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Abstract – A Bayesian procedure for analyzing longitudinal binary responses using a periodic
cosine function was developed. It was assumed that, after adjustment for “seasonal” effects, the
oscillation of the underlying latent variables for longitudinal binary responses was a stationary
series. Based on this assumption, a single dimension sinusoidal analysis of longitudinal binary
responses using the Gibbs sampling and Metropolis algorithms was implemented in a study of
clinical mastitis records of Norwegian Red cows taken over five lactations.
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1. INTRODUCTION

The study of stationary time series by means of auto-covariance functions is
often referred to as a “time domain” analysis. This can be shown to be equiv-
alent to a “frequency domain” analysis, which is based on a spectral represen-
tation of a time series [2]. In the latter, characteristics of a process are sum-
marized in terms of frequency, amplitude and phase. Frequency is the number
of complete cycles of an oscillation occurring within a period of time; ampli-
tude is the maximum value of a periodically varying series, and phase is the
distance between the origin and the nearest peak in time [2].

The analysis of co-movement between time series is of interest in eco-
nomics, and different approaches have been developed for testing whether sev-
eral economic variables have common trends or common cycles [9, 10, 16].
However, a detectable periodic component must be present in each time series
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before these tests are applicable. Stoffer [15] proposed a random effects ap-
proach for real-valued time series, in which frequency was partitioned into a
frequency common to all sequences, plus a random frequency effect peculiar to
an individual series. This can enhance a standard frequency analysis, because,
rather than focusing on an individual series only, use is made of the relation-
ships among all time series. If an individual series contains the frequency of
interest but with small amplitude, or with a lot of noise, information on other
series containing the similar harmonic curve may help to capture a particular
feature of the process [15].

Mastitis is an inflammation of the mammary gland associated with bacterial
infection; it is the most costly disease in dairy cattle [6]. A periodic analysis
implies that a signal repeats itself periodically, and this seems to be so for
clinical mastitis in cows when followed over several lactations [7]. In statistical
analysis, presence or absence of infection is typically related to some latent
variable, called “liability”. The trajectory of the liability to clinical mastitis for
each animal could be represented as the sum of some systematic effects, plus an
oscillation of a cosine function at certain frequency, plus white noise (random
residual). The frequency and amplitude of the oscillation provide information
about the variation of liabilities over time.

Figure 1(a) gives examples of cosine functions, Yt = a cos{2π f (t − θ)}, with
different amplitudes (a = 0.3 versus a = 0.6) at the same frequency ( f = 0.2)
and phase (θ = 1). For example, if a cow had a larger amplitude, it would be
more susceptible to clinical mastitis at certain periods of lactation than a cow
with a lower amplitude. In Figure 1(b), two cows have the same amplitude
(a = 0.3) and phase (θ = 1), but different frequencies ( f = 0.2 versus f = 0.5).
The cow with higher frequency (dotted curve) would be expected to contract
mastitis more frequently. The phase parameter θ indicates how early a first
mastitis case would occur. As shown in Figure 1(c), the cow associated with
the solid curve has highest risk of first mastitis at period 1, whereas the other
cow is more susceptible to a first mastitis case at period 3 of the oscillations.
On this basis, animal breeders would select cows that, genetically, have smaller
amplitude and frequency, and larger phase of the cycle.

If a random effect is included in a sinusoidal model, each cow would have a
specific frequency, amplitude and phase. In the sense of the time domain, this
means that each cow would have different mastitis risks at different time points.
For instance, the amplitude of the signal might be modeled with fixed and ran-
dom components, and a larger absolute value of the amplitude would indicate
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Figure 1. Examples of periodical time series of a cosine function at (a) different am-
plitudes, (b) different frequencies and (c) different phases.

a higher risk of mastitis. If two cows have the same frequency parameter, the
one with a larger amplitude would have a higher chance of developing mastitis.

Our objective is to embed Stoffer’s [15] approach into a generalized non-
linear mixed effects model for binary response variables. Latent variables rep-
resenting, e.g., “liability to disease”, will be modelled such that each subject
has specific frequency and amplitude parameters over time. A Bayesian model
with Markov chain Monte Carlo computations is presented in Section 2 and an
application to clinical mastitis data in dairy cattle is given.



252 Yu-mei Chang et al.

2. MATERIALS ANDMETHODS

2.1. Statistical model

The classical threshold model of quantitative genetics was adopted [4, 5, 17].
For a binary response (the idea can be extended to ordered polychotomous
data), this model postulates the existence of an unobserved underlying or latent
variable l (e.g., liability to disease) and a fixed conceptual threshold such that,
if liability exceeds the threshold, then disease occurs. In a binary response
situation, the threshold can be set arbitrarily to zero. Consider a longitudinal
case, where the binary response variable yit for cow i at period t takes the value
1 if the cow has the disease, and 0 otherwise, according to the rule:

yit =

{
1, if lit ≥ 0
0, if lit < 0,

(1)

where lit is the liability underlying yit.
Liability was modeled as a function of some systematic effects and of a

cosine function of amplitude, frequency and phase, plus random noise. The
model for liability was

lhi jkt = x′hi jktβ + z
′
h,hi jkth + z

′
p,hi jktp + aj,k cos{2π f j,k(t − θ)} + ehi jkt , (2)

where lhi jkt is the liability of cow i at period t, calving in herd h, age-season
j and daughter of sire k. Here, x′hi jkt is an incidence vector relating liability
to some systematic effects contained in β; z′h,hi jkt is an incidence vector relat-
ing liability to herd effects h; z′p,hi jkt is an incidence vector relating liability to
cow-specific effects contained in the vector p. Further, aj,k and f j,k are the am-
plitude (the maximum or minimum value of the cosine series) and frequency
(the number of complete cycles of the cosine oscillation within a period of
time), respectively, of a cosine function peculiar to age-season of first calv-
ing j and sire family k. θ is the distance between the origin and the first peak
(phase), assumed to be a known constant across all series; this can be relaxed
if different phases are evident across series. Finally, ehi jkt ∼ NIID(0, 1) where
NIID stands for “normally, independently and identically distributed.”

The assumption is that if liability is “adjusted” for the effects of β, h and p,
the remaining part of the model produces a stationary series. The oscillation
of the cosine curve depends on a “fixed” part (i.e., the age-season of first calv-
ing j) and a random part (i.e., the sire family k). The term ehi jkt is a random
noise, assumed to follow a normal process with mean 0 and variance 1. Since
liability cannot be observed, the residual standard deviation is taken as unit of
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measurement. The conditional distribution of the liability of cow i at time t is
then

lhi jkt |β, h, p, aj,k, f j,k, θ, yhi jkt
∼ TN(x′hi jktβ + z

′
h,hi jkth + z

′
p,hi jktp + aj,k cos{2π f j,k(t − θ)}, 1),

where TN stands for a normal distribution truncated following the rule in (1).
That is, the liability has to be larger or equal to zero if a cow had mastitis and
smaller than zero, otherwise.

The amplitude and frequency parameters were modeled hierarchically as

[
aj,k

f j,k

]
=

[
bj

ω j

]
+

[
s1,k

s2,k

]
.

Here, bj is the “fixed” amplitude effect, peculiar to age-season of first calving
class j, and ω j is a frequency that is peculiar to all cows in age-season of
first calving class j. Further, s1,k and s2,k are random amplitude and frequency
effects, respectively, which are peculiar to all cows that are daughters of sire
k. For simplicity, we will assume that the frequency ω j is a known constant
across all series, and drop the subscript for age-season class from the notation.
The model for liability is nonlinear with respect to frequency, but linear related
to amplitude.

Bayesian MCMC methods, such as Gibbs sampling and the Metropolis al-
gorithm, were used for drawing samples from posterior distributions of inter-
est. The sampling space of each element of β, p and h is the real line. The
parameter space for amplitude, aj,k = bj + s1,k, is also the real line. At least
two time units are required for a cycle to be finished, so the “fastest” curve
(that having the highest frequency) that can be observed is one with a period
of two time units. On the other hand, the “slowest” cosine curve is one with a
period of T time units, where T is the maximum number of time units. There-
fore, the frequency fk = ω + s2,k lies between 1

T (slowest curve) and 1
2 (fastest

curve).

2.2. Prior and posterior distributions

A bounded uniform prior distribution U[βmin, βmax] was assigned to each of
the elements of β , where βmin = −99 and βmax = 99. The vector of herd effects
h was assumed to follow the normal process

h ∼ N(0, Iσ2
h),
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where σ2
h is the variance between herds, and the cow-specific effects p (usually

termed “permanent environmental effects” in animal breeding) were assumed
to be normally distributed, a priori, as

p ∼ N(0, Iσ2
p),

where σ2
p is the variance of the distribution.

Independent bounded uniform priors were assigned to the “fixed” ampli-
tude, such that bj ∼ U[0, bmax] for all j, where bmax = 9. The random sire
variables s1,k and s2,k, interpretable as half of the additive genetic values of a
sire, were assumed to follow a truncated bivariate normal distribution, which
in the absence of truncation would be[

s1,k

s2,k

]
∼ N(0,G0),

where

G0 =

[
g1,1 g1,2

g1,2 g2,2

]
.

Here, G0 is the 2 × 2 (co)variance matrix between the random sire amplitude
and frequency effects. The truncation points for the normal distribution are
described later. Let s = [s′1, s

′
2] where si = [si,1, si,2, . . . , si,q]′ (i = 1, 2). Thus,

the vector s ∼ N(0,G0⊗A), where A is the known additive genetic relationship
matrix between sires, and q is the total number of sires in the pedigree.

As mentioned, the frequency fk = ω + s2,k of the curve must be such that

1
T
≤ ω + s2,k ≤ 1

2
,

where 1
T is the bound pertaining to the slowest curve and 1

2 is the upper bound
for the fastest curve. These conditions had to be met during the MCMC sam-
pling processes.

Independent scaled inverse Chi-square prior distributions were assigned to
both the herd and permanent environmental variances, that is

σ2
h ∼ νhτhχ−2(νh, τh),

and
σ2

p ∼ νpτpχ−2(νp, τp),

where νh=νp=3 are the degrees of freedom, and τh = 0.06 and τp = 0.1 are the
scale parameters. The (co)variance matrix G0 was assumed to follow, a priori,
the inverse Wishart distribution

G0 ∼Wishart−1(νG0 ,VG0),
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where νG0 = 4 is the degrees of freedom and VG0 is the scale matrix with
diagonal elements equal to 0.0002 and off-diagonal element equal to 0.00001.

The joint prior density of all uncertain quantities, after augmentation with
the liabilities (represented by the vector l), was assumed to have the form

p(β, h, p, b, s, σ2
h, σ

2
p,G0, l)

= p(β)p(h|σ2
h)p(p|σ2

p)p(b)p(s|G0)p(σ2
h)p(σ2

p)p(G0)p(l|β, h, p, b, s),

where the dependence on hyper-parameters is suppressed in the notation. The
joint posterior density above can be written explicitly as,

p(l,β, h, p, b, s, σ2
p, σ

2
h,G0|y, θ, ω)

∝ exp

−1
2

N∑
i=1

Ti∑
t=1

[
lhi jkt−x′hi jktβ−z′h,hi jkth−z′p,hi jktp − aj,k cos{2π fk(t−θ)}

]2
× |G0 ⊗ A|− 1

2 exp

{
−1

2
s′(G0 ⊗ A)−1s

}

× (σ2
h)−

Nh
2 exp

− 1

2σ2
h

h′h


× (σ2
p)−

N
2 exp

− 1

2σ2
p
p′p


× (σ2
h)−(

νh
2 +1) exp

−νhτh2σ2
h


× (σ2

p)−(
νp
2 +1) exp

−νpτp
2σ2

p


× |G0|

−(νG0
+3)

2 exp

{
−1

2
tr(VG0G

−1
0 )

}
,

where N is the number of cows with records, Ti is the number of periods for
cow i, and Nh is the number of herds. This density is defined within the bound-
aries defined by the truncation points of the priors and by the parameter rela-
tionships.

The fully conditional posterior distributions of all unknowns can be de-
rived from the joint posterior density (e.g., [1, 13, 14]). Given the liabilities,
all conditional posterior distributions are recognizable, except those of the fre-
quency parameters of the cosine function, since these enter non-linearly into
the model. The vector β has a truncated multivariate normal distribution, and
the conditional posterior distributions of both h and p are multivariate normal.
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Thus, each element of β has a truncated univariate normal conditional pos-
terior distribution, and each element of h and p follows a univariate normal
distribution.

The “fixed” (bj) and random parts (s1,k) of the amplitude enter linearly in the
model for liabilities, so their conditional posterior distributions can be derived
from the joint posterior distribution directly. Let l∗ be a vector of offsets with
elements equal to

l∗hi jkt = lhi jkt − x′hi jktβ − z′h,hi jkth − z′p,hi jktp − s1,k cos{2π fk(t − θ)},

where lhi jkt is liability, as before. Note that l∗hi jkt = bj cos{2π fk(t − θ)} + ehi jkt .

Also, let l∗j = {l∗hi jkt} be a vector of all offsets within the jth age-season of first
calving, and c j be a column vector, with elements equal to cos{2π fk(t − θ)} for
all records in the jth age-season class. The conditional posterior distribution of
the “fixed” amplitude bj is then

bj ∼ TN

 c
′
jl
∗
j

c′jc j
,

1
c′jc j

 ·
The conditional posterior distribution of the random sire amplitude s1,k can be
derived in a similar fashion. Let now l∗ be a vector of offsets with elements
equal to

l∗hi jkt = lhi jkt − x′hi jktβ − z′h,hi jkth − z′p,hi jktp − bj cos{2π fk(t − θ)}.

Also, let l∗k = {l∗hi jkt} be a vector of all offsets of daughters of sire k. In addition,
let ck be a column vector, with elements equal to cos{2π fk(t−θ)} for all records
of sire k. The conditional posterior distribution of the amplitude of sire k is,

s1,k ∼ N(ŝ1,k, (c′kck + g
11Ak,k)−1),

where

ŝ1,k = (c′kck + g
11Ak,k)−1{c′kl∗k − Ak,kg12s2,k − Ak,−k(g11s1,−k + g12s2,−k)}.

Here, gi j is the ith row and jth column of matrix G−1
0 ; Ak,k is the kth diagonal

element of the matrix A−1; Ak,−k is the kth row of the matrix A−1 without the
kth element; si,−k, where i = 1, 2, is the vector obtained from si by deleting its
kth row.

The conditional posterior distributions of the frequency (s2,k) of sires with
progeny records do not have a closed form. A Metropolis algorithm was used
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to sample these elements from their conditional posterior distributions. The
algorithm is described in the following section.

The herd and cow-specific variances have scaled inverse Chi-square con-
ditional posterior distributions. The genetic (co)variance matrix has a condi-
tional posterior distribution that is in an inverse Wishart form. In short, Gibbs
sampling can be used to draw from all recognizable conditional distributions,
whereas Metropolis steps can be embedded in the scheme in order to draw the
sire specific frequency effects.

2.3. Metropolis algorithm

A single-site Metropolis algorithm was tailored to sample sire-specific fre-
quency parameters for sires with daughter records from their posterior dis-
tributions. The Metropolis implementation was done within each sire class.
Univariate normal proposals were used for s2,k, and new candidates were gen-
erated from:

s∗2,k ∼ N(s(p−1)
2,k , σ

2
s2

),

where s(p−1)
2,k is the value of s2,k at the (p − 1)th iteration of the sampler, and

σ2
s2

is some fixed positive numbers leading to a reasonable rejection rate in the
sampling process. Let again l∗hi jkt = lhi jkt− x′hi jktβ−z′h,hi jkth−z′p,hi jktp, and recall
that fk = ω + s2,k for all records of cows that are daughters of sire k. Then, the
probability of accepting s∗2,k as a draw from its posterior can each be calculated
as:

αs2,k =

min


1,

Nk∏
i=1

Ti∏
t=1

exp

[
−1

2
[[l∗hi jkt−aj,k cos{2π(ω +s∗2,k)(t − θ)}]2+s′∗G−1s∗]

]

Nk∏
i=1

Ti∏
t=1

exp

[
−1

2
[[l∗hi jkt−aj,k cos{2π(ω +s(p−1)

2,k )(t − θ)}]2+s′(p−1)G−1s(p−1)]

]


.

Here, Nk is the number of daughters of sire k and G−1 = G−1
0 ⊗ A−1.

For sires that were present in pedigree file but lacked progeny records, the
fully conditional posterior distributions of their frequency parameter can be
shown to be the normal processes

s2,k ∼ N((g22Ak,k)−1(−g22Ak,−ks2,−k − g12Ak,s1), (g22Ak,k)−1).

Above, Ak,−k is the kth row of the A−1 matrix obtaining after deleting the Ak,k

element, and Ak, is the kth row of the A−1 matrix. In addition, si,−k denotes a
vector obtained by deleting the kth row of si.
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2.4. Application to clinical mastitis

2.4.1. Data

The data set represents a cohort of 36 178 cows of the Norwegian Red (NRF)
breed from 5286 herds, which are the progeny of 245 sires. These cows were
followed longitudinally for presence or absence of clinical mastitis until culled,
or until completion of their fifth lactation, whichever occurred first. The inter-
val ranging from 30 days prior to calving to 300 days post-partum was divided
into five biologically meaningful periods: (−30,0), (1,30), (31,120), (121,210)
and (211,300) for each cow in each of the first five lactations. These periods
correspond to distinct physiological stages of lactation: pre-calving, calving
and start of milking, early lactation, mid-lactation and late lactation. Although
the periods span different lengths of time, we interpret them as units of “bi-
ological time”. The idea here is that periodicity reflects “biological” and not
chronological time. The response variables were presence or absence of clini-
cal mastitis in each of the potential 25 periods. If a cow had at least one mastitis
treatment within a given period (which is rare), the record was scored as “pres-
ence”, and as “absence” otherwise. Hence, each cow had at most five records
on presence or absence of clinical mastitis in each lactation; a missing record
occurred when a cow was culled before 300 days in the corresponding lacta-
tion. Culled cows had mastitis records for the period in which they were culled
even if this period was not complete. This overstates somewhat resistance to
mastitis in that period, because the opportunity of infection is smaller.

As mentioned, a cow had at most 25 binary records over the five lacta-
tions. About 72% and 45% of the cows had complete first and second lac-
tation records, respectively. Out of the original 36 178 cows, 11 219, 5797 and
2643 cows stayed in the herd until the last period of the third, fourth and fifth
lactations, respectively. Table I gives the number of cows and the correspond-
ing mastitis incidence rates, by period, for each of the five lactations. The high-
est incidence rates of clinical mastitis were found for the first month after calv-
ing (periods 2, 7, 12, 17 and 22); here, incidence rate ranged from 10.1% to
18.6%. Subsequently, there was a decrease in incidence. This indicates a peri-
odical pattern in the process of infection.

Mastitis incidences for sires with the highest and lowest amplitude and fre-
quency along the first five lactations are presented in Figure 2. The raw series
were not stationary, since incidence of clinical mastitis increased with parity.
A similar pattern was observed across sires in the four groups. The first peaks
were observed in the second period for almost all sires; mastitis increases after
calving and then decreases, with this pattern repeated lactation after lactation.
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Table I. Total number of cows and mastitis incidence, by period, for each of five
lactations.

Period Lactation Days from calving Number of cows Mastitis incidence
1 1 -30–0 36 178 4.7%
2 1 1–30 36 178 10.1%
3 1 31–120 34 868 5.6%
4 1 121–210 32 644 4.4%
5 1 211–300 29 854 3.9%

6 2 -30–0 24 631 3.9%
7 2 1–30 24 631 11.5%
8 2 31–120 23 995 10.6%
9 2 121–210 22 131 7.3%

10 2 211–300 19 431 5.1%

11 3 -30–0 15 296 4.4%
12 3 1–30 15 296 15.3%
13 3 31–120 14 675 13.1%
14 3 121–210 13 123 8.3%
15 3 211–300 11 219 6.0%

16 4 -30–0 8396 4.9%
17 4 1–30 8396 17.6%
18 4 31–120 7859 14.9%
19 4 121–210 6800 9.3%
20 4 211–300 5797 6.8%

21 5 -30–0 4044 4.6%
22 5 1–30 4044 18.6%
23 5 31–120 3719 14.1%
24 5 121–210 3153 8.8%
25 5 211–300 2643 6.2%

Variation in amplitude was clearer than variation in frequency. Taller peaks
were observed in the high amplitude groups of sires. The phase parameter, θ,
was fixed at 2 for all series in this study, given that the first peak occurred at the
second period across all series, without any apparent variation among sires. A
common frequency of ω = 1

5 across all series seems evident from the figure,
since the pattern repeated itself every five periods in all series.

For the model in Equation (2), the location vector β included 12 age-
season of first calving classes, 5 levels of parity and 9 years of calving effects;
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Figure 2. Mastitis incidence rate for sires with the highest and lowest amplitude and
frequency along five lactations.

5286 levels of herd effects were included in h; the vector p included 36 178
cow-specific permanent environmental effects. Since there were 437 sires pre-
sented in the pedigree file, there were 437 sire-specific effects for amplitude
(s1) and for frequency (s2).

2.5. Convergence diagnostics

A single chain of 200 000 iterations was generated. Convergence diagnos-
tics were based on trace plots of all (co)variance components and on Raftery
and Lewis [11]. Based on the diagnostics employed, 20 000 iterations were dis-
carded as burn-in, and inferences were based on the remaining 180 000 sam-
ples. The acceptance rate of the Metropolis algorithm for sire frequency was
29.4%.

3. RESULTS

Posterior means of the “fixed” amplitudes (bj) ranged from 0.1764 to 0.2488
over age-seasons at first calving. Larger amplitude was observed for cows that
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Table II. Posterior means, standard deviations (S.D.), Monte Carlo standard errors
(S.E.) and 95% posterior intervals for sire (co)variances, herd and cow variances.

Parameter Posterior Posterior Monte Carlo 2.5% 97.5%
mean S.D. S.E.

g11 0.0068 0.0013 2.60e–5 0.0045 0.0096
g22 2.34e–5 3.66e–6 4.47e–8 1.71e–5 3.14e–5
g12 −0.0003 6.02e–5 1.03e–6 −0.0004 −0.0002
rg12 −0.7566 0.069 1.21e–3 −0.8666 −0.5973
σ2
h 0.072 0.0029 3.15e–5 0.066 0.078
σ2

p 0.086 0.0038 8.87e–5 0.079 0.094

g11 = variance between sires for amplitude; g22 = variance between sires for fre-
quency; g12 = covariance between sire effects on amplitude and frequency; rg12 is
the genetic correlation between amplitude and frequency;σ2

h and σ2
p are the variances

between herds and between cows, respectively.

were older at first calving (≥ 28 months). The posterior means, standard devia-
tions, Monte Carlo error and 95% posterior intervals for the sire (co)variances
of amplitude and frequency, and for herd and cow-specific variances are given
in Table II. The posterior distributions of sire variances for amplitude and fre-
quency are in Figure 3, and the distributions were symmetric with posterior
means of 0.0068 and 0.000023 for amplitude and frequency, respectively. The
posterior coefficient of variation was 15.6% for frequency and 19% for am-
plitude. A strong negative genetic correlation (posterior mean was −0.75) be-
tween amplitude and frequency was observed, and its posterior distribution
was unimodal but slightly skewed to the left (Fig. 3(c)). Figure 3(d) shows
the distribution of estimated sire amplitudes which ranged between −0.07 and
0.23. The posterior means of herd and cow-specific variances were 0.072 and
0.086, respectively. Between sire variation for amplitude and frequency was
much less important than between-herd and between-cow variations.

4. DISCUSSION

If a sire has a larger value of amplitude, his daughters would be expected
to have a higher risk of mastitis, due to genetic transmission of suscepti-
bility. The estimates of frequency provide information on how frequent the
curve repeats itself, and daughters of sires with higher frequency would be ex-
pected to contract mastitis more frequently. Combinations of amplitude and
frequency can give information on the variation of liability to clinical mastitis
over the course of several lactations. On this basis, one should select sires that,
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Figure 3. Posterior distributions of (a) sire variance for amplitude, (b) sire variance
for frequency, (c) genetic correlation between amplitude and frequency, and (d) distri-
bution of estimated sire amplitudes.

genetically, have smaller amplitude and frequency. However, the negative ge-
netic correlation between amplitude and frequency suggests that if sires with
smaller amplitude were selected as parents, there would be an undesirable cor-
related response in frequency, which would be expected to increase. Although
there is small variation between sire amplitudes, the difference between sire
amplitudes (ranged between −0.07 and 0.20 for sires with daughter records)
indicates possible selection against susceptibility to mastitis. Most sires with
negative effect on amplitude were also on the top 20 sires for resistance to mas-
titis when multivariate threshold models were applied to first-lactation records
only [3].

The small Monte Carlo errors for herd and cow-specific variances indicate
that these posterior means were estimated precisely. Our estimates agree with
an earlier analysis of clinical mastitis in multiparous cows using a multivariate
probit model [7].

Given the strong triangular wave pattern of mastitis incidence across lacta-
tions in this study, only a single dimension cosine function was included in the
analysis. The “fixed” common frequency was set equal to a constant across all
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age-season of first calving classes, based on the data. However, this assumption
can be relaxed if heterogeneity in frequency is expected. For example, one
would expect the series to reveal more variation if smaller intervals (larger
number of periods) were defined. Higher harmonics for the cosine functions
would be more likely to capture variation between animals when finer inter-
vals are used to construct the longitudinal binary responses. Although finer
intervals would reveal more variation between animals, it would also require
much more intense computing time since the number of records for each an-
imal would be larger. Further, it would also result in smaller amplitudes and
weaker signals.

In addition, the phase of the series was fixed at 2, given the evidence that the
first peak occurred at the second period across all series. However, it is pos-
sible to include both “fixed” and “random” phases in the model, if preferred.
However, posterior intercorrelation between frequency and phase parameters
inside the cosine function slows down convergence considerably. This requires
further research and algorithm development.

Heringstad et al. [8] studied the number of cases of mastitis in first-lactation
Norwegian Red cows using a censored ordinal threshold model. Repeatability
ordinal threshold models could be an alternative to study multiparous mastitis
records. However, the information on time to contracting mastitis would be
lost. Similarly, Rodrigues-Motta et al. [12] studied the number of cases of
mastitis in first-lactation Norwegian Red cows using Poisson and zero-inflated
Poisson models. Repeatability or multivariate Poisson models would be useful
to study the genetic variation of the mastitis cases in later lactations. However,
more research is needed to account for censored records of cows culled early
in lactation.

In conclusion, this is a first attempt at modelling longitudinal clinical mas-
titis using a periodic analysis. Our results suggest potential usefulness of a
periodic analysis of longitudinal binary responses using sinusoidal functions if
a periodically repeated pattern is present. However, we did not find evidence
that genetic variation (as measured by variance between sires of cows) for am-
plitude or frequency is sizable in clinical mastitis.
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