive at the time of
last registered milk recording date in the extracted data were right censored,
corresponding to 26% censored records. Pedigree of the cows with records
was traced back only to their sires, implying that sires were assumed unrelated
(half-sib design). The cows were daughters after 590 sires, and the daughter-
group size ranged between 5 and 939 with an average of 28.
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2.6.2. Model and data analysis

The data was analyzed using a sire model equivalent to the animal model (1).
The threshold character was modelled with an effect of herd and an effect of
year at first calving with 12 levels, which were defined by the first of January
every year for 1991 to 2001. The survival trait was modelled with a time-
independent effect of herd and a time-dependent effect of stage of lactation
with four levels (βS L1, . . . , βS L4). The stage of lactation effect changed at each
calving and at 60, 180 and 305 days after calving in all lactations. A sire effect
and a residual effect were included for both traits allowing for additive genetic
and environmental correlation between the two traits. We adopted improper
uniform priors for the genetic sire and residual covariance matrix.

Two independent Gibbs chains of length, 600 000 iteration each, were run.
Based on visual inspection of all trace plots the first 10 000 iterations were
considered as burnin and therefore discarded from the post Gibbs analysis.
The interval between saved sampled values was 100, so that the total number of
iterations kept was 5900 for each chain. The starting values of the parameters
of the first chain were ρ = 1.7, β21 = −12.0, Gs11 = 0.02, Gs12 = 0.006,
Gs22 = 0.05 and Rẽ11 = 0.5, Rẽ12 = 0.02 and Rẽ22 = 0.2. All of the remaining
model parameters were started at zero. In the second chain, the starting values
of the two Weibull parameters were changed according to ρ = 1.2, β21 = −8.5,
whereas the remaining parameters were started as for the first chain. These
starting values are to a higher degree similar to the ones used in the Danish
routine evaluation of dairy cows (ρ = 1.07 and β21 = −8.1) [9].

The marginal posterior summary statistics of the first chain were very sim-
ilar to those of the second chain and in the following we will therefore only
give results from the second chain (Tab. II). The agreement between the two
chains provides evidence that the Gibbs sampler converged and that samples
can be regarded as generated from the posterior distribution of interest.

Because of large computation time in the joint mixed model (1) the con-
vergence of the Gibbs sampler for survival parameters were prior to the joint
analysis also assessed in univariate systematic analyses of longevity. This was
done by varying the starting values for β21 (−6 to −15) and for Rẽ22 (0.02 to
0.8). In all combinations tested, the marginal posterior summary statistics were
basically the same and similar to the corresponding ones obtained in the joint
analysis. This further suggests satisfactory convergence of the Gibbs sampler
in the joint analysis.
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Table II. Posterior summary statistics for the analysis of calving difficulty and
longevity: marginal posterior mode, mean, 2.5% and 97.5% percentiles, and effec-
tive sample size (Ne) of Weibull parameters (ρ, β21), of time-dependent stage of
lactation effects (βS L1, βS L2, βS L3 = 0, βS L4), of sire variance components (Gs11,
Gs22) and sire correlation (ρGs ), of residual variance components (Rẽ11, Rẽ22) and
residual correlation (ρRẽ), of heritability of calving difficulty on the liability scale
(h2

1 = 4Gs11/(Gs11 + Rẽ11)), and of heritability of longevity on the log-frailty scale
(h2

2 = 4Gs22/(Gs22 + Rẽ22)).

Parameter Mode Mean 2.5% 97.5% Ne

ρ 1.69 1.70 1.65 1.75 900
β21 −11.68 −11.82 −12.14 −11.51 757
βS L1 −0.33 −0.4 −0.9 −0.28 3603
βS L2 −0.38 −0.38 −0.43 −0.33 3319
βS L4 0.24 0.24 0.19 0.28 5201
Gs11 0.025 0.021 0.014 0.03 8084
Gs22 0.038 0.037 0.025 0.051 2271
ρGs

0.41 0.37 0.089 0.61 7177
Rẽ11 0.54 0.54 0.52 0.56 6831
Rẽ22 0.14 0.14 0.096 0.20 955
ρRẽ

0.023 0.023 −0.040 0.086 6536
h2

1 0.16 0.15 0.10 0.21 9080
h2

2 0.85 0.82 0.58 0.99 2076

3. RESULTS

3.1. Simulation study

The results from the simulation study showed that parameters of the bi-
variate model (1) can be correctly inferred using the proposed methodology.
The central posterior density (CPD) regions [6] defined by 2.5% and 97.5%
percentiles covered well the parameter values used in the simulation of data
(Tab. I). For example, there is 95% marginal posterior probability that the ad-
ditive genetic correlation lies between 0.25 and 0.70, which covers the true
value of 0.5 used in the simulation of data.

3.2. Example, calving difficulty and longevity

For calving difficulty in first lactation, the marginal posterior mean of
heritability on the liability scale of 0.15 is slightly larger than previously
reported heritabilities obtained from univariate threshold models (0.07 to
0.12) [17, 31, 38]. For longevity the marginal posterior mean of heritability
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on the log-frailty scale (h2
nor = 4Gs21/(Gs22 + Re22)) is 0.82 [24]. This shows

that the residual effect mainly describes additive genetic variation (i.e. genetic
differences between dams and Mendelian segregation). Note that the heritabil-
ity on the log-frailty scale for the survival trait ignores the underlying extreme
value variation (π2/6) and therefore is higher than the heritabilities most com-
monly reported in survival studies [11]. The reason why we prefer to define
heritability on the additive linear scale is that it is the most general defini-
tion of heritability that can be used both in semi-parametric and parametric
proportional hazards models, also when extended to time-dependent genetic
effects [7]. Further discussion on heritabilities and their interpretation can be
found in [24, 42].

The moderate positive marginal posterior mean of the additive genetic cor-
relation (0.37) suggests that selection for improving one of the two traits (i.e.
easier calving or reduced risk of culling) will have a beneficial effect on the
other trait as well. Note that a negative sire value for longevity corresponds
to low risk of culling, and that a low value for calving difficulty means less
problems at calving.

The low marginal posterior mean of the residual correlation (0.023) is a
bit unexpected as a calving with severe difficulties is expected to increase the
risk of culling immediately after calving. A possible explanation for the low
residual correlation is that the estimate obtained here represents the average
residual association between calving difficulty and risk of culling in course of
an animals lifetime. Therefore a high momentary residual association between
calving difficulty and risk of culling will not be exploited by the model applied.
Clearly this points to the need for alternative survival models that allow for a
time varying residual effect.

Figure 1 shows the hazard function for the first five lactations conditional on
a zero value for the systematic time-independent effects, the sire effect and the
residual effect. The average lifetime at second, third, fourth and fifth calving
defined the calving times. The hazard function shows that at the end of each
lactation the risk of culling is elevated. This result agrees with the fact that
voluntary culling, which is assumed to be the major reason for culling, mainly
takes place late in lactations [13].

Figure 2 shows the three conditional survival functions corresponding to
sire effects equal to zero, minus and plus two standard deviations of the esti-
mated sire variance (−0.38, 0.38), a zero value for the time-independent sys-
tematic effect and the residual effect. These survival curves clearly illustrate
that daughters from the best sire, say sbest = −0.38, have a substantial better
longevity than daughters of the worst sire, say sworst = 0.38. For example at
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Figure 1. Hazard function based on marginal posterior mean value of ρ, β21, βS L1,
βS L2, βS L3, βS L4 and conditional on a zero value for the systematic time-independent
effects, the sire effect and the residual effect.

the time of fourth calving (day 1134) 49% of the daughters of the best sire is
still alive compared to only 22% of the daughters of the worst sire.

4. DISCUSSION

We have presented a Gibbs sampler for joint Bayesian analysis of a thresh-
old character and a survival trait. Simulation results established that the esti-
mated marginal posterior distributions covered well the true values used in the
simulation of data. In conclusion the model parameters and functions thereof
including the additive genetic and environment correlations can be correctly
inferred applying the method proposed.

The proposed method allows inferring the additive genetic correlation be-
tween a threshold character and a survival trait under the assumption of the
additive genetic infinitesimal model [4, 14] without having to rely on approxi-
mations. The additive genetic correlation provides information about how se-
lection for an ordered categorical trait simultaneously may affect a survival
trait and vice versa. This information is essential for planning and adminis-
trating of genetic improvement programs. For example, in pig breeding the
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Figure 2. Survival functions based on marginal posterior mean value of ρ, β21, βS L1,
βS L2, βS L3, βS L4 and conditional on sire effects equal to: −0.38 (�), 0.0 (O), 0.38 (�),
a zero value for the time-independent fixed effect and the residual effect.

implemented breeding strategy implies that breeding sows are culled already
after their first or second litter so that direct selection for improved longevity
is hardly feasible. In that case the model can be used to identify and evalu-
ate correlated threshold characters (e.g. locomotion traits), which can be used
to select indirectly for improved longevity. The bivariate model has also been
suggested as a way to improve the accuracy by which especially young sires
of dairy cattle are evaluated for longevity [26, 39, 40]. The idea is to combine
longevity records with, for instance, correlated ordered categorical type traits,
which can be recorded early in life, and thereby increase the information on
longevity.

The joint analysis of calving difficulty and longevity provides a first illustra-
tion of a bivariate analysis of a threshold character and a survival trait. We did
not assess here the important step of evaluating the plausibility of the posited
model [15]. However, in agreement with previous studies we found that genetic
variation exists for both traits [13, 17].

For the genetic parameters of longevity, it is important to note that the
marginal Weibull sire model proposed in this study is different from the uni-
variate Weibull sire frailty model proposed by Ducrocq and Casella [11].
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The model proposed here includes as an extra effect a normally distributed
residual effect in log-frailty. This effect is assumed to account for unobserved
individual heterogeneity due to omitted covariates, and three quarters of the
genetic variation in a sire model. Moreover, if the residual effect is ignored
then the univariate Weibull sire model is inconsistent with assumptions of the
additive genetic infinitesimal model [2, 4, 14], and simulation results suggest
that the estimated parameters will be biased towards zero [8]. This may in part
explain why the marginal posterior means of the Weibull parameter ρ = 1.70
and the sire variance Gs22 = 0.037 obtained in this study are greater than the
ones estimated and used in the Danish routine genetic evaluation of sires for
longevity (ρ = 1.07, σ2

s = 0.030) [10]. These parameters are obtained from an
univariate Weibull sire model without a residual effect in log-frailty [11] us-
ing the Survival Kit [12]. Another part of the explanation may be that the data
analyzed in this study only is a subset of the data used for the Danish routine
genetic evaluations. Furthermore, the systematic part of the two models is not
exactly the same. However, for the purpose of ranking of selection candidates
simulation studies suggest that the difference between the two survival models
(with or with a residual effect) is inconsiderable for a sire variance in the range
0.03 to 0.05 [11].

In this study, we augmented the parameter vector with the unobserved liabil-
ities associated with the threshold trait. The advantage of this approach is that
the fully conditional distributions of parameters associated with the threshold
trait reduce to standard distribution, which are easy to sample from. While this
approach facilitates programming it is also known to cause slow mixing prop-
erties of particular thresholds (e.g. [17, 37]). Joint updating of parameters is
known to improve mixing in hierarchical models [28, 29, 33]. Along this line,
Sorensen et al. [37] suggested sampling the thresholds and the liabilities jointly
to improve the mixing of thresholds. In this study we were only concerned with
analyzing categorical data with three categories so we were not obliged with
the problem of slow mixing thresholds because they were all fixed for reason
of identifiability [37].

For some of the parameters in this paper we assumed improper uniform
prior distributions. A disadvantage with improper priors is that the posterior
distribution may turn out to be improper as well. In the case where the poste-
rior distribution is unavailable in closed form it is very difficult to demonstrate
its property. If instead all parameters are given proper priors then the poste-
rior distribution is guarantied to be proper [21]. A frequent used alternative to
improper priors is to use bounded proper priors [37]. The two univariate mod-
els that define the bivariate model are both identifiable and that together with
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the fact that the gibbs sampler fot the bivariate model worked satisfactory sug-
gests that the associated posterior distribution is proper and therefore is valid
for drawing inferences

The method described in this study can easily be extended to allow for both
direct and maternal additive genetic effects, QTL effects, time dependent ad-
ditive genetic effects for the survival trait, and an arbitrary baseline hazard
function. Damgaard and Korsgaard [8] discussed how to implement these ex-
tensions in the context of a bivariate model of a linear Gaussian trait and a
survival trait. They also sketched how this bivariate model could be general-
ized to an arbitrary number of ordered categorical characters, survival traits
and linear Gaussian traits. This paper provides a first step towards such an
analysis.
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