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Abstract
Background: Current methods for haplotype inference without pedigree information assume
random mating populations. In animal and plant breeding, however, mating is often not random. A
particular form of nonrandom mating occurs when parental individuals of opposite sex originate
from distinct populations. In animal breeding this is called crossbreeding and hybridization in plant
breeding. In these situations, association between marker and putative gene alleles might differ
between the founding populations and origin of alleles should be accounted for in studies which
estimate breeding values with marker data. The sequence of alleles from one parent constitutes
one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals.

Results: We introduce a new method for haplotype inference without pedigree that allows
nonrandom mating and that can use genotype data of the parental populations and of a crossbred
population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian
set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The
basic idea is that only a subset of the complete set of possible haplotypes is present in the
population.

Conclusion: Line origin of approximately 95% of the alleles at heterozygous sites was assessed
correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred
with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing
algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in
situations of crossbreeding and that PHASE performed better in situations of random mating.

Background
In general, marker genotypes of polyploid organisms are
unordered, i.e. it is unknown to which of the two homolo-
gous chromosomes each allele at each marker belongs.
The sequence of alleles at adjacent markers on one chro-

mosome is called a haplotype; in diploid organisms a gen-
otype consists of two haplotypes. Haplotypes provide
information about the cosegregation of chromosomal
segments and can be used to identify relatives when pedi-
gree information is unknown. The haplotypes that an
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individual carries can be determined experimentally but
this is expensive [1]. Alternatively, haplotypes can be
inferred, either with or without pedigree information.

When pedigree information is available, haplotypes can
be inferred using genotype data of relatives (e.g. [2,3]).
When pedigree information is not available, haplotypes
can be inferred from genotype data of the population (e.g.
[4,1,5-8]).

Stephens et al. [1] used a Bayesian model to obtain a pos-
terior distribution of haplotypes. Their prior distribution
for haplotypes approximates a coancestry model by which
distinct haplotypes originate from one common haplo-
type and can differ due to mutations at specific locations.
Due to this prior, new haplotypes are likely to be equal or
similar to haplotypes that already have been inferred.
Stephens and Sheet [8] extended the prior in [1] with a
recombination model which explicitly accounts for link-
age of loci on the genome. The whole algorithm is imple-
mented in the program PHASE.

The model of Xing et al. [7] is comparable to the model of
Stephens et al. [1] in assuming that haplotypes in the pop-
ulation originate from a latent set of ancestral haplotypes.
This model uses a Dirichlet Process as prior for the ances-
tral haplotypes in the population and distinct haplotypes
in the population can be associated to one ancestral hap-
lotype due to a mutation rate.

Mentioned methods assume a random mating popula-
tion where the probability of an ordered genotype is the
product of the population frequencies of the two contrib-
uting haplotypes [9]. Random mating, however, is rarely
accomplished in reality. Departures from Hardy-Wein-
berg equilibrium that lead to increased heterozygosity
complicate haplotype inference, whereas departures that
lead to increased homozygosity make haplotype inference
easier [1]. A common case of nonrandom mating occurs
when parental individuals of opposite sex originate from
divergent populations. In animal breeding this is referred
to as crossbreeding and in plant breeding as hybridization. In
these applications, selection takes place in the purebred
population and crossed offspring are used for production
purposes. This allows the breeder to exploit heterosis and
reduces the risk of sharing improved genetic material with
competitors. Pedigree of crossed individuals is generally
not recorded in commercial animal production situations
because of logistics and costs [10]. Because of nonrandom
mating, haplotypes of commercial crossed individuals can
generally not be inferred with the use of existing methods
for haplotype inference without pedigree.

During recent years, use of marker information for estima-
tion of breeding values has received ample attention (e. g.

[11,12,10,13-16]). In general, methods for estimating
breeding values with marker data estimate effects the alle-
les of markers in the data with a specific regression tech-
nique and use these effects to calculate breeding values of
selection candidates. Direct application of methods for
estimating breeding values in crossbreeding situation can
be problematic when association phase between markers
and QTL differ in the two parental lines, which is increas-
ingly likely when the distance between markers and QTL
increases. A secure approach is therefore to estimate sepa-
rate marker effects for each purebred population sepa-
rately; this requires knowledge of the line origin of alleles.

Line origin of alleles can be estimated with the use of ped-
igree information. If pedigree information is not availa-
ble, line origin of alleles can be estimated based on allele
frequencies in the purebred populations, or alternatively,
based on haplotype frequencies in the purebred popula-
tions. Use of haplotype frequencies can be advantageous
to reveal line origin of allele when differences between
allele frequencies in both lines are relatively small.

In this article, we introduce a new method for inferring
haplotypes in crossbred situations without pedigree infor-
mation. The method uses marker information from the
two parental populations and from the crossbred off-
spring population. Joint inference of haplotypes is
expected to increase accuracy of haplotypes inferred for
the three populations. The main objective of our method,
however, was to estimate line origin of marker alleles in
the crossbred population. The method uses an approach
similar to the approach used by Xing et al. [7]. The
method can be applied to infer haplotypes and estimate
line origin of alleles in crossbred data and to infer haplo-
types in purebred data. Throughout this paper, we refer to
the method as DP algorithm because the algorithm uses a
Dirichlet Process as prior distribution for the haplotype
frequencies in the parental populations.

The rest of this paper is organized as follows. We begin by
describing the DP algorithm, followed by describing the
data which we used for evaluating the method. We pro-
ceed by describing the results obtained with the method
and compare these to results obtained with PHASE [8].
We finish the paper with a discussion section.

Method
In this section we introduce the DP algorithm for haplo-
type inference. First, we introduce the concepts involved
in the method. Then, we proceed with the details of the
method starting with a model for a random mating situa-
tion followed by an extension of this model to a situation
of crossbreeding. For the implementation of the method,
a user can either assume random mating or crossbreeding.
We finish the section by describing the evaluation of the
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method and the data employed in this evaluation. The DP
algorithm is programmed in R [17] and available as an R-
package upon request from the authors.

Concepts
Consider a list of genotypes G of L biallelic loci. The gen-
otype of individual i, Gi, consists of two unknown haplo-
types: the haplotype that the individual received from its
mother, Him, and the haplotype that it received from its
father, Hif. The pair of haplotypes that the individual car-
ries is one of the 22L possible haplotype pairs. The proba-
bility for each pair is a function of the unknown
population frequencies of the two haplotypes.

Imagine that all haplotypes in a population are repre-
sented in a list of haplotype classes, A, and that a haplo-
type is identical to the class to which it is associated. Let cij
represent the class in A to which haplotype j of individual
i is associated. The associations of all haplotypes in the
data to classes in A are in matrix C. The frequency of a class
is the number of haplotypes that are associated to that
class.

When genotypes are unordered, neither A nor C are
known. In our method, we need to simultaneously infer
the haplotype pair that correspond to a genotype because
one haplotype that corresponds to a genotype completely
determines the other haplotype corresponding to that
genotype.

The length of list A represents the haplotype count in the
population. When n is the number of genotyped individ-
uals and for n is greater than 0, this count ranges from 1
to 2n. Similar as Xing et al. [7], we formulate the distribu-
tion of haplotypes in the population as a mixture model.
The mixture components are the elements of A. The mix-
ture proportion of a class is proportional to its frequency,
which is an estimate of the frequency of that haplotype
class in the population.

Model: random mating situation
We specify a Bayesian model where inference is based on
the posterior probabilities of the parameters. The poste-
rior probability of the unknown parameters of our model,
A, and C, is p(A, C|G). Using Bayes' theorem:

The likelihood of the genotypes given the parameters is
p(G|A, C). The prior is p(A, C). We use Gibbs sampling to
obtain samples from the marginal posterior distributions
of the parameters. For Gibbs sampling, we only need the
posterior distribution until proportionality and the nor-
malizing constant p(G) is not required.

In the following, we describe the likelihood function and
the prior distribution for the haplotype classes and the
correspondence parameters. We then combine the likeli-
hood and prior and describe our Gibbs sampler.

Likelihood function
The following model specifies the likelihood function of
our model by describing the relation between genotype i
and the pair of haplotypes (Him, Hif):

Parameter q is an error rate between genotype i and pair of
haplotypes (Him, Hif)'. Indicator I(gil == himl + hifl) has value
1 when the two alleles at locus l match with the genotype
on locus l and 0 otherwise. Indicator I(gil  himl + hifl) has
value 1 when the two haplotypes do not match with the
genotype and 0 otherwise. Because we do not allow for
errors, q = 1 is in our model. The probability in model 2 is
different from 0 only when a pair of haplotypes matches
with the genotype on all loci.

Prior Distribution
We know that we have a large number K of possible hap-
lotype classes (for biallelic loci, K = 2L). For haplotype j of
individual i, Hij, parameter cij indicates to which class that
haplotype is associated. Index j  (m, f)') indicates if the
haplotype originated from the mother or from the father
of individual i. For each class c, parameter c describes the
distribution of observations associated to that class and 
represents all c [18]. For each class, this distribution only
consists of haplotypes that are identical to that class
because we do not allow for errors between a haplotype
and the class to which that haplotype is associated. The c
are sampled from the base distribution of the Dirichlet
Process, G0 [18], which in our case is a distribution the K
possible haplotype classes. The mixing proportions for the
classes, p, have a symmetric Dirichlet prior distribution
with concentration parameter /K [18].

Following Neal [18], this gives:

The first equation of expression 3 is the distribution of
haplotype Hij given parameter cij and . The second equa-
tion is the prior distribution for cij = k. The third equation
is the base distribution of the model and the fourth equa-
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tion is the prior for the mixing proportions. After integra-
tion over p, the prior for cij = k is [18]:

where  is the frequency of haplotype class Ak and rep-

resents the number of haplotypes associated to this class
excluding current haplotype Hij. ns is the number of hap-

lotypes excluding haplotype Hij, i.e. . The first

equation is the prior probability of sampling existing class
Ak. The second equation is the prior probability of sam-

pling a new class, i.e. the haplotype is not associated to any
haplotype class that is already present in list A. We modify
distribution 3 to evaluate the prior probability of a pair of
haplotypes. Here, we integrate the prior for cim, cif|p over

p, because the association of a pair of haplotypes to
classes in A is unknown. Each haplotype is either associ-
ated to an existing class Ak in A or to a new class which is

not in A. Five situations can then occur: a) Both haplo-
types are associated to a different class in A; b) Both hap-
lotypes are associated to the same class in A; c) One
haplotype is associated to a class in A and the other hap-
lotype is associated to a class which not in A; d) Both hap-
lotypes are associated to different haplotype classes which
are not in A; e) Both haplotypes are associated to the same
class which is not in A. It can be shown that integration
over p gives the following prior probabilities for these five
situations:

Here,  represents the number of haplotypes associated

to class Ak, excluding the two haplotypes corresponding to

genotype i. The total number of haplotypes sampled

excluding the two haplotypes is ns; .

Gibbs sampler
We use a Gibbs sampler to obtain samples from the pos-
terior distribution p(c, A|G, q). We follow algorithm 1 of
Neal [18] to derive the posterior probabilities correspond-
ing to the five situations described in the previous:

The sums in expression 6 can be simplified.

 only if Ak is

compatible with the genotype, i.e. p(Gi|cif = Ak, q) = 1. Oth-

erwise it is 0 because one haplotype and a genotype com-
pletely determines the second haplotype. To evaluate the
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sums in the fourth and fifth equation, let nHet be the
number of heterozygous loci on the genotype. If nHet > 0,

, otherwise it

is 0. If nHet = 0, , oth-

erwise it is 0.

Now, conditional expression 6 for the five situations is:

Model: crossbred population
We extend the model to a crossbreeding situation. In this
situation, we consider three populations. Populations M
and F are the purebred parental populations. Population
Cross is the crossbred offspring population, created by
crossing individuals from population M to individuals of
population F. Let AM denote the list of haplotype classes
for population M and AF denote the list of haplotype
classes for population F. In crossbred individuals, one
haplotype originates from population M and the other
haplotype originates from population F, and haplotypes
inferred for a crossbred genotype thus estimate origin of
heterozygous alleles of that genotype. Both haplotypes in
a purebred individual from population M or F originate
from that population.

Figure 1 graphically represents this crossbreeding situa-
tion with the two list of haplotype classes. Posterior prob-
abilities for sampling haplotype pairs for purebred
individuals in population M and F are in expression 7. A
different posterior probability is required for sampling a
haplotype pair for a crossbred individual.

Haplotype Him of a crossbred individual is associated to a
class in AM and haplotype Hif is associated to a class in AF.
Three situations can occur at the moment of sampling a
haplotype pair for a crossbred individual at a given step in
the sampling algorithm. a) Haplotype Him is associated to
a class in AM and haplotype Hif is associated to a class in
AF. b) One haplotype is associated to a class in A. and the
other haplotype is associated to a class not in the other list
of haplotype classes. c) Both haplotypes are associated to
classes which are not in the lists. The prior probabilities
corresponding to these situations are:
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Graphical representation of the crossbreeding modelFigure 1
Graphical representation of the crossbreeding 
model. AM represents the list of haplotype classes of popu-
lation M and AF represents the list of haplotype classes of 
population F. GM represents the genotypes in population M, 
GF represents the genotypes in population F, and GCross rep-
resents the genotypes in the crossbred population Cross. 
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AF.

AM

��

��

AF

��

��

GM GF

GCross
Page 5 of 11
(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:40 http://www.gsejournal.org/content/41/1/40
The rationale for obtaining posterior probabilities is iden-
tical to the single population case. Consequently, the pos-
terior probability for the three situations is:

Measures of algorithm performance
The goal of our algorithm was to accurately identify line
origin of alleles at heterozygous sites in crossbred individ-
uals. For this purpose, the algorithm infers haplotypes for
both the purebred and crossbred individuals in the data.

Line origin accuracy of alleles at heterozygous sites in
crossbred individuals was assessed using the measure
Allele Origin Accuracy (AOAc). AOAc could only be
assessed for crossbred individual because all alleles in a
purebred individual originate from a single line or popu-
lation. AOAc was calculated as the number of alleles at
heterozygous sites whose origin is correctly estimated and
is expressed as fraction of the total number of hetero-
zygous loci in that individual. AOAc ranges between 0,
when origin of all alleles is inferred incorrectly to 1, when
origin of all alleles at heterozygous sites is inferred cor-
rectly.

For the purpose of estimating allele origin, the algorithm
estimates frequencies of haplotype classes in the distinct
populations. We used a second measure of algorithm per-
formance to assess the accuracy of inferred haplotype fre-

quencies. Following the article of Excoffier and Slatkin
[4], we used similarity index, If, for this purpose. If assesses
similarity between the vector of true and estimated haplo-
type frequencies. If was calculated as [4]:

where the summation is over the 2L possible haplotypes in

the population,  is the estimated frequency of haplo-

type k and pk is the true frequency of this haplotype.

We compared If of haplotype frequencies inferred with
the DP algorithm to If of haplotype frequencies inferred
with PHASE [8]. We ran PHASE for 1,000 iterations, with
a burn-in of 100 iterations and a thinning period of 10
samples, which is the default used by PHASE. AOAc could
not be compared between the two methods because
PHASE assumes single, random mating populations.

Indices AOAc and If were recorded each 50th sample of the
MCMC chain and averaged over the whole length of the
chain to obtain the mean of their posterior distributions.
The length of the chain was made dependent on the
number of genotypes in the data. For the simulated data,
the chain was run for 20,000 iterations when single pop-
ulations were assumed and for 40,000 iterations when a
crossbreeding scheme was assumed. The chain was run for
100,000 iterations for the data of the Wageningen Meis-
han cross (see below). The first 5,000 iterations were dis-
carded as burn-in. The number of iterations was
determined after visual inspection of parameters If and
AOAc, which stabilized after approximately 10,000 itera-
tions.

Data
We used two datasets to evaluate the algorithm.

Simulated data
Two independent populations were simulated (popula-
tion M and population F). Genomes consisted of one sin-
gle chromosome of a length of 9 cM with 10 biallelic
markers equally distributed over the chromosome. In the
base populations, Minor Allele frequencies (MAF) were
equal for all markers. In population M, the 1 allele was the
minor allele and the 0 allele was the minor allele in pop-
ulation F. For populations M and F, 100 generations of
random mating were simulated maintaining a population
size of 100 to establish Linkage Disequibrium between
markers. Recombinations were simulated according to the
genetic distance and without interference. A hundred
crossed individuals were simulated by crossing generation
100 of population M to generation 100 of population F.
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Minor Allele Frequency in the simulated base population
was varied between 0.01, 0.25, 0.40, and 0.49 to create a
range of situations. In the MAF is 0.49 situation, popula-
tions were highly similar, and populations were extremely
different in the MAF is 0.01 situation. Ten replicates were
simulated for each MAF value.

Crossbreeding data
The second dataset was SNP data of the Wageningen Meis-
han-commercial line cross and consisted of 294 geno-
typed crossbred F1 offspring individuals, 109 genotyped
dams from commercial lines, and 19 genotyped sires from
the Meishan breed. The genotypes consisted of 14 SNP
loci covering approximately 5 cM on chromosome 2. Gen-
otype data of the parental lines (commercial dams and
Meishan sires) and genotypes of the crossbred F1 off-
spring were used for analyses. Haplotypes were previously
inferred using the known pedigree with the program CVM
(which stands for Cluster Variation Method) [3]. The pro-
gram CVM is an algorithm for inferring haplotypes from
unordered genotype data conditioning on marker infor-
mation of relatives, identified through pedigree informa-
tion. Haplotypes inferred with CVM were considered as
correct and haplotypes inferred with DP were compared
with these.

Results
In the first part of this section, we validate the algorithm
using the simulated data. In the second part, we use the
algorithm to estimate haplotypes in the real Wageningen-
Meishan cross data. For each dataset, we compare the per-
formance of the DP algorithm with the performance of
PHASE.

Simulated data
Table 1 summarizes the simulated populations. Heterozy-
gosity and the count of distinct haplotypes in the parental
population increased when MAF in the base population
of M and F increased because MAF was set for reciprocal
alleles in the two populations. Chromosome size was
equal in all simulations but the number of observable
recombinations in the crossbred population increased
when MAF of the base population increased because the
probability that a haplotype originating from a recombi-
nation was already present in the population decreased
with increasing heterozygosity.

The number of haplotype classes increased when concen-
tration parameter  of the Dirichlet Process increased
(Table 2). There was only a small effect of parameter  on
If of the parental and crossbred populations. Crossbreed-
ing was assumed in these analyses, enabling to calculate
AOAc for the crossbred population, but the effect of  on
AOAc was only minimal (Table 2).

Accuracy of estimated haplotype frequencies in the cross-
bred population was affected by assuming random mat-
ing or crossbreeding. When random mating was
(erroneously) assumed, there was only 30% agreement
between the estimated and true vector of haplotype fre-
quencies in the crossbred population, reflected by If
(Table 3). If increased to 0.87 when crossbreeding was
assumed and marker data of the parental populations was
included in the analyses (Table 3). Average If of haplotype
frequencies estimated for the parental M population
increased from 0.84 when random mating was assumed
to 0.88 when crossbreeding was assumed (Table 3).

Allele Origin Accuracy was only calculated for crossbred
individuals when crossbreeding was assumed. In this case,
AOAc was 0.95, reflecting that the origin of 95% of the
alleles at heterozygous sites in crossbred individuals was
correctly assessed.

Including marker data of at least one parental population
was crucial for AOAc and If of haplotypes inferred for
crossbred individuals (Table 4). A lower improvement
was achieved due to including the second population in
the analyses.

Similarity Index and AOAc of haplotypes inferred for
crossbred individuals with DP increased when MAF of the
parental populations were increasingly different (Table
5). In contrast, If of haplotypes inferred for the same data
with PHASE decreased when differences between MAF of
parental populations increased (Table 5). If of haplotypes
inferred for purebred individuals were similar between
DP and PHASE.

Wageningen Meishan-Commercial cross
The crossbred individuals in the Wageningen Meishan-
Commercial cross data originated from 19 sires and 109
dams. Three analyses were performed using data of 19, 63
and 109 dams and only their offspring and the sires of

Table 1: Average (standard deviation) of number of distinct 
haplotypes in (nHap), the average fraction of heterozygous loci 
within individuals (% het) and fraction observed recombinant 
haplotypes for the Cross population (% rec). 

MAF Populations M, F Cross populations

nHap % het nHap % het % rec

0.01 2 (1) 0.02 (0.02) 3 (1) 0.98 (0.02) 0.00 (0.00)
0.25 19 (9) 0.20 (0.07) 32 (6) 0.66 (0.08) 0.01 (0.01)
0.40 30 (9) 0.29 (0.06) 50 (12) 0.54 (0.07) 0.02 (0.01)
0.49 32 (8) 0.30 (0.06) 48 (8) 0.49 (0.07) 0.01 (0.01)

nHap and %het in populations M and F represent averages of these 
two populations. Minor Allele Frequency (MAF) in the base 
populations was simulated between 0.01 and 0.49. Ten replicates 
were simulated for each MAF.
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these offspring in the analyses. Data were analysed using
the DP algorithm assuming crossbreeding, using the DP
algorithm assuming random mating and using PHASE,
which assumes random mating.

Similarity Indices obtained using the DP algorithm were
substantially higher when crossbreeding was assumed
compared to when random mating was assumed (Table
6). Similarity indices obtained with PHASE were very sim-
ilar to If obtained with DP assuming crossbreeding,
despite that PHASE assumed random mating. There was
not a clear effect of the number of dams used on If.

Allele origin accuracies obtained with DP when cross-
breeding was assumed were approximately 0.95, without
regard of the number of dams included in the data (Table
6).

Discussion
Crossbreeding or hybridisation is a common case of non-
random mating in animal and in plant breeding. Infer-
ence of haplotypes in crossbred individuals is useful when
line origin of alleles is required because haplotypes pro-
vide information about cosegregation of chromosome

segments. In this paper, we introduced and validated a
method for estimating line origin of alleles in crossbred
individuals when pedigree information is unknown.

To our knowledge, no algorithms for estimating line ori-
gin of alleles in crossbred individuals have been
described. Comparison of results obtained with the DP
algorithm to results obtained with alternative methods
was therefore not possible. For comparison, we concen-
trated on the accuracy of haplotype frequencies, as
indexed by parameter Similarity Index, If and compared If
obtained using the DP algorithm to If obtained using
PHASE.

PHASE was used to compare results obtained with the DP
algorithm because PHASE was used in several recent stud-
ies (e.g. [19-21]). The prior distribution for haplotypes
used in PHASE is more realistic than that used in the DP
algorithm. The prior distribution in the DP algorithm
assigns equal probability to all classes from the 2L possible
haplotypes. The prior distribution in PHASE approxi-
mates a coancestry model of the haplotypes and explicitly
models linkage between markers [1,8]. Haplotypes
inferred with PHASE for the Wageningen Meishan-Com-
mercial cross data reflect the qualities of PHASE (Table 6).
In the situations which were simulated, however, haplo-
types for crossbred individuals inferred with PHASE were
less accurate than haplotypes inferred with DP.

Table 2: Effect of Concentration Parameter () of the Dirichlet Process on Allele Origin Accuracy (AOAc), Similarity Index (If), and the 

average number of haplotype classes ( ) for 1 replicate of populations M and Cross. 

Population M Cross population

 = 0.01  = 0.1  = 1  = 10  = 100  = 0.01  = 0.1  = 1  = 10  = 100

AOAc 0.98 0.98 0.98 0.98 0.97
If 0.91 0.91 0.93 0.93 0.92 0.94 0.94 0.94 0.94 0.91

18 18 18 19 27 47 47 47 49 67

Analyses were run assuming crossbreeding and populations M, F and Cross were used in the analyses. Base populations for M and F were simulated 
with Minor Allele Frequency equal to 0.40.

nHap

nHap

Table 3: Average (standard deviation) Allele Origin Accuracy 
(AOAc) and Similarity Index (If) of haplotypes inferred for 
genotypes of simulated populations M and Cross. 

Population AOAc If

Random-Mating
M 0.84 (0.05)
Cross 0.30 (0.28)

Crossbreeding
M 0.88 (0.03)
Cross 0.95 (0.02) 0.87 (0.05)

Data were analysed assuming Random-Mating or Crossbreeding. 
Genotypes of simulated population F were included in the analyses 
when Crossbreeding was assumed. Analyses were run with  equal to 
1. Ten replicates where simulated for each scenario. Base populations 
for M and F were simulated with Minor Allele Frequency equal to 
0.40.

Table 4: Average Allele Origin Accuracy (AOAc) and Similarity 
Index (If) of haplotypes inferred for genotypes of simulated 
Cross population.

AOAc If

100% Pop. M, F 0.95 (0.02) 0.87 (0.05)
100% Pop. M, 0% Pop. F 0.94 (0.01) 0.84 (0.03)
0% Pop. M, F 0.44 (0.19) 0.36 (0.21)

Analyses were run assuming Crossbreeding and purebred populations 
M and F were either included or not in the analyses. Analyses were 
run with  equal to 1. Populations were simulated with Minor Allele 
Frequency in the base populations equal to 0.40. Ten replicates were 
simulated for each scenario.
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Complexity of haplotype inference is determined by the
number of heterozygous loci in a genotype because the
number of possible haplotype configurations is 2nHet. By
design of the simulations, heterozygosity in the crossbred
populations was high when heterozygosity in the parental
populations was low (Table 1). Consequently, If of haplo-
type frequencies inferred with PHASE where low for the
crossbred populations and high for the parental popula-
tions in these scenarios (Table 5). In contrast to PHASE,
the DP algorithm uses information from the two parental
populations to infer haplotypes in the crossbred popula-
tion. Advantage of this approach was most apparent in sit-

uations when If of haplotypes inferred with PHASE for
crossbred individuals were lowest.

Line origin of approximately 95% of the alleles at hetero-
zygous sites in crossbred individuals was correctly identi-
fied by the algorithm when genotypes of parental
individuals were included in the analyses. Excluding gen-
otypes of either one or both parental populations from
the analyses showed that including data of at least one
parental population was crucial for correct identification
of line origin of alleles (Table 3).

In the current DP algorithm, the prior distribution for
haplotype classes does not account for allele frequencies
in each population. Clustering haplotypes based on allele
frequencies, following Huelsenbeck and Andolfatto [22],
could improve the accuracy of the DP algorithm for cross-
bred individuals, especially in situations when few data
on the parental populations are available. In addition, it
could facilitate extension of the algorithm to situations
where the data originated from more than two parental
populations. Currently, the algorithm can not easily be
extended to more than two population because of the
large number of possible haplotype configurations which
would need to be evaluated for this because each haplo-
type could originate from all populations.

The DP algorithm is similar to the algorithm of Xing et al.
[7] because it assumes the existence of a limited number
of classes for the haplotypes in the population and uses a
Dirichlet Process as prior distribution for these classes. A
feature of the Dirichlet Process is that it clusters data with-
out the need to specify the number of clusters. In the con-
text of haplotypes, this feature is especially attractive
because the haplotype diversity in the population usually
is lower than the 2L possible haplotype classes (L is the
number of polymorphic loci in the data).

Apart from the ability to infer haplotypes in a situation of
crossbreeding, the most important difference between our
model and that of Xing et al. [7] is that our model does
not assume errors between a haplotype and the class to
which it is associated nor between a pair of haplotypes
and the genotype to which they correspond. The first con-
sequence of this is that we need to update the pair of hap-
lotypes corresponding to a genotype simultaneously
because the haplotypes corresponding to a genotype are
conditionally dependent. The second consequence is that
the number of haplotype classes required for a population
is equal or larger than in the model of Xing et al. [7].

Not not allowing for errors had several benefits. Imple-
mentation of the model of Xing et al. [7] showed that con-
trolling the error rate through the hyperparameters of
their model was very difficult. Errors were either sampled

Table 5: Average (standard deviation) of Similarity Indices If for 
haplotypes inferred with PHASE and with the DP algorithm 
from genotypes of simulated populations M and Cross. 

MAF PHASE DP

Pop. M Cross pop. Pop. M Cross pop.

0.01 1.00 (0.01) 0.00 (0.00) 1.00 (0.01) 1.00 (0.01)
0.25 0.93 (0.04) 0.12 (0.28) 0.93 (0.04) 0.92 (0.04)
0.40 0.86 (0.05) 0.42 (0.30) 0.88 (0.03) 0.87 (0.05)
0.49 0.90 (0.03) 0.55 (0.25) 0.90 (0.03) 0.89 (0.03)

Minor Allele Frequency in the base populations (MAF) was simulated 
between 0.01 and 0.49, 10 replicates were simulated for each MAF. 
Genotypes of simulated population F were included in the analyses 
with the DP algorithm. Parameter  was set equal to 1 in the analyses 
with DP.

Table 6: Allele OriginAccuracy (AOAc) and Similarity Index (If) 
for haplotypes inferred with the DP algorithm assuming 
crossbreeding (DP), with the DP algorithm assuming random 
mating (DP RM) and with PHASE. 

DP CB DP RM PHASE

AOAc If If If

19 Dams
Cross 0.97 0.93 0.09 0.93
Dams 0.92 0.90 0.86
Sires 0.75 0.78 0.80

63 Dams
Cross 0.94 0.87 0.69 0.86
Dams 0.84 0.80 0.83
Sires 0.76 0.77 0.77

109 Dams
Cross 0.95 0.91 0.10 0.91
Dams 0.84 0.82 0.81
Sires 0.76 0.77 0.77

Parameter  of the DP algorithm was set equal to 1. Data from the 
Commercial × Meishan crossbreeding data. Indivuals in the Dam 
group were from the commercial breed and individuals in the Sire 
group were from the Meishan breed. Parameter  was set equal to 1 
in the analyses with DP.
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between haplotypes and their classes or between haplo-
types and the genotypes to which they corresponded. Not
allowing for errors between haplotypes and genotypes
made simultaneously updating the pair of haplotype cor-
responding to a genotype necessary. For simultaneous
updating, however, all pairs of haplotypes that are possi-
ble for a genotype need to be considered in each sampling
step of the algorithm. Not allowing for errors between
haplotypes and the classes to which they correspond is
then advantageous because it reduces the number of pos-
sible haplotype pairs for a genotype from 22L to 2nHet (nHet
is the number of heterozygous loci at a genotype).

The number of markers used in both the simulated and
the real data is low compared to number of markers that
are currently used. Two problems are expected when the
number of markers in the data increases. The first and
most trivial one is the size of the data which obviously
increases. The second problem is that haplotypes become
increasingly unique when markers are located on regions
more distant on the genome due to occurrence of recom-
binations and random sampling of independent chromo-
somes. Performance of the DP algorithm can be expected
to be low when the number of haplotypes unique in the
crossbred population increases. A practical solution could
be to split the data into subsets of adjacent markers on sin-
gle chromosomes or to use a sliding window approach
over chromosomes.

The algorithm could be adapted to allow for missing
marker data. Let m be the number of missing markers for
a specific individual. The likelihood in Expression 2
should then only be evaluated for the L - m non missing
markers, since the other markers always match. The sum-
mations in Expressions 6, 7 and 9 should only account for
the number of non missing markers, L - m. In essence, the
model would need to evaluate the non missing markers in
each individual, since individuals are sampled independ-
ently.

In the present article, we introduced a new algorithm for
inference of line origin of alleles in crossbred populations.
Analyses with both simulated and real data showed that
origin of approximately 95% of the alleles at heterozygous
sites was inferred correctly. Application of the algorithm
to realistic data will require extension of the algorithm
with methods to deal with large numbers of markers and
with missing data.
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