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Abstract – Causal mutations and their intra- and inter-locus interactions play a critical role in
complex trait variation. It is often not easy to detect epistatic quantitative trait loci (QTL) due
to complicated population structure requirements for detecting epistatic effects in linkage anal-
ysis studies and due to main effects often being hidden by interaction effects. Mapping their
positions is even harder when they are closely linked. The data structure requirement may be
overcome when information on linkage disequilibrium is used. We present an approach using a
mixed linear model nested in an empirical Bayesian approach, which simultaneously takes into
account additive, dominance and epistatic effects due to multiple QTL. The covariance struc-
ture used in the mixed linear model is based on combined linkage disequilibrium and linkage
information. In a simulation study where there are complex epistatic interactions between QTL,
it is possible to simultaneously map interacting QTL into a small region using the proposed
approach. The estimated variance components are accurate and less biased with the proposed
approach compared with traditional models.

fine-mapping /multiple QTL / epistasis / dominance / reversible jump MCMC

1. INTRODUCTION

Phenotypic variation in complex traits may involve the action of many
causal genes and their intra- (dominance) and inter-locus interaction (epista-
sis), in addition to environmental factors. Multiple interacting QTL may play
a critical role in quantitative trait variation and epistatic interaction can exist
between closely linked quantitative trait loci [5, 11, 15, 28, 33]. Ignoring such
non-additive effects due to gene interaction may result in biased estimation
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of QTL position and effects. Interacting QTL showing negligible main effects
may not be detected. If the interacting QTL are closely linked, it might be even
harder to distinguish their positions.

Within a small region (< 10 cM), closely linked QTL having complicated
epistatic interactions may not be detected by conventional linkage QTL map-
ping methods [23]. Although experimental populations can overcome this by
appropriate and complex experimental designs [15,33], natural or outbred pop-
ulations may present difficulties in the development of such designs. For natu-
ral and outbred populations, variance component approaches based on linkage
information have been widely used because of their generality and flexibil-
ity [2, 3, 26, 30]. In these approaches, additive and non-additive effects includ-
ing epistasis are treated as random genetic components, which can deal with
complex covariance structures based on general pedigrees. However, the use
of linkage information alone may limit the power to detect epistasis because
estimation of some epistatic components of variance requires many full sibs
whose numbers are often limited in outbred and natural populations [30].

Identity by descent (IBD) probabilities between haplotypes of unrelated
founders in a recorded pedigree can be estimated on the basis of linkage dis-
equilibrium (LD) using coalescence methods [25, 27, 29]. The LD-based IBD
probabilities can give useful extra information about covariance due to additive
genetic and dominance effects even without many full sibs as shown by Lee
and van der Werf [21]. The use of LD-based IBD probabilities would also be
useful for detecting and positioning epistatic QTL. The aim of this study was
to investigate how much the mapping resolution improves when considering
epistasis in fine mapping of a complex trait and how well epistatic effects can
be estimated. The posterior QTL density is estimated with and without consid-
ering epistasis using an empirical Bayesian approach based on combined LD
and linkage (LDL) information [20].

2. MATERIALS AND METHODS

2.1. Mixed linear model

A vector of phenotypic observations is written as a linear function of fixed
effects, a polygenic term representing the sum of other unidentified additive
genetic effects, the additive and dominance effects due to n QTL, epistatic
interaction among the QTL, and residuals. The model can be written as [8],

y = Xβ+Zu+
n∑

i=1

(Zai+Zdi)+
n−1∑

i=1

n∑

j=i+1

(Zaia j+Zaid j+Zdia j+Zdid j)+e (1)
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where y is a vector of Nr observations on the trait of interest, β is a vector of
fixed effects, u is a vector of N random polygenic effects for each animal, ai and
di are vectors of N additive and non-additive random effects due to the ith puta-
tive QTL, aia j, aid j, dia j and did j are vectors of epistatic interactions between
the ith and jth putative QTL, and e are residuals. The random effects (u, qi,
di, aia j, aid j, dia j, did j and e) are assumed to be normally distributed with
mean zero and variance Aσ2

u, Giσ
2
qi , Diσ

2
di

, GiG jσ
2
aia j

, GiD jσ
2
aid j

, DiG jσ
2
dia j

,

DiD jσ
2
did j

, and Iσ2
e , where A is a numerator relationship matrix, Gi and Di are

additive and dominance genotype relationship matrices at the ith putative QTL
position, MiM j is the Hadamard product of the matrices Mi and M j, and I is
a Nr-order identity matrix. X and Z are incidence matrices (for the effects β
and u, qi, di, aia j, aid j, dia j, and did j respectively). The associated variance
covariance matrix (V) of all observations given pedigree and marker genotypes
is modelled as

V = ZAZ′σ2
u +

n∑

i=1

(ZGiZ′σ2
ai + ZDiZ′σ2

di
) +

n−1∑

i=1

n∑

j=i+1

ZGiG jZ′σ2
aia j

+ ZGiD jZ′σ2
aid j
+ ZDiG jZ′σ2

dia j
+ ZDiD jZ′σ2

did j
+ Iσ2

e . (2)

The LDL-based IBD distribution and covariance structure among chromosome
segments or haplotypes are accommodated in the matrices G and D using
an approximate coalescence method [24, 25]. For G and D, a sampler com-
bining the random walk approach [32] and the meiosis Gibbs sampler [35]
was used, which is robust and efficient especially for complex pedigree, many
markers and missing genotypes [21]. These G and D were then incorporated
as known quantities into the QTL model selection in an empirical Bayesian
approach [6, 19].

2.2. Reversible jump Markov chain Monte Carlo for simultaneous
mapping of multiple interacting QTL

The number of QTL (n), the position of each QTL (ρi, i = 1 ∼ n)
and the model parameters (Θ = {σ2

u, (σ2
ai , σ

2
di

; i = 1 ∼ n), (σ2
aiai+1
, ..., σ2

aian ,

σ2
aidi+1
, ..., σ2

aidn
, σ2

diai+1
, ..., σ2

dian
, σ2

didi+1
, ..., σ2

didn
; i = 1 ∼ n − 1), σ2

e}) are to
be estimated for the model (1). Note that n ranges from 0 to the number of
marker brackets since only the middle point of each marker bracket was inves-
tigated. The probability of estimated parameters given observed phenotypes is

pr(n, ρ,Θ|y) = pr(y|n, ρ,Θ)pr(n, ρ,Θ)∑
pr(y|n, ρ,Θ)pr(n, ρ,Θ)

(3)
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Table I. Effects of genotypes at 2 QTL with additive model and three interaction
models.

Genotypes for a pair of QTL (A and B)
AA/BB AA/Bb AA/bb Aa/BB Aa/Bb Aa/bb aa/BB aa/Bb aa/bb

Additive model 14 12 10 9 7 5 4 2 0
Interaction model 1 20 10 5 10 15 10 5 10 20
Interaction model 2 10 10 20 10 10 20 10 10 0
Interaction model 3 8 8 4 8 20 4 4 4 0

where pr(y|n, ρ,Θ) is the likelihood of the observed phenotypes given the es-
timated parameters, pr(n, ρ,Θ) is the joint prior probability of the estimated
parameters and the denominator is summed over the probabilities of all possi-
ble parameter states. An efficient approach to estimate n, ρ and Θ with additive
and dominance QTL effects was shown by [19]. In the process, the QTL model
is first defined by the number of QTL and their positions, which are sam-
pled from a proposal distribution. In a second step, residual maximum like-
lihood (REML) estimates for the model parameters are obtained for a given
QTL model. The proposed variables and model parameters are accepted or re-
jected, according to the acceptance ratio from a reversible jump (RJ) Markov
chain Monte Carlo (MCMC) from which the posterior QTL density is derived.
Hence, a REML procedure is used nested within a Bayesian RJMCMC [19].

When considering epistatic interaction among QTL, the number of ran-
dom effects increases, e.g. the number of random effects due to n QTL is
n for the additive model, 2n for the additive and dominance model and
2n + {n(n − 1)/2} × 4 for the full model (see (1)). However, not all random
effects due to epistasis are significant in the model. Including many non-
significant random effects that do not improve the model likelihood causes nu-
merical problems due to over-parameterisation. Therefore, within a RJMCMC
step for a given set of QTL, each epistatic component is tested and if the likeli-
hood is not improved, the epistatic component will be removed from the model.

2.3. Simulation study

2.3.1. Genetic interaction model

When there are intra-locus interactions within QTL and inter-locus interac-
tions between QTL, each of nine possible genotypes has its own value due to
additive and dominance effects and epistatic interaction (Tab. I). In the addi-
tive model, allele substitution effects for the favourable allele of the first QTL
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and the second QTL were 5 and 2. In the interaction model 1, there were intra-
and inter-locus interactions such that some combination of genotypes that were
homozygous for both QTL expressed enhanced performance. The interaction
model 2 showed complete dominance only when the second QTL was reces-
sive homozygous. In interaction model 3, the combination of genotypes that
were heterozygous for both QTL showed enhanced performance. The patterns
of interactions for models 1, 2 and 3 have been named the co-adaptive, the
dominant, and the dominance-by-dominance epistasis model [4].

2.3.2. Simulated data

One hundred generations of a historical population with effective size of
100 were simulated for 26 markers and 4 potential QTL in a 130 cM region.
For the region from 10 to 20 cM and 110 to 120 cM as candidate regions,
markers were densely positioned at 1 cM intervals. The potential QTL were
simulated at 12.5 cM (QTL I), 17.5 cM (QTL II), 112.5 cM (QTL III) and
117.5 cM (QTL IV). Unique numbers were assigned to founder gametes at the
QTL in generation 0. In each generation, the number of male and female par-
ents was 50 and their alleles were transmitted to descendants on the basis of
Mendelian segregation using the gene-dropping method [22]. Due to genetic
drift, the number of alleles at the QTL was reduced. One allele with moderate
frequency (0.1 ∼ 0.9) was randomly chosen to be the mutation in genera-
tion 100 [24]. The number of alleles assumed at each marker locus was four
in generation 0 and starting allele frequencies were all at 0.25. The marker
allele was mutated at a rate of 4 × 10−4 per generation [9,10,37], i.e. a new al-
lele was introduced as a mutation. Therefore, this historical population would
generate LD among closely linked regions with the random genetic drift and
mutation. Note that pedigree and genotype information was deemed not avail-
able for these 100 generations. In generation 100 and afterwards, phenotypic
values for individuals were simulated as

y = μ +GQTLII,IV + e (for interaction between QTL II and IV) (4)

y = μ +GQTLI,II +GQTLIII,IV + e (for interactions between QTL I and II,

and QTL III and IV). (5)

The population mean (μ) was 100, values for residuals (e) were from N(0, σ2
e)

with σ2
e = 50. No polygenic effects were simulated. The QTL genotypes

(GQTL) for each individual were made up from each pair of QTL. Two in-
teracting QTL that are not linked were investigated with the additive model
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and interaction models 1, 2 and 3 using (4). In addition, two pairs of interact-
ing QTL that are closely linked were investigated with the interaction model 1
using (5).

For QTL mapping results, the posterior QTL density over 20 replicates
was estimated in RJMCMC LDL mapping with additive effects only (additive
model), additive and dominance effects only (additive and dominance model),
or additive, dominance and epistasis effects (full model). In all cases, marker
genotypes and phenotypes were available for the last two generations (200 an-
imals) used for analyses.

3. RESULTS

3.1. The posterior QTL density

With no effects simulated for additive, dominance and epistatic QTL, the
posterior QTL density with the full model is fairly flat, although the regions
of densely spaced markers show some slight elevations. The difference of the
curve between the full model and other models is negligible (Fig. 1A). With
two additive QTL (QTL II and QTL IV), the posterior QTL densities are sim-
ilar across the three different models of analyses (Fig. 1B). The results show
that the QTL density profiles of the model including dominance and epistasis
are the same with the additive model when dominance and epistasis are absent
(no spurious peaks were found).

When two QTL (QTL II and QTL IV) have a complex interaction (co-
adaptive, dominant or dominance-by-dominance epistasis), the full model with
additive, dominance and epistasis gives a higher mapping resolution than any
other model (Figs. 1 C, D and E). This shows that the full model is more accu-
rate for mapping interacting QTL.

When two sets of two closely linked QTL have a complex interaction (co-
adaptive), the posterior QTL density with the full model gives a higher map-
ping resolution compared to other models (Fig. 1F). The posterior QTL density
with the full model is clearly peaked at the true QTL positions, and two closely
linked QTL are clearly distinguished. However, the models without epistasis
give less accuracy.

3.2. Estimated variance components

Figure 2 shows the histogram of estimated variances from 20 replicates with
the full (solid line), additive and dominance (dotted line), and additive model
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Figure 1. Posterior QTL density with full model (upper), additive and dominance
model (middle), and additive model (lower) when additive, dominance and epistasis
effects are null (A); QTL II and QTL IV have additive effects without dominance
and epistasis effects (B); QTL II and QTL IV have a complex interaction as in the
interaction model 1 (co-adaptive epistasis) (C); QTL II and QTL IV have a complex
interaction as in the interaction model 2 (dominant epistasis) (D); QTL II and QTL IV
have a complex interaction as in the interaction model 3 (dominance-by-dominance
epistasis) (E); and the closely linked QTL I and QTL II, and QTL III and QTL IV have
a complex interaction of the interaction model 1 (co-adaptive epistasis) (F). Triangle
shows the true QTL positions. The shaded vertical bars indicate empirical standard
error.
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Figure 2. Histogram of estimated variances for 20 replicates with full model (solid
line), additive and dominance model (dotted line) and additive model (shaded line)
when QTL II and QTL IV have additive effects without dominance and epistasis ef-
fects (A); and when QTL II and QTL IV have a complex interaction with the interac-
tion model 1 (co-adaptive epistasis) (B). In the case of A, the average of the expected
values is 11.36 (standard error = 0.6) for additive QTL variance, 0 (0) for polygenic
variance, 50 (0) for residual variance. In the case of B, the average of the expected
values is 9.82 (1.38) for additive QTL variance, 0 (0) for polygenic variance, 50 (0)
for residual variance, 0.25 (0.05) for dominance variance and 12.91 (0.78) for epistatic
variance.
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(shaded line) when using two additive QTL (Fig. 2A) or when using two in-
teracting QTL with the interaction model 1 (co-adaptive epistasis) (Fig. 2B).
Each estimated value is the average of sampled values of all RJMCMC rounds
in each replicate. When there are only additive effects without dominance and
epistasis, not much difference is found across three models. The distribution
of estimated variance with full, additive and dominance, or additive model
shows the high density around the expected value (11.36± 0.6 (standard error)
for additive QTL variance and 50 (standard error = 0) for residual variance)
(Fig. 2A). Since polygenic, dominance and epistatic effects are null, the dis-
tribution of estimated variances for them are close to zero with all models
including the full model. When epistatic interactions are involved in addition
to additive effects, the distributions of estimated variances are different across
the models. When using the full model, the distribution of estimated additive
QTL variance coincides with the expected value (9.82 ± 1.38). However, the
estimation is upwardly biased with the additive and dominance model, and
more biased with the additive model. Since polygenic variance was simulated
as zero, the estimated variance components were close to zero with all mod-
els although they were overestimated more frequently with the additive and
dominance model, or the additive model, compared with the full model. The
distribution of estimated residual variance coincides with the expected value
of 50 although the estimation is underestimated with the full model and over-
estimated with the other models. The expected value for dominance variance
is negligible (0.25 ± 0.05). Therefore, the estimated variance components are
distributed around zero although overestimation is shown more frequently with
the additive and dominance model than the full model. For estimated epista-
sis variance with the full model, the mode of distribution coincides with the
expected value (12.91 ± 0.78). The results with other scenarios for dominant
epistasis or dominance-by-dominance epistasis are similar in that estimated
QTL variances with the full model are more accurate than those with other
reduced models (result not shown).

4. DISCUSSION

When there were complex epistatic interactions between QTL, the mapping
resolution with the full model considering epistasis considerably increased,
compared to that with the reduced models. We investigated four different sce-
narios for epistatic QTL with 20 replicates each, and in 49% (29% or 23%) of
these cases, the full model (additive and dominance model, or additive model)
gave a higher posterior QTL density than the other models. It was also shown
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that considering epistasis helped to simultaneously map closely linked inter-
acting QTL into a fine region. Moreover, the estimated variance components
were shown to be biased and less accurate with the additive model, or the ad-
ditive and dominance model when epistatic interactions exist. This could be
remedied when using the full model including epistasis components.

Purcell and Sham [30] advocated that the power and accuracy of detecting
epistatic QTL are lower than those for additive QTL. This is probably due
to the fact that information used to estimate all four epistatic components of
variance in natural (human) populations is not sufficient (e.g. limited number
of full sibs). Moreover, when using linkage information only, there is little
information about segregation patterns in a small region (few recombination
events). Therefore, the analysis based on linkage information only cannot iden-
tify any QTL even with additive effects [19]. This situation would be worse for
QTL with non-additive effects. It is noted that the dominance relationship ma-
trix based on linkage information only is often non-positive definite due to
lack of information when using a general pedigree of two generations. How-
ever, when using additional LD information, the situation is much improved
as was already shown for dominance [20]. The present study shows that the
accuracy to detect and identify epistatic QTL is increased because of using LD
information in addition to linkage information.

When a large number of parameters are included in a statistical model
(e.g. the full model), it is usually a concern that spurious signals for ghost QTL
can be generated. We tested if spurious QTL peaks were generated when all
QTL effects (additive, dominance and epistatic effects) were zero (Fig. 1A), or
when there were additive effects but dominance and epistatic effects were zero
(Fig. 1B). It was shown that analysis with the full model would be reasonably
robust to false positives.

The prior probability for the QTL number in the RJMCMC was drawn
from a Poisson distribution with a mean of 1. This would decrease the fre-
quency of including less significant QTL in the model especially when us-
ing a whole genome approach (many polygenic terms having small effects).
Although several studies [13, 31, 38] showed that estimates of QTL number
are robust against prior assumptions, it may be possible and useful to obtain
more informative prior information from the previous studies for the genome
(e.g. meta analyses).

In using LD information, the levels of LD and its distribution in the popu-
lation are important issues. Several studies have shown that power and preci-
sion of fine mapping of QTL are closely related to the levels of LD [17, 19].
Sved [34] showed that the smaller segments have stronger LD which is more
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useful in LD mapping [16]. Goddard et al. [12] reported that even between dif-
ferent breeds, LD information can be utilised when marker spacing is less than
50 kb. As more markers become available (e.g. > 50 000 SNP), the present
method based on LDL information can be a powerful tool for gene mapping.

Hadamard products of relationship matrices are widely used for fitting
epistatic components in variance component approaches [26, 36] based on
Cockerham’s model [8]. However, Cockerham’s model [8] assumes linkage
equilibrium between interacting loci and does not account for LD between
closely linked loci which may cause some bias in the estimation of variance
components. We explicitly used LD information in our method and observed
little evidence of bias. Furthermore, it may be worth considering to implement
orthogonal models for epistasis (e.g. [1,14]) in the approach which may further
improve the mapping resolution and the accuracy of estimated variances.

The computational effort of running the RJMCMC with the full model is
relatively large because all epistatic components have to be considered in the
model. Genome wide scans would be difficult with a very large pedigree and
a very large number of markers. In the case of dense markers (with tens of
thousands of SNP), simple methods such as single marker regression with
RJMCMC can be used because there is a high chance that a single marker
can be completely associated with a causal mutation. It will also be possible to
detect interactions between QTL using simple regression methods. However,
with the regression method, simplifying assumptions have to be made when
there are missing genotypes, and covariance among haplotypes and useful LD
information in complex pedigree is likely ignored. Therefore, it seems useful
to use our proposed method for analysis of putative QTL regions arising from
whole genome scans.

The number of records used in this study was relatively small (Nr = 200).
This might cause inaccurate estimation of variance components with the full
model especially for residuals although the mode of distribution coincided with
the expected value (Fig. 2). Although we did not formally assess the power of
detecting epistatic QTL, we observed that the mapping resolution was reason-
ably high. The posterior QTL density profile was highly peaked on each true
position, and the peak was higher with the full model. When using QTL II
and QTL IV with the interaction model 1, the average ratio of additive vari-
ance over phenotypic variance was ∼0.07 for each QTL, and epistatic vari-
ance over phenotypic variance was ∼0.18. When using two pairs of QTL with
the interaction model 1 (interaction between QTL I and QTL II, and inter-
action between QTL III and QTL IV), the average ratio of additive variance
over phenotypic variance was ∼0.06 for each QTL, and epistatic variance over
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phenotypic variance was ∼0.13 for each pair of QTL. Hence, the QTL effects
in our simulation study may have been relatively large. With a higher number
of records, it would be possible to identify QTL with smaller effects and obtain
more accurate estimated variances.

Generally, variance component approaches are known to be more robust
than regression-based methods or maximum likelihood methods [7]. They can
handle a large number of missing genotypes, complex relationships and multi-
allelic markers. Moreover, the present method combined with LDL informa-
tion can efficiently detect QTL and their intra- and inter-locus interactions,
making it possible to simultaneously fine-map main and epistatic QTL. With
increasing density of genetic markers, the present approach would be an effi-
cient tool to explore more complex genetic models for quantitative traits.
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