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Abstract – The implementation of genetic groups in BLUP evaluations accounts for different
expectations of breeding values in base animals. Notwithstanding, many feasible structures of
genetic groups exist and there are no analytical tools described to compare them easily. In
this sense, the recent development of a simple and stable procedure to calculate the Bayes
factor between nested competing models allowed us to develop a new approach of that method
focused on compared models with different structures of random genetic groups. The procedure
is based on a reparameterization of the model in terms of intraclass correlation of genetic groups.
The Bayes factor can be easily calculated from the output of a Markov chain Monte Carlo
sampling by averaging conditional densities at the null intraclass correlation. It compares two
nested models, a model with a given structure of genetic groups against a model without genetic
groups. The calculation of the Bayes factor between different structures of genetic groups can
be quickly and easily obtained from the Bayes factor between the nested models. We applied
this approach to a weaning weight data set of the Bruna dels Pirineus beef cattle, comparing
several structures of genetic groups, and the final results showed that the preferable structure
was an only group for unknown dams and different groups for unknown sires for each year of
calving.

Bayes factor / genetic groups / beef cattle / weaning weight / Bruna dels Pirineus

1. INTRODUCTION

The best linear unbiased prediction (BLUP) assumes that the base popula-
tion is unselected animals sampled from a normal distribution with a zero mean
and a variance equal to the genetic variance [11]. Nevertheless, it implies an
extensive knowledge of the pedigree of our livestock, which is often impossible
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in our experimental and commercial farms. The acquisition of selected animals
with a short or null pedigree known, or the loss of genealogical information in
our populations, are usual situations in livestock production and they may lead
to an underestimation of the genetic trend and to a biased prediction of breed-
ing values [20]. The inclusion of genetic groups in BLUP evaluation [22, 32]
accounts for differences in genetic values of base animals, overcoming the as-
sumption of equality of expectations of breeding values across geographical
origins or the temporal scale [12]. Moreover, it may be advantageous to con-
sider genetic groups as random effects, especially in situations with low her-
itabilities [26] or when small group sizes can not be avoided [3]. Including
genetic groups in the evaluation leads to an unbiased estimation of differences
between those groups, but also leads to less accurate estimated breeding values
due to an increased parameterization of the model [20]. In this sense, appropri-
ate analytical tools to determine the preferable structure of the genetic groups
become essential in the selection programs of our livestock.

Under the Bayesian framework, hypothesis testing is usually analyzed by
calculating the Bayes factor, the ratio between the marginal probabilities of
the data given the tested model, and after integrating out all parameters in the
model [14]. This methodology suffers from disadvantages due to its complex-
ity of computation in complex models or its strong dependence on the assumed
prior distributions [14]. Notwithstanding, a simple and stable Bayes factor pro-
cedure has been described to test between nested models that only differ in a
bounded variable [4, 28]. This methodology shows an important advantage in
terms of dependence to the prior distributions for all parameters, with the only
exception of the boundary variable, because they are the same in both com-
peting models and then, they are cancelled in the final calculation [28]. Taking
this as a starting point, we developed a new approach to test between different
structures of random genetic groups. Our methodology provides a Bayes factor
comparison between all pairs of structures of genetic groups, as well as with
the model without genetic groups, and it requires an only Bayes factor analysis
for each structure of groups, greatly reducing the computational and temporal
demands. The described method has been tested on a weaning weight data set
of the Bruna dels Pirineus beef cattle breed with encouraging results.

2. MATERIALS ANDMETHODS

2.1. Bayes factor between models with and without genetic groups

Now, we present a Bayes factor for a model containing genetic groups over
a non-genetic groups model. Taking as the starting point a data set with n
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phenotypic records coming from m individuals, we assumed the following
standard model (Model 1) with genetic groups as defined by Westell et al. [32]:

y = Xb + Z1p + Z2a + Z2Qg + e

where y contains the n phenotypic records, X is the incidence matrix of sys-
tematic effects (b), Z1 is the incidence matrix of the permanent environmental
effects (p) with k levels, Z2 is the incidence matrix relating observations to ad-
ditive genetic effects (a) and genetic groups (Qg), and e is the vector of residu-
als. Note that the qi j element of Q is a fraction relating the contribution of the
jth genetic group to the total genetic value of the ith individual, and g is the
column vector of order j containing the effects of genetic groups [32]. Based
on the results from the infinitesimal model, p, a and e are assumed normally
distributed:

p ∼ N
(
0, Ipσ2

p

)
a ∼ N

(
0,Aσ2

a

)
e ∼ N

(
0, Ieσ2

e

)

and, without loss of generality, g is also assumed normally distributed to pro-
vide a straightforward implementation of the Bayes factor:

g ∼ N(0, Igσ2
g)

A being the m × m numerator relationship matrix, Ip being an identity matrix
with dimensions k × k, Ie being an identity matrix with dimensions n × n,
Ig being an identity matrix with dimensions j× j, and σ2

p, σ2
a, σ2

e and σ2
g being

the permanent environmental, additive genetic, residual and between genetic
group variances, respectively. Model 1 can be reparameterized following the
standard procedure defined by Varona et al. [28] as:

y = Xb + Z1p + Z2a + e∗

where:
e∗ = Z2Qg + e.

Consequently,

e∗ ∼ N (0,V)

V = Z2QQ′Z′2σ2
g + Ieσ

2
e = σ

2
e∗
[
Z2QQ′Z′2ρ2

g + Ie
(
1 − ρ2

g

)]

where ρ2
g = σ

2
g/σ

2
e∗ is the intraclass correlation, and σ2

e∗ =
(
σ2
g + σ

2
e

)
is the

variance of e∗.
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The joint distribution of all variables in Model 1 is:
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where
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∼ N (Xb + Z1p + Z2a,V)
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where k1, k2, k3 and k4, are four small enough values to ensure flat distribution
over the parameter space.

The alternative model without genetic groups (Model 2) is:

y = Xb + Z1p + Z2a + e

where
p ∼ N

(
0, Ipσ2

p

)
a ∼ N

(
0,Aσ2

a

)
e ∼ N

(
0, Ieσ2

e∗
)
.

Then, the joint distribution of records and parameters is:
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where we can assume that prior distributions p2 (b), p2

(
p
∣∣∣σ2

p

)
, p2

(
σ2

p

)
,

p2

(
a
∣∣∣Aσ2

a

)
, p2

(
σ2
a

)
, and p2

(
σ2
e∗
)

are identical to the prior distributions of the
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previous model. And the likelihood of the model is:

p2

(
y
∣∣∣b, p, a, σ2

e∗
)
∼ N
(
Xb + Z1p + Z2a, Ieσ2

e∗
)
.

According to Varona et al. [28], only the analysis with the complex model
(Model 1) is required to calculate the Bayes factor between Model 1 and
Model 2 (BF1,2). Following García-Cortés et al. [4] and Varona et al. [28]:

BF1,2 =
p1

(
ρ2
g = 0

)
p1

(
ρ2
g = 0 |y

) = 1

p1

(
ρ2
g = 0 |y

)

because
(
ρ2
g = 0

)
= 1, or simultaneously:

BF2,1 =
p1

(
ρ2
g = 0 |y

)
p1

(
ρ2
g = 0

) = p1

(
ρ2
g = 0 |y

)
.

A BF1,2 (BF2,1) >1 (<1) indicates that the model with between genetic group
variance is more suitable. On the contrary, a BF2,1 (BF1,2)< 1 (>1) indicates
that the model without genetic groups is more probable. Sampling from the
conditional distribution of ρ2

g can be performed using a Gibbs sampler [5],

with a Metropolis-Hastings step [10]. Density p1

(
ρ2
g = 0 |y

)
suffices to obtain

BF and this value can be obtained from the Gibbs sampler output by averaging
the full conditional densities of each cycle at ρ2

g = 0 using the Rao-Blackwell
argument [4, 28].

2.2. Testing between different structures of genetic groups

The previously described Bayes factor procedure allows for a fast compar-
ison between different structures of genetic groups. Assuming that there are
several different structures of genetic groups to be tested, BF1(p),2 is the Bayes
factor between the model with the pth structure of genetic groups (Model 1(p))
and the model without genetic groups (Model 2). In this sense, the Bayes fac-
tor between the models with the pth and the qth structures of genetic groups is
easily obtained from:

BF1(p),1(q) =
BF1(p),2

BF1(q),2
=

p1(q)

(
ρ2
g = 0 |y

)
p1(p)

(
ρ2
g = 0 |y

) ·
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2.3. Bruna dels Pirineus weaning weight analysis

The analysis described above was applied to data from field records on
weaning weight of the Bruna dels Pirineus breed, a local beef cattle breed
located in the mountainous areas of Catalonia (northeastern Spain). The trait
analyzed was weight standardized at 185 days of age (weaning weight in this
population). Standardization was accomplished following BIF guidelines [1].
The available data consisted of 644 records registered in a herd between the
years 1991 and 2003. Following Quintanilla et al. [23], the assumed opera-
tional model included the sex of the calf (male or female), the year of calving
(years 1991 and 1992 were grouped due to the reduced number of calves born
in 1992; Tab. I), and the age of the dam, with 6 categories (2, 3, 4, 5, 6 and
>6 years), as systematic effects, as well as the permanent environmental ef-
fect characterized by the dam and the additive genetic effect of each calf as
random sources of variation. The loss of pedigree information throughout the
period analyzed allowed us to define different structures of genetic groups ac-
cording to the sex of the ancestor and/or the year of calving: (i) a group for
unknown sires and a group for unknown dams (S1D1); (ii) a different genetic
group for each year of calving without differentiating between sires and dams
(YR); (iii) an only genetic group for unknown dams and a different genetic
group for unknown sires within each year of calving (SYRD1); (iv) an only ge-
netic group for unknown sires and a different genetic group for unknown dams
within each year of calving (S1DYR); and (v) a different genetic group for each
year of calving and separated groups for unknown sires and dams (SYRDYR).
With respect to genealogical information, the pedigree file consisted of 999 an-
imals, 644 of them with weaning weight records (64.5%), with all dams and
84.0% of sires known for animals with phenotypic information (Tab. I). A
total of 28 sires and 344 dams were included in the pedigree, with an aver-
age of 25.1 descendants per sire, and 19.3 of them with a registered weaning
weight.

Our Bayes factor analysis was performed for each structure of genetic
groups with a total of 12 500 iterations, and 10 000 iterations were used af-
ter discarding the first 2500 as burn-in. The analysis of convergence and the
calculation of effective chain size followed the algorithms by Geyer [6] and
Raftery and Lewis [24]. All correlated samples were used to calculate the pos-
terior distribution of the intraclass correlation using the ergodic property of the
chain [7].
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Table I. Number of individuals within each year of birth (n), without sire known
(Missing sire) and without dam known (Missing dam), for animals included in pedi-
gree with and without a phenotypic record.

Animals with Animals without
phenotypic record phenotypic record

Year of Missing Missing Missing Missing
birth n sire dam n sire dam
<1982 0 0 0 150 89 76
1982 0 0 0 5 5 5
1983 0 0 0 3 3 3
1984 0 0 0 12 12 12
1985 0 0 0 5 5 5
1986 0 0 0 26 26 26
1987 0 0 0 11 11 11
1988 0 0 0 22 14 10
1989 0 0 0 16 7 4
1990 0 0 0 20 6 5
1991 40 7 0 26 4 3
1992 2 0 0 15 4 2
1993 49 4 0 16 0 0
1994 61 9 0 5 3 2
1995 99 8 0 5 0 0
1996 75 3 0 10 3 2
1997 95 3 0 8 7 7
1998 41 15 0 0 0 0
1999 0 0 0 0 0 0
2000 14 4 0 0 0 0
2001 74 23 0 0 0 0
2002 78 13 0 0 0 0
2003 16 14 0 0 0 0
Overall 644 103 0 355 200 173

2.4. Comparison with a likelihood ratio test

In order to compare our results with a standard frequentist approach, a likeli-
hood ratio test (LRT) was calculated between each model with random genetic
groups against the model without genetic groups according to the following
expression:

LRT = 2 ln


L1

(
b̂, p̂, â, σ̂2

p, σ̂
2
a, σ̂

2
e∗ , ρ̂

2
g

)
L2

(
b̂, p̂, â, σ̂2

p, σ̂
2
a, σ̂

2
e∗
)
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Table II. Estimated variance components and their ratios for each analyzed model.

σ2
a σ2

p σ2
e∗

Model Mode HPD95 Mode HPD95 Mode HPD95 h2 c2

S1D1 169.2 101.3 to 240.5 64.9 25.1 to 124.6 528.0 403.8 to 681.3 0.223 0.086
YR 193.5 125.5 to 261.0 61.8 18.8 to 130.5 502.8 401.5 to 676.9 0.256 0.081
SYRD1 161.7 90.9 to 229.1 51.1 17.7 to 107.9 544.4 433.8 to 711.4 0.213 0.067
S1DYR 189.1 118.3 to 249.2 47.1 9.6 to 105.5 522.1 426.5 to 695.3 0.250 0.062
SYRDYR 185.1 116.6 to 247.4 51.2 17.5 to 106.8 521.8 410.7 to 688.8 0.234 0.068

HPD = Highest posterior density at 95%; σ2
e∗ = σ

2
e + σ

2
g; h

2 = σ2
a/
(
σ2

a + σ
2
p + σ

2
e∗
)
;

S1D1: a genetic group for unknown sires and a genetic group for unknown dams; YR: a different
genetic group for each year of calving (sires and dams together); SYRD1: an only genetic group
for unknown dams and a different genetic group for unknown sires within each year of calving;
S1DYR: an only genetic group for unknown sires and a different genetic group for unknown
dams within each year of calving; SYRDYR: a different genetic group for each year of calving
and separated groups for unknown sires and dams.

where L1

(
b̂, p̂, â, σ̂2

p, σ̂
2
a, σ̂

2
e∗ , ρ̂

2
g

)
was the likelihood under Model 1 at maxi-

mum likelihood estimates
(
b̂, p̂, â, σ̂2

p, σ̂
2
a, σ̂

2
e∗ , ρ̂

2
g

)
and L2

(
b̂, p̂, â, σ̂2

p, σ̂
2
a, σ̂

2
e∗
)

was the likelihood under Model 2 at the maximum likelihood estimates of that
model. We tested those LRT values with a χ2-square distribution of 1 degree of
freedom [28]. Maximum likelihood estimates were obtained through a simplex
algorithm [21]. Unfortunately, comparisons by LRT between models with dif-
ferent structures of genetic groups could not be performed since this approach
requires hierarchical models to be tested [17].

3. RESULTS

Bruna dels Pirineus calves reached an average weaning weight of 243.2 kg
with a phenotypic variance of 758.1 kg. The number of required genetic groups
differed greatly depending upon the structure used. Whereas the minimum
number was achieved with the S1D1 structure, a group for unknown sires and
a group for unknown dams, 37 genetic groups were defined for the SYRDYR

structure, with a reduced number of animals directly assigned to several groups
(Tab. I). The remaining structures required between 16 (S1DYR) and 23 ge-
netic groups (SYRD1). Estimated variance components for each model are
shown in Table II. The mode of the additive genetic variance ranged between
161.7 (SYRD1) and 193.5 (YR), whereas the permanent environmental vari-
ance fluctuated between 47.1 (S1DYR) and 64.9 (S1D1). The residual variance
of Model 1, which included residuals and genetic groups after reparameteriza-
tion of the model, showed the largest estimates, ranging from 502.8 (YR) to
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Table III. Bayes factor for Model A against Model B (BFAB).

Model A
Model B WGG S1D1 YR SYRD1 S1DYR SYRDYR

WGG 1 0.83 1.42 11.23 0.77 0.63
S1D1 1.21 1 1.71 13.54 0.92 0.76
YR 0.70 0.58 1 7.89 0.54 0.44
SYRD1 0.09 0.07 0.13 1 0.07 0.06
S1DYR 1.31 1.08 1.86 14.66 1 0.82
SYRDYR 1.60 1.32 2.27 17.92 1.22 1

WGG: Model without random genetic groups; S1D1: a genetic group for unknown sires and a
genetic group for unknown dams; YR: a different genetic group for each year of calving (sires
and dams together); SYRD1: an only genetic group for unknown dams and a different genetic
group for unknown sires within each year of calving; S1DYR: an only genetic group for unknown
sires and a different genetic group for unknown dams within each year of calving; SYRDYR: a
different genetic group for each year of calving and separated groups for unknown sires and
dams.

544.4 (SYRD1). Heritability (h2) ranged from 0.213 (SYRD1) to 0.256 (YR),
with a permanent environmental coefficient (c2) close to 0.07 (Tab. II).

The Bayes factor analyses showed that only the models with the YR (BF =
1.42) and the SYRD1 (BF = 11.23) structures of genetic groups were preferable
to the model without genetic groups (Tab. III). For the remaining structures,
genetic groups were discharged with BF values between 0.63 (SYRDYR) and
0.83 (S1D1). Comparable results were obtained with the likelihood ratio test,
with significant differences observed for the YR (P < 0.05) and the SYRD1

(P < 0.001) models. Notwithstanding, P-values for the remaining structures of
genetic groups were lower or close to 0.1 (Tab. IV). In contrast to the likelihood
ratio test, our approach allowed for a cross comparison of all structures of
genetic groups among them, also including the model without genetic groups.
In this sense, we obtained the BF estimate for the 30 possible combinations (by
pairs) of the structures of genetic groups (Tab. III), with the effective analysis
of five models only. The results showed that the most preferable structure of
genetic groups was the SYRD1, with a substantial evidence (3.16 < BF <
10) in front of YR, and a strong evidence (10 < BF < 31.62) against the
remaining structures, in accordance to the Jeffreys [13] levels of evidence. The
value of the BF oscillated between 0.44 (SYRD1 vs. SYRDYR) and 2.27 (YR vs.
SYRDYR) between the remaining pairs of structures of genetic groups.

The effective size of the Markov chains for the intraclass correlation of
genetic groups was close to 1000 for all analyses (Tab. IV). The intraclass
correlations (ρ2

g) for the different structures obtained are shown in Table IV.
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Table IV. Effective chain size (ECS), mode and highest posterior density region
(HPD95) under the Bayes factor analysis and maximum likelihood estimate (MLE)
under the LRT analysis for the intraclass correlation of genetic groups. The value of
the likelihood ratio test (LRT) for the given model against the model without genetic
groups is also provided, as well as the corresponding P-value.

Bayes factor analysis LRT analysis
Model ECS Mode HPD95 MLE LRT P-value
S1D1 902.2 0.19 0 to 0.72 0.17 3.62 0.057
YR 1050.6 0.13 0.01 to 0.40 0.15 5.13 0.024
SYRD1 1017.1 0.26 0.06 to 0.53 0.25 10.66 0.001
S1DYR 978.2 0.19 0 to 0.59 0.21 3.41 0.065
SYRDYR 1038.8 0.16 0 to 0.41 0.16 2.92 0.088

S1D1: a genetic group for unknown sires and a genetic group for unknown dams; YR: a different
genetic group for each year of calving (sires and dams together); SYRD1: an only genetic group
for unknown dams and a different genetic group for unknown sires within each year of calving;
S1DYR: an only genetic group for unknown sires and a different genetic group for unknown
dams within each year of calving; SYRDYR: a different genetic group for each year of calving
and separated groups for unknown sires and dams.

Differences between the mode of the posterior density and the maximum like-
lihood estimated were minimal (±0.02). The largest ρ2

g corresponded to SYRD1,
with a mode of 0.26 and the highest posterior density interval at 95% (HPD95)
ranged between 0.06 and 0.53. The remaining structures included the null cor-
relation in their HPD95, with the only exception of the YR one (HPD95 = 0.01
to 0.40), with a mode of 0.13.

4. DISCUSSION

We developed a new approach to compare different structures of genetic
groups in the context of the BLUP model taking as the starting point the
García-Cortés’ et al. [4] and Varona’s et al. [28] Bayes factor approach to
test between nested competing models. The use of this methodology allows
for a fast and stable computation of the BF [4, 28], in contrast to other numer-
ical approximations to the BF or posterior probabilities such as the harmonic
mean [18] or the Reversible jump Markov chain Monte Carlo [9]. The effective
chain sizes (Tab. IV) were comparable with the ones reported by García-Cortés
et al. [4] and it revealed the fast mixing of the Markov chains, with a burn-in
period lower than 2500 cycles in all cases (results not shown). Moreover, as-
suming m different structures of genetic groups to test, we only have to effec-
tively analyze m models, allowing for a fast and easy computation of the BF for
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the 2
∑m

k=1 k possible combinations of models with different structures, includ-
ing the model without genetic groups. It compares the advantage of a given
model with any other one in terms of probability, without defining any null or
alternative hypothesis, in contrast with LRT or other frequentist approaches.
Moreover, LRT is only useful in testing hierarchical models. They can test a
model with genetic groups against a model without genetic groups (Tab. IV),
but the comparison between models with different structures of genetic groups
is not feasible. In contrast with likelihood-based approaches for testing sig-
nificance, Bayes factor shows several important advantages: (i) it includes all
the information provided by the data after integrating out along the parame-
ter space, not only conditioned by the maximum likelihood estimates; (ii) it
does not need to invoke asymptotic assumptions, providing exact results even
with small data sets [28]; (iii) it retains good behavior even when the hypoth-
esis to be tested is close or at the boundary of the parameter space [4], where
asymptotic properties of the likelihood ratio tests fail [25]; and (iv) it does
not require one to define any null or alternative hypothesis model, providing
a probability of both candidate models [14, 16]. However, as the information
increases, the probability of the preferable model also increases, as pointed out
by García-Cortés et al. [4] and Varona et al. [29] within the scope of variance
components and a QTL model, respectively.

The main disadvantage of the Bayesian approach is its dependence on the
assumed prior distributions. Nevertheless, our BF approach assumed identical
prior distributions for both competing models, with the only exception of the
intraclass correlation, and they are cancelled in the final formula [28,30]. Ulti-
mate methodology only includes the marginal prior and posterior distribution
for the intraclass correlation and, as a consequence, the BF results are robust
for modifications of this prior distribution. When the prior distribution of the
intraclass correlation is modified, the posterior distribution changes in the same
direction and, as a consequence, the BF remains stable [28].

The use of genetic groups in BLUP evaluation [22,32] is a useful tool to ac-
count for different expectations for breeding values in founders. Notwithstand-
ing, there is no standard structure of genetic groups to be applied in the genetic
evaluation of our livestock, and multiple assumptions can be done depending
on several factors like the magnitude of the genetic trend in our population or
the acquisition of foreign animals [8, 19, 20]. Several researches have shown
that the need for grouping is greater with high differences between groups
and could be counterproductive with small differences [15, 20], but statistical
methods specifically focused to assess the adequacy of different structures of
genetic groups or the removal of genetic groups are unavailable. In this sense,



50 J. Casellas et al.

our methodology becomes a useful tool to decide about the genetic groups and
their preferable structure.

The Bruna dels Pirineus data set showed pedigree information loss dis-
tributed along the years and for both parents, with a 30.3% of animals in pedi-
gree with at least one parent unknown (Tab. I), a percentage higher than the
one described by Golden et al. [8] in Angus cattle. Pedigree losses are usual
in extensive beef cattle where paternity information can be difficult to regis-
ter and the acquisition of foreign animals, mainly bulls, is common. In this
sense, the Bruna dels Pirineus data set is a suitable material to test our Bayes
factor procedure on several feasible structures of genetic groups. Moreover,
the reduced number of animals without known ancestors in some years does
not allow the use of fixed genetic groups and requires a random approach for
the grouping strategy [3], an important assumption in our approach. Average
weaning weight was 243.2 kg, a value close to the ones reported by Quintanilla
et al. [23] and Casellas and Piedrafita [2] in the Bruna dels Pirineus breed and
comparable with the results obtained in Brown Swiss and Pirenaica [31]. The
ratios of the variance components provided heritability estimates ranging be-
tween 0.213 and 0.256, similar to the values reported by Quintanilla et al. [23]
in the same breed, and coefficients of permanent environment lower than 0.10,
all of them comparable with the results of Quintanilla et al. [23].

The results obtained on the weaning weight mixed model showed that the
SYRD1 structure of genetic groups was preferable in Bruna dels Pirineus, an
only group for unknown dams and different groups for unknown sires within
each year of calving. The results obtained from the LRT were similar to the BF
ones, in a similar way that Varona et al. [28] observed with the same method-
ology applied to Quantitative Trait Loci detection. It is important to note that
the less (S1D1) and the most (SYRDYR) complex structures of genetic groups
were penalized in our analysis (Tabs. III, IV), reaching a theoretical equilib-
rium between the model complexity and the need to account for differences
between genetic groups. The clear advantage of the SYRD1 structure suggested
substantial differences in the average breeding value of unknown sires along
years but not in dams. Indeed, the addition of a genetic group for unknown
dams within each year of calving originated a 17.92 times less plausible model
(Tab. III). The need of different genetic groups for sires is not a surprising result
because, given the small number of sires used in cattle flocks, the replacement
of some of them can imply important changes in their average breeding value.
Moreover, this flock participated in the breeding and selection scheme of the
Bruna dels Pirineus breed, allowing for a genetic trend on weaning weight that
could increase genetic differences between animals of subsequent generations.
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On the contrary, the advantage of an only group for unknown dams, in con-
trast with different groups according to the year, could be related with the high
longevity of cows, with an average culling age of nine years [27]. This im-
plies low annual replacement rates and therefore, a small and perhaps negligi-
ble change in the average breeding value of unknown dams in pedigree along
years, just as suggested by the results of the BF and LRT analysis. Moreover,
we knew the dam of all the calves with phenotypic record and the permanent
environmental effect accounted for an alternative source of variation due to
maternal effects (genetic or environmental) which were not constrained by the
pedigree.

As a whole, our results showed that an accurate preliminary analysis be-
comes essential to decide if the inclusion of genetic groups is required and
which is the best structure to account for different expectations in breeding
values of base animals. In this context, our BF methodology allowed for a fast
and easy comparison of all models, providing the probability for each candi-
date structure.
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