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Abstract
In the field of animal breeding, estimation of genetic parameters and prediction of breeding values
are routinely conducted by analyzing quantitative traits. Using an animal model and including the
direct inverse of a numerator relationship matrix (NRM) into a mixed model has made these
analyses possible. However, a method including a genetically identical animal (GIA) in NRM if
genetic relationships between pairs of GIAs are not perfect, is still lacking. Here, we describe a
method to incorporate GIAs into NRM using a K matrix in which diagonal elements are set to 1.0,
off-diagonal elements between pairs of GIAs to (1-x) and the other elements to 0, where x is a
constant less than 0.05. The inverse of the K matrix is then calculated directly by a simple formula.
Thus, the inverse of the NRM is calculated by the products of the lower triangular matrix that
identifies the parents of each individual, its transpose matrix, the inverse of the K matrix and the
inverse of diagonal matrix D, in which the diagonal elements comprise a number of known parents
and their inbreeding coefficients. The computing method is adaptable to the analysis of a data set
including pairs of GIAs with imperfect relationships.

Introduction
Cloning animals is regarded as a means to multiply genet-
ically identical animals (GIAs). In Japan, clones of bulls
are routinely produced to test bulls' performance and in
some cases to multiply fattening animals. A survey con-
ducted by the Japanese Ministry of Agriculture, Forestry
and Fisheries, and published on October 31, 2007, has
recorded calves cloned from somatic cells of 535 animals
and from embryonic cell nuclei of 716 animals.

In animal breeding, analysis of quantitative traits using a
mixed model is essential to predict the breeding value of
an individual and to estimate the genetic parameters of
the traits. When applying an animal model to perform the
genetic analysis, it is necessary to include the inverse of

the numerator relationship matrix (NRM) in order to con-
nect all the animals included in the mixed model; how-
ever, calculating the inverse of a large NRM requires
exceptionally large computing power. On the one hand,
Henderson [1] has developed a method of calculating
directly A-1, without calculating the A matrix itself in a
non-inbred population. This innovation has made it pos-
sible to use a model in which the data set includes a large
number of animals. On the other hand, Quaas [2] has
extended the method for the application to inbred popu-
lations by including the inbreeding coefficients in the
model. A faster computing method of inbreeding coeffi-
cients has been developed by Tier [3] and Meuwissen and
Luo [4], where inbreeding coefficients are computed as a
subset of the A matrix. In addidion, Famula [5] has pro-
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posed a simplified algorithm for inbred populations,
incorporating parental uncertainty to the model.

Inclusion of GIAs in the model raises the problem of a sin-
gular A matrix because of perfect additive genetic relation-
ships between pairs of GIAs. In the case of an analysis with
a singular A, Henderson [6] presented a method to solve
a mixed model without inversion of the G matrix, where

G = A . A few years later, Kennedy and Schaeffer [7]

proposed a model in which records on GIAs are treated as
repeated records on the same genotype. Their model
assumes perfect genetic relationships among GIAs. How-
ever in reality, the genetic relationship between pairs of
GIAs is not perfect because genetic diversity between such
pairs originates from several genetic factors such as the dif-
ference in the recipient cytoplasm, mutations in the
somatic cell and gene imprinting in the nucleus of the
somatic cell [8-10]. Recently a study on human monozy-
gotic twins analysing copy number variation, has revealed
that genetic and phenotypic diversities exist even in
monozygotic twins within pairs [11].

The objective of this study was to develop a method to
compute directly the inverse of the NRM that includes
GIAs with imperfect additive genetic relationships within
pairs of GIAs.

Methods
Procedure
The A matrix is decomposed according to Famula [5].

where I is the identity matrix, P is a lower triangular
matrix which identifies the parents of each individual in
the population. The D matrix is a diagonal matrix with di,
ith diagonal element of D. Then

where Fp and Fq are the inbreeding coefficients of the par-

ents of the ith animal. In (1),  is the lower tri-

angular matrix, and  is its transpose matrix.

From(1), the inverse of the A matrix is as follows:

Next, we introduce the K matrix into (1) so that the A
matrix includes GIA. Then, A is

and

where K is the matrix where a diagonal element is set to 1
and the off-diagonal element is set to (1 - x) when ith and
jth animals are genetically identical and x is a constant
near 0; K is as follows:

Generally, for a matrix with GIAs where the diagonal ele-
ments are set to 1, and the off-diagonal elements are (1 -
x), the inverse matrix for n GIAs is

where , 

and .

Thus, K-1 is calculated, and the diagonal element of D-1 is

. Therefore, A-1 is calculated directly by the product of

the matrices without computing the inverse of A.

Algorithm for computation
Provided di is calculated by the methods of Quaas [2] and
Famula [5], A-1 is calculated directly by the following
steps:

i) If both parents of i, say p and q are known,

and when i has no GIA,
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add  to element (i, i),

add  to elements (p,  i), (i,  p), (q,  i) and (i,

q),

add  to elements (p,  p), (p,  q), (q,  p) and (q,

q);

when i has n GIAs (gij, j = 1, 2, ... n),

add  to element (i, i),

add  to elements (p,  i), (i,

p), (q,  i) and (i,  q),

add  to elements (p,  p), (p,

q), (q,  p) and (q,  q).

If i is a donor animal of the GIAs,

then add  to elements (i, gij) and (gij, i).

ii) If only one parent, say p, is known,

add  to element (i, i),

add  to elements (p, i) and (i, p),

add  to element (p, p).

iii) If neither parent is known,

add 1 to element(i, i).

Simulation
For the simulation study, animal phenotypes were gener-
ated assuming that the heritability of a trait was 0.5 and
the variance for both additive genetic effect and random
residuals was 2500. The number of animals in the base
population (G0) was 300 (150 males and 150 females).
Their phenotypic values were generated by the infinitesi-
mal model using the random digits generator, ranlib [12].
The phenotypic value of a descendant animal in the latter
two generations (G1 and G2) was formed by an average of

the parents, a Mendelian sampling effect and a random
residual. The number of animals was 750 (250 males and
500 females) in G1 and 1000 (no sex effect on recorded
animals) in G2. The breeding animals in G1 were selected
randomly. Records used to estimate variance components
comprised only the phenotypic values of animals in G2.
The number of GIAs for each mating was two, i.e., a total
of 1000 GIAs (500 GIA pairs). The variance components
were estimated by restricted maximum likelihood (REML)
using remlf90 [13]. The number of replicates for the sim-
ulation was 20 for each x value (from 0.01 to 1.0).

Results
Effect of the K matrix

Let animal j be genetically identical to animal i. Unless
their descendants at the tth generation are inbred animals
with animal i or j as a common ancestor, the K matrix has
the effect of adding di(1 - x) to the NRM element of the

GIA and of adding  to the NRM element

of their descendants at the tth generation. Thus, when
there is no GIA, the off-diagonal element of animals i and
j for the A matrix is aij, and the off-diagonal element of

animals i and descendant st at the tth generation of animal

j is . If animals i and j have no common descendant,

A is as follows:

Numerical example
Our example uses a simple pedigree, where animals 1, 2
and 3 are in the base population. Animals 4 and 5 are the
progeny of 1 and 2, and animal 6 is the progeny of 3 and
5. See Figure 1.
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is as follows:
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The D matrix has elements calculated in (2). Thus,

Therefore, A-1 in (3) is as follows:

A from (4) is

2) When animals 4 and 5 are GIAs,

the K matrix is as follows:

Then the inverse of the sub-matrix of K is

where ,

, and

.

Therefore, K-1 is

A-1 in (5) is as follows:
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Diagram of the pedigree.
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Here, if x → 0, A is as expected,

Thus, the elements of animals 4 and 5 are those of the
GIAs.

Simulation
Figure 2a presents the results of the estimated genetic var-
iance. Averages of 20 estimates are shown together with
their ranges (minimum and maximum). Genetic vari-
ances were overestimated at low (1-x) and around the true
value at high (1-x) and estimated residual variances were
underestimated at low (1-x) and around the true value at
high (1-x) (data not shown).

Figure 2b shows averages of log likelihood (-2logL) for
various (1-x) values together with their ranges when
REML estimates were obtained for the variance compo-
nents. The log likelihood declined at high (1-x): 0.95 or
0.99, indicating the validity of the model with high (1-x).
The difference between the models with 0.95 and 0.99
was statistically insignificant by the likelihood ratio test.

Discussion
The K matrix proposed in this study is directly calculated
by a simple formula; thus, calculating the inverse of a
large matrix can be avoided as in standard methods
[5,1,2]. Using NRM with GIAs results in adding more ani-
mal records to a dataset for variance component estima-
tion and in calculating genetic evaluation by the mixed
model procedure.

The simulation study showed that the estimated genetic
variance is reasonably accurate with a high (1-x); however,
a low (1-x) resulted in overestimation of the genetic vari-

ance, which is caused by false genetic relationships
between pairs of GIAs. For instance, in the case of (1-x)
equal to 0.0, where the GIAs were erroneously treated as
full sibs, a large genetic variance and, consequently, a
small residual variance were estimated because the vari-
ance component within full sibs was far smaller than that
expected for full sibs and vice versa for the variance com-
ponent between full sibs.

This simulation study assumed perfect genetic relation-
ships between pairs of GIAs. Then, a (1-x) value higher
than 0.95 can result in unbiased estimates of additive
genetic variance for the simulated data sets. Therefore, a
(1-x) value of 0.95 is adequate for the data set of this sim-
ulation; however, the choice of the x value may depend on
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a. Averages and ranges of estimated additive genetic vari-ances for different (1-x) values with 20 simulated data setsFigure 2
a. Averages and ranges of estimated additive genetic 
variances for different (1-x) values with 20 simulated 
data sets. b. Averages and ranges of log likelihood (-2logL) 
for different (1-x) values with 20 simulated data sets.
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the size of the data set and the genetic constituents of a
population: a higher (1-x) may be adequate for a large
data set and/or a data set containing monozygotic twins.

In the analysis of real records, a lower (1-x) value is
expected because perfect genetic relationships between
pairs of GIAs are no longer attainable. The highest genetic
relationship is found among monozygotic twins; how-
ever, diversity within pairs of twins was found to be larger
than expected, according to the human study by Bruder et
al. [11]. A similar diversity is observed in embryo splitting
studies, but manipulating embryos may constitute a
potential source of increased diversity. Clones obtained
from embryotic cell nuclear transfer may show a higher
diversity caused by the recipient cytoplasm [9]. In the case
of clones obtained from somatic cell nuclear transfer, an
additional source for genetic diversity can originate from
mutations in the somatic cell and gene imprinting in the
nucleus of the somatic cell [8,10]. Different types of GIAs
with various degrees of genetic diversity do exist. Thus,
GIAs can be regarded as highly related animals rather than
identical animals. Although, (1-x) values can range from
0.0 to 1.0, it is probably nearer to 1.0. To resolve this ques-
tion, statistical studies such as REML on the estimation of
x are needed with a large data set including various types
of GIA. The methodology presented here provides an ana-
lytical tool to analyse GIAs with an imperfect genetic rela-
tionship within pairs of GIAs.
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