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Abstract – A within-family marker-assisted selection scheme was designed for typical aqua-
culture breeding schemes, where most traits are recorded on sibs of the candidates. Here, sibs
of candidates were tested for the trait and genotyped to establish genetic marker effects on the
trait. BLUP breeding values were calculated, including information of the markers (MAS) or
not (NONMAS). These breeding values were identical for all family members in the NONMAS
schemes, but differed between family members in the MAS schemes, making within-family se-
lection possible. MAS had up to twice the total genetic gain of the corresponding NONMAS
scheme. MAS was somewhat less effective when heritability increased from 0.06 to 0.12 or
when the frequency of the positive allele was < 0.5. The relative efficiency of MAS was higher
for schemes with more candidates, because of larger fullsib family sizes. MAS was also more
efficient when male:female mating ratio changed from 1:1 to 1:5 or when the QTL explained
more of the total genetic variation. Four instead of two markers linked to the QTL increased
genetic gain somewhat. There was no significant difference in polygenic genetic gain between
MAS and NONMAS for most schemes. The rates of inbreeding were lower for MAS than
NON-MAS schemes, because fewer full-sibs were selected by MAS.

marker-assisted selection / aquaculture / breeding

1. INTRODUCTION

For aquaculture species, most traits are recorded on sibs of the candidates,
because the timing of recording (fillet quality traits are measured after slaugh-
ter) or kind of recording (disease risk in case of a challenge test) make it im-
possible to measure these traits on the selection candidates. The heritability of
these traits is often low to medium (see [9] for a review). These two features
of selection schemes of aquaculture have been shown to favour within-family
marker-assisted selection schemes [12,17] and they are the incentive to investi-
gate the potential for within-family marker-assisted selection (MAS) schemes
of aquaculture species in this paper.
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Kashi et al. [11] presented a grand-daughter design for MAS schemes, in
which a sire and his progeny-tested sons are genotyped and phenotypic infor-
mation is collected on the grand-progeny as daughter group means. Signifi-
cantly different means of daughter-groups of sires that inherited the M or m
allele of the grandsire that has genotype Mm indicates a marker that is linked
to a QTL. Mackinnon and Georges [14] presented a two-generational design
for MAS schemes, where progeny are phenotyped and genotyped and this in-
formation is used to calculate the effect of the marker allele on the trait. In
the grand-daughter scheme, fewer genotypic records are needed than in the
bottom-up scheme and at the same number of genotypes, the statistical power
is 3-4 times larger for the grand-daughter scheme [30]. However, progeny tests
are not performed for aquaculture species, which makes the grand-daughter
design badly suited. In this paper, a two-generational design for a typical aqua-
culture breeding scheme will be presented.

Genetic marker maps are available for some of the aquaculture species. For
most species, these genetic marker maps are made up of a large number of
AFLP markers, which are anchored to fewer microsatellites. The marker den-
sity is rather low and the markers are unevenly spread over the genome on
these maps. The most developed maps are the ones for rainbow trout [21] and
tilapias [13].

Only few QTL for breeding goal traits have been identified in aquaculture
species, mainly in salmonids, where QTL for resistance to different disease
traits have been found [20, 22, 24, 26]. Also, QTL related to body weight and
size have been found [15,23,25]. All of these QTL are candidates for selection
in a MAS scheme.

Some genetic features of aquatic species have implications for QTL map-
ping studies. For example, recombination rates can differ between males and
females, and therefore the marker map lengths between males and females
differ considerably. In salmonids, females have the highest recombination
rate. The ratio between female/male recombination rate was 3.25:1.00 for
rainbow trout [27], 1.69:1.00 for Arctic char [31] and 8.25:1.00 for Atlantic
salmon [19]. However, in other aquaculture species, males have the highest
recombination rate. For example, the ratio between male and female recom-
bination rate was 7.4:1.00 in Japanese flounder [3]. There are also differences
in recombination rate over the length of the chromosomes, i.e. recombination
rate was higher in telomeric regions than in proximal regions [27].

The aim of this study was to design a within-family MAS breeding scheme
for typical aquaculture species and to investigate its superiority over traditional
breeding schemes by computer simulation. In typical aquacultural breeding
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schemes, many traits are recorded on sibs of the selection candidates and ge-
netic improvement of such traits is considered here. Schemes with different
mating ratio, heritability of trait, size of QTL and different numbers of QTL
affecting the trait, markers flanking the QTL, breeding candidates and sibs
tested for the trait, were evaluated.

2. MATERIALS AND METHODS

2.1. Design of aquaculture MAS breeding schemes

The MAS breeding scheme aims at genetic improvement of traits that are
measured on sibs of the breeding candidates. The sibs of the candidates will be
phenotyped and genotyped, in order to estimate the marker-trait associations
of the markers that are inherited from the parents. The parents transmit the
same markers to their progeny that are selection candidates, and these candi-
dates will be selected for the markers that they inherited. In this way, within
family differences in breeding values between the progeny were estimated and
selected for, whereas in NONMAS breeding schemes (breeding schemes that
do not use marker information) it is only possible to select between families,
which implies that less than half of the total genetic variance is used.

2.2. Genetic model

A polygenic effect of the trait, gi, was simulated. The polygenic effect of
each individual in the base population was sampled from N(0,Va), where Va =

base generation additive genetic variance of polygenic effects, which was as-
sumed to be 0.06 or 0.12. The polygenic effect of later generations was ob-
tained by simulating genotypes from gi = 1/2 gs + 1/2 gd + mi, where mi is the
Mendelian sampling component, which was sampled from (0, 1/2(1 − F)Va),
where F is the average inbreeding coefficient of parents s and d.

It was assumed that there were either one or three QTL genetically affecting
the trait, nloc= 1 or 3, in addition to the polygenic effect. These QTL had
been identified in earlier QTL mapping experiments and were unlinked (e.g. on
different chromosomes). Each QTL had two alleles. Marker haplotypes were
formed, where the QTL was in the middle of the haplotype. The number of
markers flanking the QTL, nmarkers, was two or four. For the basic scheme,
starting values of the variance explained by the QTL, VQTL was 1/6 of Va,
i.e. the variance due to QTL was 0.01 and 0.02 for the schemes with Va =

0.06 and 0.12, respectively. The environmental variance was chosen such that
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the phenotypic variance in the base generation was 1.0, i.e. the environmental
variance was 0.94 and 0.88, respectively. Thus, the heritability, h2, in the base
population was 0.06 and 0.12, respectively.

For the base generation, two alleles for each individual were sampled, where
the favourable QTL allele was sampled with probability p and the other al-
lele was sampled with probability (1 − p). For later generations, individual
genotypes were sampled using Mendel’s rules. The value of p was 0.2 in all
schemes. Hence, when one QTL explained all variance of the QTL effect,
the genotypic value, a, was deduced from VQTL = 2p (1 − p) a2 [6] and was
a = 0.1768 for schemes with h2 = 0.06 and 0.25 for schemes with h2 = 0.12.
When three QTL explained the variance of the QTL effect, VQTL was divided
over the three QTL in a ratio of 6:3:1. For schemes with h2 of 0.06, VQTL of
the three QTL was 0.006, 0.003 and 0.001 giving values of 0.1369, 0.0968 and
0.0559, respectively. Schemes were also run when the QTL explained 1/3 of
the genetic variation at a heritability of 0.06, i.e. VQTL was 0.02 and a was
0.25. The genetic model was the same for the MAS and NONMAS schemes.

It was assumed that the QTL was mapped to a region with a recombina-
tion rate of 0.1 for females and 0.033 for males, but the exact position of the
QTL was unknown. Two or four marker haplotypes were used to mark this
region, and the two outermost markers flanked the region. If the markers did
not show a recombination, it was assumed that the entire region did not recom-
bine and thus that the QTL followed the inheritance of the marker haplotype.
If the markers showed a recombination, the inheritance of the QTL allele was
assumed unknown, i.e. each of the paternal and maternal allele was inherited
with 50% probability.

Let T denote the probability that the marker haplotypes surrounding the
QTL can trace the inheritance of the QTL allele from parent to offspring, i.e.
whether the paternal or maternal QTL was transmitted. T includes both the
probability that a recombination occurred in the haplotype, which makes it
impossible to trace the inheritance with certainty, and that the markers were
informative. Double recombination probabilities between two markers within
a haplotype were assumed negligibly small. This implies that if the markers
do not recombine, the QTL allele can be traced with certainty. Following [17],
the actual haplotypes were not simulated, only an indicator, Sij, was simulated,
where Sij = 1 denotes that the inheritance of the jth allele of the ith animal
could be traced or Sij = 0 otherwise. The recombination rate, Θ, was assumed
three times as high for females (0.10) as males (0.033). The probability that
markers were able to trace the inheritance of the QTL allele is derived in the
appendix, and was T = 1 − 0.375 = 0.625 for females and 0.709 for males for



MAS for aquaculture species 305

the schemes with two markers flanking the QTL. For the situation with four
markers flanking the QTL, T was 0.819 for females and 0.898 for males.

2.3. Breeding value estimation

Estimated breeding values (EBV) were obtained using the BLUP models of
[7] and [10]. For the MAS schemes, the EBV estimation model was:

y = µ + Zu + ΣiQiqi + ei,

where y = vector of records, u = vector of polygenic effects, Z = incidence
matrix linking animals to records, Q = incidence matrix linking animals to
QTL alleles, qi = vector of allelic effects for the ith QTL and e = vector of
environmental effects. For the basic scheme, where the QTL explained 1/6
of the genetic variation, in the BLUP estimation of MAS breeding values, the
variance for error, polygenes and QTL were 0.94, 0.05 and 0.01 for the scheme
with h2 = 0.06, and 0.88, 0.10, and 0.02 for the scheme with h2 = 0.12.

For the scheme, where the QTL explained 1/3 of the genetic variation, in the
BLUP estimation of MAS breeding values, the variance for error, polygenes
and QTL were 0.94, 0.04 and 0.02 for the scheme with h2 = 0.06.

For the NONMAS schemes, the EBV estimation model was:

y = µ + Zu + ei.

In the BLUP estimation of NONMAS breeding values, the variance for error,
and polygenes were 0.94 and 0.06 for the scheme with h2 = 0.06, and 0.88 and
0.12 for the scheme with h2 = 0.12.

Following [7], mixed model equations were set up and polygenic and QTL
effects were estimated. The total breeding values for MAS and NONMAS were
u + Σqi and u, respectively.

2.4. The simulated breeding schemes

The simulated breeding scheme was that of a closed nucleus with a dis-
crete generation structure. The number of selection candidates, N, was 5000
or 10 000. In each generation, 100 dams were selected by truncation on total
breeding value. Similarly, either 100, 50 or 20 sires were selected, implying a
male:female mating ratio of 1:1, 1:2 or 1:5. Mating among the selected sires
and dams was at random. Each generation, either 10 or 20 progeny per fullsib-
family were tested for the trait under selection (nprog), but these progeny were
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Table I. Summary of scenarios of the simulated schemes.

Scenario
1 2 3 4 5 6 7 8 9 10

N 5000 5000 10 000 10 000 5000 5000 5000 5000 5000 5000
h2 0.06 0.06 0.06 0.06 0.12 0.06 0.06 0.06 0.06 0.06
nprog 10 20 10 20 10 10 10 10 10 10
male:female 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:1 1:5 1:2
mating ratio
nQTL 1 1 1 1 1 1 3 1 1 1
QTL size 0.01 0.01 0.01 0.01 0.01 0.02 0.006 0.01 0.01 0.01

0.003
0.001

nmarkers 2 2 2 2 2 2 2 2 2 4

not selection candidates. These progeny were made in addition to the candi-
dates, such that the number of candidates was either 50 (with N = 5000) or 100
(with N = 10 000) per fullsib family, irrespective of nprog. The phenotypic in-
formation from the progeny that were sibs of the candidates was only used to
calculate the EBV.

Schemes were run for five generations and summary statistics of each
scheme are based on 100 replicated simulations. The first generation fish are
randomly selected, because all information about EBV came through the par-
ents in the sib-testing schemes and the first generation fish do not have parents.
Therefore, the presentation of the results will focus on selection response in
generations two and three. The breeding schemes will be compared for the to-
tal genetic level (scaled to zero in generation 1), Gtot, total genetic gain, ∆Gtot,
polygenic genetic level (also scaled to zero in generation 1), Gpol, and fre-
quency of the positive QTL allele for QTL 1 (2 or 3), freq1, freq2 and freq3,
and rate of inbreeding, ∆F. The different scenarios of the simulated schemes
are summarised in Table I.

3. RESULTS

The results from the basic scheme of scenario 1 are shown in Figure 1. The
total genetic gain (∆Gtot) was 0.203 for MAS and 0.176 for NONMAS in gen-
eration two, i.e. the increase in total genetic gain (∆Gtot) was 15% higher for
the MAS schemes compared with the NONMAS schemes in the first genera-
tion of selection with marker information. In generation three, ∆Gtot was 68%
higher for MAS than NONMAS. There was no significant difference in Gpol

between MAS and NONMAS. This increase in∆Gtot is therefore mainly due to
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Figure 1. Polygenic (Gpol) and total (polygenic + QTL) genetic response (Gtot) for
MAS and NONMAS schemes with scenario 1.

the increase in frequency of the QTL for the MAS scheme, where a higher QTL
frequency also implies more genetic variance (as long as freq < 0.5). The lower
value of ∆Gtot in generation two compared to generation three can be explained
by the relatively low number of heterozygous parents (2 × 0.2 × 0.8 = 0.32)
and because the marker information is still building up. The higher frequency
for MAS than NONMAS and little or no difference in Gpol between MAS and
NONMAS was seen for most of the simulated schemes and is perhaps in con-
trast with experimental MAS schemes, where Gpol was decreased due to MAS
[8]. Here, however, improvement of Gpol is due to between family selection,
which is little or not reduced by MAS schemes, where the frequency of the
positive QTL allele is mainly improved by within-family selection.

3.1. Effect of size of scheme

When the number of progeny per fullsib family tested for the trait under
selection, nprog, was 20 as in scenario 2, ∆Gtot was 11 and 67% higher for
MAS than NONMAS in generations two and three (results not shown). Hence,
the superiority of MAS over NONMAS was about the same for schemes with
nprog = 10 (scenario 1) or 20 (scenario 2).

With 10 000 candidates, ∆Gtot was 11 and 86% higher for MAS than
NONMAS in generations two and three with nprog = 10 (scenario 3), and
7 and 87% higher in generations two and three with nprog = 20 (scenario 4;
Fig. 2). Hence, MAS was more efficient with 10 000 than 5000 candidates,
which can be explained by the larger fullsib family sizes being advantageous
for within-family selection.
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Figure 2. Total (polygenic + QTL) genetic response (Gtot) for MAS and NONMAS
schemes, where the number of candidates was 10 000 and nprog 10 or 20 as in scenar-
ios 3 and 4, respectively.

Rate of inbreeding (∆F) remained zero until generation three for all
schemes. In generation three, ∆F was 0.097 for MAS and 0.120 for NONMAS
for the scheme in scenario 1 with ncand = 5000 and nprog = 10 (not shown).
The lower ∆F for MAS is because the marker information allows for differ-
entiation of breeding values within fullsib families, which reduces the correla-
tion between EBV of fullsibs and thus the co-selection of sibs, which in turn
reduces ∆F. For schemes with nprog = 20, ∆F increased especially for the
MAS scheme with ncand = 10 000 as in scenario 4 (∆F = 0.110 in generation
three) compared with ncand = 5000 as in scenario 2 (∆F = 0.087 in generation
three), which may be due to higher selection intensity and higher accuracy of
selection.

3.2. Effect of heritability

When h2 was increased to 0.12 as in scenario 5, both Gpol and frequency in-
creased more than in scenario 1 (Fig. 1), as expected, and ∆Gtot was 7% higher
for the MAS schemes compared with the NONMAS schemes in generation
two and 54% higher in generation three (Fig. 3). Hence, the extra response
due to MAS was somewhat lower for schemes with a medium heritability than
with low heritability, as was found by other authors, e.g. [17].

3.3. Effect of size of QTL

When the QTL explained a larger part of the genetic variation as in sce-
nario 6, MAS increased frequency at a higher rate, such that frequency was
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Figure 3. Total (polygenic + QTL) genetic response (Gtot) for MAS and NONMAS
schemes, where the heritability was 0.12 (scenario 5) or the VQTL was 0.02 (sce-
nario 6).

0.97 already in generation three and the positive QTL allele thus was very
near fixation (not shown). The ∆Gtot was 12% higher for the MAS schemes
compared with the NONMAS schemes in generation two and ∆Gtot was twice
as high for MAS compared to NONMAS in generation three (Fig. 3). Hence,
MAS was, as expected, much more efficient for the scheme with a larger QTL
effect.

3.4. Effect of QTL number

In Table II, the results are shown for schemes where the number of QTL loci
affecting the trait, nloc, increased from one to three and VQTL was 0.006, 0.003
and 0.001 for the three QTL, respectively, as in scenario 7. The total genetic
gain (∆Gtot) was 0.209 for MAS and 0.192 for NONMAS, i.e. the increase in
total genetic gain (∆Gtot) was 9 % higher for the MAS schemes compared with
the NONMAS schemes in generation two. In generation three, ∆Gtot was 54%
higher for MAS than NONMAS. MAS was thus somewhat less efficient for
schemes with three loci instead of one. This somewhat lower genetic response
can be explained by the low start frequency, which makes it difficult to select
individuals with the positive QTL alleles of all three loci simultaneously with
the fullsib family sizes that were used here. Also, the variance due to each QTL
is smaller, which makes it more difficult to estimate the QTL effect, which re-
duces estimation accuracy. Note that freq3 < freq2 < freq1, which is expected,
because the genetic value was the largest for the first locus and smallest for the
third locus.
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Table II. Polygenic (Gpol) and total (polygenic + QTL) genetic level (Gtot) and fre-
quency of positive QTL allele (freq1–3) for schemes where three QTL affected the
trait as in scenario 7.

Generation
1 2 3 4 5

Gtot NONMAS 0.000 0.192 0.315 0.424 0.540
MAS 0.000 0.209 0.399 0.567 0.716

Gpol NONMAS 0.000 0.136 0.218 0.287 0.364
MAS 0.000 0.137 0.199 0.261 0.353

freq1 NONMAS 0.195 0.311 0.398 0.488 0.561
MAS 0.197 0.365 0.708 0.933 0.984

freq2 NONMAS 0.198 0.283 0.349 0.411 0.486
MAS 0.198 0.296 0.454 0.650 0.833

freq3 NONMAS 0.200 0.272 0.310 0.332 0.373
MAS 0.199 0.262 0.296 0.351 0.417

3.5. Effect of mating ratio

In Figure 4, the effect of different male:female mating ratios was tested for
MAS and NONMAS schemes, i.e. the mating ratio was 1:1, 1:2 or 1:5, as
in scenarios 8, 1, and 9, respectively. Mating ratios of 1:2 or 1:5 result in an
increased selection differential of the males, of which the MAS schemes can
make extra good use due to the availability of within family information (i.e.
intense within family selection is only possible in the MAS schemes). MAS
had higher Gtot for all three mating ratios, and the relative increase was some-
what greater when the mating ratio went from 1:1 to 1:2 than from 1:2 to 1:5.
∆F was as expected the lowest for mating ratio 1:1, because the number of
selected sires was the highest for that mating ratio (Fig. 5).

3.6. Effect of number of flanking markers

When the numbers of markers flanking the QTL, nmarkers, increased from
two to four as in scenario 10, ∆Gtot was 2% higher for the MAS schemes
compared with the NONMAS schemes in generation two and 11% higher in
generation three (results not shown). Hence, the two extra markers did increase
the informativeness of the markers, and thus the accuracy of selection and
genetic gain somewhat.
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Figure 4. Total (polygenic + QTL) genetic response (Gtot) for MAS and NONMAS
schemes where the male:female mating ratio was 1:1, 1:2, or 1:5 as in scenarios 8, 1,
and 9, respectively.

Figure 5. Inbreeding for MAS and NONMAS schemes, where the male:female mating
ratio was 1:1, 1:2, or 1:5, as in scenarios 8, 1 and 9, respectively.

4. DISCUSSION

A within-family marker-assisted selection scheme for aquaculture species
was presented. The design of normal family-based selection schemes, whereby
sibs of the candidates are tested for the trait can be utilised also for MAS. Sibs
of the candidates are then genotyped to calculate the association between phe-
notype and genotype. The candidates are only genotyped and breeding val-
ues are calculated using the marker information according to [7] and [10].
The need to record sibs of the candidates instead of the candidates themselves
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and the large fullsib family sizes that are typical for aquaculture species make
that MAS can differentiate between family members, whereas NONMAS can-
not. This explains the high superiority of MAS over NONMAS. The total
(QTL + polygenic) gain was very high, up to 100%, when marker informa-
tion was used. The increase of genetic gain for MAS is because it increases
accuracy of the breeding values and makes within-family selection possible.
In the MAS schemes, marker information for the EBV from the sib-tests is
not available until generation one and non-random selection therefore did not
start until generation one. With a rather low starting frequency of 0.2 for the
positive QTL allele, together with rather few progeny per fullsib family that
were tested and the high recombination rate used (although the QTL explained
1/6 of the total genetic variance), accuracy of selection was not much higher
for MAS than NONMAS in generation two. However, in generation three, a
large increase in genetic gain could be seen for the MAS scheme, because of
the increased accuracy that was possible when another generation of marker
information became available.

The large selection intensities and the relative large QTL (explaining 1/6
of the total genetic variance) resulted in fixation of the positive allele already
in generation three, after two generations of non-random selection, for many
schemes. In practical schemes, selection will not only be for one trait or on one
marker linked to the QTL and therefore a slower fixation of the positive allele
is expected.

The rate of inbreeding was high in these schemes, because selection was
based only on truncation selection on BLUP estimated breeding values. With
the extra information on genetic markers within families, ∆F decreased for
MAS in all schemes, because fewer family members were selected. With a
total size of the schemes of 5000 and 100 families (and dams selected), full-
sib family size was 50 (25 males and 25 females). Therefore, NONMAS se-
lection could be from four families only. In practical selection schemes, one
should, however, try to restrict ∆F either by selecting parents from more fam-
ilies or by using methods that restrict ∆F, e.g. optimum contribution selection
for MAS [29] or for GAS [18]. It is expected that MAS would increase genetic
gain relatively more compared to NONMAS when ∆F is restricted, because
NONMAS will have to select from more families to reduce ∆F (and genetic
gain). Selection methods with constrained rates of inbreeding are, however, not
utilised by breeding schemes for aquaculture species today.

The trait that was simulated in these schemes was measured only on sibs of
the candidates. For traits that could be measured on selection candidates, also
NONMAS would be able to select for within-family information and therefore
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the superiority of MAS is expected to be less for traits that are measured on
the candidates [17].

If markers can be found that are very close to the QTL, direct selection for
the markers has been suggested as linkage-disequilibrium MAS (LD-MAS;
[4]). In this paper, MAS was based on analysis within families because of the
following: (1) marker maps in aquaculture species are often not dense enough
for LD-MAS; and (2) fullsib family sizes are very large for most aquaculture
species, such that the re-estimation of marker-QTL associations for every fam-
ily are not so problematic as in livestock populations, i.e. the use of LD-MAS
is less of an advantage in aquaculture populations with large families.

Instead of simulating markers and working out whether they could be used
to trace the QTL alleles, the probability that the QTL alleles could be traced
by the markers was modelled directly here, i.e. was input for the simulation
program. Computationally, this had the advantage that the linkage phases be-
tween the markers and whether the markers in a particular fullsib family were
able to trace the inheritance of the QTL alleles or not were not computed. Fur-
thermore, many situations with different information content of the markers
and different recombination rates between markers and QTL can lead to simi-
lar probabilities of being able to trace the inheritance of the QTL, T. However,
having a constant probability of being able to trace the inheritance of the QTL
implies that the simulations did not depict the loss of information content of
the markers when selecting for the QTL. This is especially a problem in later
generations, when the marker allele frequencies approach 1. In the present pa-
per, focus was, however, on early generation responses from MAS. Also, in
practical MAS schemes, the markers that lose their information content may
be replaced by markers that are still informative in the same region.

The breeding value estimation model does not account for changes of vari-
ance since the allele frequencies of the QTL changed in the simulations. This
implies that more accurate breeding value estimation could be obtained by re-
estimating QTL variance each generation. This would increase the accuracy of
the MAS estimated breeding values and thus further increase the benefits of
MAS.

Different recombination fractions were simulated between males and fe-
males. Assuming that one can distinguish between males and females, only
males could be tested instead of a mix of males and females (at equal test
capacity), because males will be more informative. A higher accuracy of the
QTL effect will result. When comparing scenario 1 with a similar scheme,
where only males were tested at an equal test capacity, Gtot was, however, very
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similar (result not shown), probably because the difference in T values between
males and females were quite small.

In practical schemes for dairy cattle, MAS has been applied as a pre-
selection step when selecting bulls for progeny testing [1, 2]. In aquaculture
breeding schemes, MAS could be implemented together with walk-back se-
lection [5] as a pre-selection step. The advantage with walk-back selection
schemes is that identification is done using genetic markers, which avoids the
need for expensive fullsib family tanks. In the walk-back scheme by Doyle and
Herbinger [5], the individual with the largest phenotypic value is first selected.
Thereafter, the individual with the second largest phenotypic value becomes
identified using genetic markers and selected if it is not a full- or half sib of the
previously selected parents. Hence, the original walk-back selection proposed
within-family selection. Sonesson [28] modified the walk-back schemes such
that inbreeding was controlled using optimum contribution selection [16]. By
sampling around 100 individuals, 76–92% of the genetic gain was achieved
compared to genotyping all selection candidates (5000 or 10 000). One prob-
lem with the walk-back selection scheme is that it is difficult to select for traits
that are not measured on the candidates, e.g. disease traits. However, a MAS
scheme similar to the one presented here could be applied, where MAS will
be performed on individuals that are pre-selected (for e.g. growth) by some
form of walk-back selection method. The marker-information could be used
for both identification and within-family MAS.
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APPENDIX

THE PROBABILITY THAT THE INHERITANCE OF THE QTL
ALLELE FROM PARENT TO OFFSPRING COULD BE TRACED
BY THE FLANKING MARKERS

The parent has two QTL alleles, which we will call the paternal and the ma-
ternal allele (depending on whether the parent inherited the allele from its sire
or its dam). The question here is the following: what is the probability (T) that
the markers indicate whether the offspring inherited the paternal or maternal
allele of the parent. It is easier to calculate the probability that the markers
cannot trace the inheritance of the QTL alleles of the parents (1 − T). Let us
assume there are n markers in a region of Θ Morgan, which is the region to
which the QTL was mapped. The probabilities of having 0, 1, or ≥ 2 informa-
tive markers are (1 −H)n, n∗H∗(1 −H)n−1, and 1 − (1 −H)n − n∗H∗(1 −H)n−1,
respectively, where H is the probability that a marker is informative (i.e. the
inheritance of the marker alleles of the parent can be traced from parent to off-
spring). If there are 0 informative markers, the QTL cannot be traced. If there
are ≥ 2 informative markers and they do not recombine, we assume that the
QTL is bracketed between those and follows the inheritance of the markers (i.e.
the probability of a double recombination is assumed negligibly small). Thus,
if there are ≥ 2 informative markers, the probability that the QTL cannot be
traced is Θ, i.e. the probability that there is a recombination between the mark-
ers. If there is only one informative marker, the situation is different, because
we cannot trace the QTL with near certainty. For instance, if the paternal allele
was inherited at the marker locus, the probability of a paternal inheritance at
the QTL locus is (1 − Θ), which is in between the extreme situations of 0.5
(no information) and 1 (full information). And, the probability of non-paternal
inheritance is Θ, which is in between 0.5 (no information) and 0 (full infor-
mation). If we interpolate the case of one informative marker between “no”
and “full” information, we have “no information” with probability Θ/2 = 2Θ
(where 1/2 is the difference between no (0.5) or full information (0)) and “full
information” with probability (1−2Θ). The probability that the markers cannot
trace the inheritance of the QTL alleles of the parents is (summation over 0, 1,
≥ 2 informative markers):

(1 − T) = (1 − H)n

+ n∗H∗(1 − H)n−1∗2Θ
+ [1 − (1 − H)n − n∗H∗(1 − H)n−1]∗θ.

One minus this equation gives the value for T. The probability that the markers
are informative is assumed H = 0.5.
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