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Abstract
Background: Marginal posterior genotype probabilities need to be computed for genetic analyses
such as geneticcounseling in humans and selective breeding in animal and plant species.

Methods: In this paper, we describe a peeling based, deterministic, exact algorithm to compute
efficiently genotype probabilities for every member of a pedigree with loops without recourse to
junction-tree methods from graph theory. The efficiency in computing the likelihood by peeling
comes from storing intermediate results in multidimensional tables called cutsets. Computing
marginal genotype probabilities for individual i requires recomputing the likelihood for each of the
possible genotypes of individual i. This can be done efficiently by storing intermediate results in two
types of cutsets called anterior and posterior cutsets and reusing these intermediate results to
compute the likelihood.

Examples: A small example is used to illustrate the theoretical concepts discussed in this paper,
and marginal genotype probabilities are computed at a monogenic disease locus for every member
in a real cattle pedigree.

Background
For monogenic or oligogenic traits, algorithms for effi-
cient likelihood computations have been described for
both pedigrees without loops [1], and pedigrees with
loops [2-5] Furthermore, efficient algorithms have been
developed to draw samples from the joint posterior distri-
bution of genotypes from complex pedigrees [6,7]. How-
ever, when pedigrees are large with many loops and
multiple loci, these sampling methods can become very
inefficient, and the J-PCS algorithm was proposed to
address this problem [8]. This algorithm involves a) mod-
ifying the pedigree by cutting some loops and b) sampling
the genotype of an individual i that is as distant as possi-

ble from the modifications ("cuts"). This sample must be
drawn from the marginal posterior genotype probability
distribution of i given the modified pedigree, which may
still have many loops. Furthermore, marginal posterior
genotype probabilities are needed in genetic counseling in
humans and selective breeding in domesticated species.
An efficient, exact, deterministic algorithm is available to
compute the marginal posterior genotype probabilities
for every member in a pedigree without loops [9]. How-
ever, it is not straightforward how to extend this algorithm
to compute marginal posterior genotype probabilities for
pedigrees with loops. Recently, junction tree methods
from graph theory were used to describe an efficient algo-
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rithm to compute marginal posterior genotype probabili-
ties for pedigrees with loops [10]. Most geneticists,
however, are not familiar with junction tree concepts, and
thus such algorithms would not readily be incorporated
in genetic analyses, especially because the paper of Lau-
ritzen and Sheehan [10] is not self-contained, but relies
on results from other sources. In this paper, we present a
self-contained description of an efficient, exact, determin-
istic algorithm to compute marginal posterior genotype
probabilities for every member of a pedigree with loops,
without use of junction tree methods. This algorithm has
been implemented in the public domain software package
MATVEC and can be obtained from the corresponding
author.

Following is a brief outline of the presentation. First we
define pedigree loops. Next we discuss the relationship
between the likelihood and marginal posterior genotype
probabilities of pedigree members. Following this, ante-
rior and posterior cutsets are introduced. Anterior cutsets
are used to compute the likelihood by the Elston-Stewart
algorithm (peeling), and anterior and posterior cutsets are
used to describe an efficient algorithm to calculate mar-
ginal probabilities for every member of a pedigree with
loops. Next, marginal genotype probabilities are calcu-
lated for every member in a cattle pedigree that contains
loops. Finally, in the appendix, a small example is used to
illustrate in detail the theoretical concepts discussed in
this article.

Methods
Definition of Pedigree Loops
Here we define pedigree loops indirectly by providing a
simple algorithm to determine if a pedigree contains
loops. A pedigree is a set of individuals, each of which can
be classified as a founder or a non-founder. A founder is a
pedigree member whose parents are not in the pedigree,
and a non-founder is a pedigree member with both par-
ents present in the pedigree. A nuclear family consists of a
set of parents and all their off spring. A terminal family is
a family that has at most one member who belongs to at
least one other nuclear family. Terminal members of a
pedigree are members of terminal families that do not
belong to another family. The algorithm used to deter-
mine if a pedigree contains loops relies on identifying and
then eliminating terminal members from the pedigree. If
a pedigree does not contain any loops, repeated removal
of terminal members from the pedigree will result in all
members being removed from the pedigree. On the other
hand, if a pedigree contains any loops, not all members of
the pedigree can be removed by repeated removal of ter-
minal members. See additional file 1: "Algorithm to
detect loops.pdf" for an example of the use of this algo-
rithm to identify loops in arbitrary pedigrees.

Likelihood and Genotype Probability Calculations for 
General Pedigrees
Consider a pedigree with n individuals, and let gi denote
the possible genotype and yi the observed phenotype of an
arbitrary pedigree member i. Note that both gi and yi can
be a function of a single locus or of multiple loci on the
chromosome. The likelihood for a genetic model given
the observed data can be written as

where F(g, y; ρ, q, θ) denotes the joint distribution of all gi
(g) and all yi (y) in the pedigree, ρ is the vector of recom-
bination rates between loci, q is the vector of gene fre-
quencies, and θ is the vector of parameters in the genetic
model that relates yi and gi [11]. Furthermore, the likeli-
hood can be written as

where  is a set of possible genotypes of a given set of

pedigree members si, and  is defined as

where h(yi| gi, θ) is the conditional probability of the phe-

notype yi given the genotype gi (also known as the pene-

trance function of individual i), Pr(gi| q) is the marginal

probability that a founder has genotype gi (founder prob-

ability) and Pr(gi| , , ρ) is the probability that a

non-founder has genotype gi given that its mother (mi) has

genotype  and its father (fi) has genotype  (transi-

tion probability). When gi,  and  consist of multi-

ple loci, the multilocus transition probability can be
written as a product of single-locus transition probabili-
ties and recombination probabilities between adjacent
loci, by making use of the Markov property for recombi-
nation events between adjacent loci that holds under the
assumption of no interference [5,12]. Note that, for each
individual i in the pedigree, a set si is defined that contains

either one or three individuals. For founders, si contains

only i, while for non-founders, si contains i, mi and fi. For

an arbitrary pedigree member i, marginal genotype prob-
abilities can be written as
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where L is the likelihood defined in 2, and  is the

likelihood computed with gi fixed at genotype x. Thus, the

efficient computation of marginal genotype probabilities
using equation 4 requires an efficient algorithm to com-
pute the likelihood. The computation of the likelihood
using 2 is not efficient for pedigrees having more than
about 20 members. However, the Elston-Stewart algo-
rithm, which is also known as peeling, can be used to effi-
ciently compute the likelihood [1,13]. Still, using
equation 4 to compute marginal probabilities for N
unknown genotypes of individual i requires recomputing
the likelihood with gi = x for each of the N values of x. Fur-

thermore, this has to be repeated for all n individuals in
the pedigree. In the following section we introduce an
algorithm to avoid repeating computations by storing
intermediate results in multidimensional tables called
anterior and posterior cutsets.

Anterior and Posterior Cutsets

Computing the likelihood by peeling involves summing
over the genotypes of one individual at a time and storing
the intermediate results. For convenience, here we assume
that individuals are numbered in the order that they are
peeled. Peeling the first individual amounts to computing
the sum over g1 of the product of all factors in 2 that con-

tain g1, for each combination of the other genotypes that

occur together with g1. Results of these summations are

stored in a multidimensional table that has been called a
cutset [13]. Here we will refer to these tables as anterior
cutsets. The anterior cutset obtained after peeling g1 will

be denoted by  and is calculated as

where V1 is a set of pedigree members defined as follows.

Using the sets si defined earlier for each individual in the

pedigree, U1 is defined as the union of all sj that contain

individual 1. Then V1 is obtained by removing individual

1 from U1. Further,  is the set of genotypes for the

individuals in V1. Note that the product in 5 is over those

pedigree members j that contain individual 1 in their sj.

Replacing in 2 the product of all factors containing g1,

summed over g1, with  gives the following

expression for the likelihood

where g1 = {g2 ... gn} is the set of possible genotypes of the
individuals that remain to be peeled, and the product is
over those pedigree members r that do not contain indi-
vidual 1 in their sr. The likelihood expressed as above after
peeling g1, will be referred to as LE1, and in general after
peeling gi, will be referred as LEi.

Note that after g1 has been peeled, the summation in 6 is
only over the genotypes of individuals 2 ... n. As described
below, and later illustrated through a hypothetical exam-
ple in the Appendix, as each individual is peeled, an ante-
rior cutset is generated. After peeling the last individual,
the final anterior cutset will have only a single value that
is equal to the likelihood. Note that for a pedigree with n
members, there are n! possible peeling orders. Although
any choice of a peeling sequence will lead to the same
value for the likelihood, not all choices of the peeling
sequence lead to anterior cutsets of the same size. As the
amount of memory required does depend on the size of
the cutsets, a peeling sequence leading to smaller cutsets is
more desirable. However, even for moderately large n, an
exhaustive search for an efficient peeling sequence is not
feasible. Furthermore, there is no known algorithm to effi-
ciently find the peeling order with the lowest storage
requirements [10]. However, the following simple heuris-
tic procedure can be used to generate a good peeling
sequence. At any stage of the peeling process, in order to
decide which individual should be peeled next, for each
individual i that remains to be peeled, we compute the
size of the anterior cutset that would be generated by peel-
ing i. The individual with the smallest anterior cutset size
is chosen to be peeled next [14].

Now it is convenient to introduce the posterior cutset
which will be used to avoid repeating computations in
calculating genotype probabilities. By factoring out

 from 6 and by summing over the genotypes of

all remaining pedigree members not contained in V1, we

can define a second multidimensional table called a pos-
terior cutset
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where  is not a function of g1. As a result we can

rewrite the likelihood as follows

In the general description of peeling given below, we
make extensive use of two sets defined for each individual
i. The first set si has already been described earlier, and it
is completely determined by the pedigree. The second set
Vi contains the individuals in the cutset that is generated
when i is peeled. Thus, Vi is determined by the pedigree
and the peeling order. In general, peeling individual i
amounts to computing the sum over gi of the product of
all factors in LEi-1 that contain gi, for each combination of
the other genotypes that occur together with gi. These
summations are stored in the anterior cutset for i:

where j is an individual whose function fj( ) remains in

LEi-1 and i ∈ sj, k is an individual whose anterior cutset

 remains in LEi-1 and i ∈ Vk, Ui = ( ) ∪ (∪ Vk),

and Vi = Ui-i. Replacing in LEi-1 the sum over gi of the prod-

uct of all factors containing gi with  gives the like-

lihood expression LEi:

where  are the functions from LEi-1 that were not

used in the calculation of  and  are the

anterior cutsets from LEi-1 that were not used in the calcu-

lation of . Now we obtain the posterior cutset for

i by removing  from LEi:

Note that  is not a function of gi. Thus, in general

we can write the likelihood as follows

Now we are ready to explain how to compute genotype
probabilities for any individual m ∈ Vi using anterior and
posterior cutsets. As in equation 4, marginal genotype
probabilities for m can be written as

The denominator of 13 is given by 12, while the numera-
tor is obtained by computing 12 with gm fixed at x. If m is

in more than one set of pedigree members Vi, identifying

the set Vi with smallest number of members will minimize

the required computations. However, if m is not in any Vi,

we first write the likelihood 12 as a product of the anterior
and posterior cutsets for m. In this expression, however, m
has already been peeled. Equation 9, which is used to
compute the anterior cutset for an arbitrary individual,
contains that individual prior to it being peeled. Thus, by

substituting in 12, the expression given in 9 for 

gives

Now the numerator of 13 is obtained by computing 14
with gm fixed at x.

Provided a good peeling sequence is available, computa-
tion of the required anterior cutsets and the summation

over  in 12 or  in 14 would be feasible. However,

posterior cutsets cannot be computed efficiently using 11
because here the summation may be over a very large set
of genotypes. Fortunately, posterior cutsets can be com-
puted recursively as described below. Although the deriva-
tion of the recursive algorithm given below is
conceptually straightforward, it may be tedious to follow.
Thus, at the end of this section, we provide four easy to
implement steps to efficiently compute posterior cutsets.

The key principle that we have used to compute marginal
posterior probabilities efficiently is that any pedigree
member can be assigned into one of three mutually exclu-
sive sets with respect to any individual i: the set of mem-

bers that contribute to , the set of members that

contribute to , or the set of members in Vi. For

example, in computing the numerator of 13 by using 12,
the intermediate results from peeling individuals in the
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first set were stored in  and used repeatedly, the

intermediate results from peeling individuals in the sec-

ond set were stored in  and used repeatedly, and

only the calculations for peeling individuals in the third
set were repeated. This principle of factoring the likeli-
hood into anterior and posterior components is used
repeatedly in the following derivations. To derive the

recursive algorithm, first we establish that  = 1.0,

which is the base case of the recursion. Similar to 10, after
peeling individual n - 1, the likelihood expression LEn-1

becomes

Because only individual n remains to be peeled, Vu and Vn-

1 contain only n. The likelihood now becomes

Further, using 9,  can be written as

Note that in 16 and 17 the right-hand sides are identical,

and thus L = . However, from 12

and thus  = 1.0. Now, for any other individual i,

 can be computed recursively as follows.

The anterior cutset  generated when i is peeled, is

used in the calculation of the anterior cutset generated
when k = min(Vi) is peeled. The resulting anterior cutset

can be written as

where  are all remaining functions with k ∈ sr, and

 are the remaining anterior cutsets with k ∈ Vj in

addition to . Similar to (12) we can also write

and by using (19) in (20) we can write

Recall that we have defined the set of individuals Uk = Vk∪
{k}, and thus we can write

Note that both (12) and (22) contain the term .

By rearranging 22, the likelihood can be written as

and using 12 we can write

Thus, the posterior cutset for individual i can be expressed
as a function of some anterior cutsets and the posterior
cutset for individual k >i. Starting at individual n - 1 all
posterior cutsets can be computed in the reverse order of

peeling because  = 1.0.

In summary, the following procedure can be used to
recursively compute the posterior cutset of an arbitrary
individual i in a pedigree:

1. Compute anterior cutsets for all individuals in the
pedigree. This step is done only once.

2. Identify the anterior cutset  whose sum-

mand contains the factor  (see equation 19).
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3. Replace  in the summand of  with

, and for each value of  sum over the

remaining genotypes in this expression (see equation
24).

4. If  has not been computed yet, use steps 2, 3

and 4 to compute it (this is the recursion).

Note that to compute marginal posterior genotype proba-
bilities for an arbitrary member of the pedigree using this
algorithm, we need to calculate all anterior cutsets and a
subset of all posterior cutsets. Both the anterior and the
posterior cutset of a given individual have the same size.
The computation of an anterior cutset involves the sum-
mation over the genotypes of one individual. The compu-
tation of a posterior cutset can involve summations over
the genotypes of a variable number individuals. The theo-
retical concepts introduced in this section are illustrated
in detail for a simple example in the Appendix. In the fol-
lowing section we discuss a real data application of the
theoretical concepts described above.

Genotype Probabilities Computations in a Real Cattle 
Pedigree
Consider the pedigree given in the first three columns of
Table 1 with a graphical representation given in Figure 1.
Six terminal members of this cattle pedigree (individuals

A21, A22, A23, A24, A25 and A26) are known to be
affected by a monogenic recessive disease. Conditional on
disease status, assumed mode of inheritance, pedigree
information, and on the assumption that the frequency of
the recessive allele in the cattle population from which the
pedigree was sampled is equal to 0.00001, we calculate
genotype probabilities for every member of the pedigree
using the algorithm described above. Of the six founders
present in this cattle pedigree, founder individual A2 is
identified to be a carrier of the recessive allele with prob-
ability 1.0. Selective breeding decisions can be made given
the calculated posterior genotype probabilities.

Next, we augment the genetic information used to calcu-
late posterior genotype probabilities, by including genetic
data on two marker loci flanking the hypothesized posi-
tion of the recessive locus. Each marker locus has three
alleles and the two loci are separated by 0.8 cM with the
hypothesized position of the recessive locus 0.5 cM from
the left marker (M1). The allele scores of the two markers
used are given in Table 2. The impact of the additional
information provided by the marker data is reflected in
the posterior probability of individuals A19 and A20
being carriers of the recessive allele (Table 3). While with-
out marker data individuals A19 and A20 have a posterior
probability of being carriers equal to 0.6667, with marker
data the probability is close to one.
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Table 1: Genetic profile of 26 individuals conditional on pedigree and phenotypic data.

Genotype Probabilities

Individual Dam Sire Phenotype
Pr( ) Pr( ) Pr( ) Pr( )

A1, A4, A6 0 0 Normal 0.99999 0.000005 0.000005 0.0
A2 0 0 Normal 0.0 0.5 0.5 0.0

A3, A5 0 0 Normal 1.0 0.0 0.0 0.0
A7 A1 A2 Normal 0.0 1.0 0.0 0.0
A8 A3 A2 Normal 0.00001 0.99999 0.0 0.0

A9, A10, A11 A4 A2 Normal 0.0 0.99999 0.00001 0.0
A12, A13 A4 A8 Normal 0.0 0.99999 0.00001 0.0

A14 A5 A9 Normal 0.0 1.0 0.0 0.0
A15, A16 A6 A10 Normal 0.0 0.99999 0.00001 0.0

A17 A6 A10 Normal 0.5 0.5 0.0 0.0
A18 A6 A11 Normal 0.0 0.99999 0.00001 0.0
A19 A12 A9 Normal 0.33333 0.33333 0.33333 0.0
A20 A12 A9 Normal 0.33333 0.33333 0.33333 0.0
A21 A14 A15 Affected 0.0 0.0 0.0 1.0
A22 A14 A16 Affected 0.0 0.0 0.0 1.0
A23 A14 A7 Affected 0.0 0.0 0.0 1.0

A24, A25 A12 A9 Affected 0.0 0.0 0.0 1.0
A26 A13 A18 Affected 0.0 0.0 0.0 1.0

Pr( ) denotes the probability of an individual being homozygous for the recessive allele.
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0

1
1

1
1
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Discussion
As stated by Jensen and Kong [15] current algorithms for
calculating marginal posterior genotype probabilities by
peeling are inefficient. As described earlier, computing
marginal genotype probabilities for individual j using
equation 13, requires recomputing the likelihood for each
of the possible genotypes of individual j. For the last indi-
vidual in the peeling sequence, this can be done efficiently
because intermediate results from peeling individuals 1
through n - 1, for each possible value of gn, have been

stored in the anterior cutset . Thus, by

making use of the intermediate results stored in ,

only calculations from the last step of peeling need to be

repeated to compute . For any m that is in more

than one set Vi we identify the smallest Vi containing m.

The intermediate results from peeling individuals 1
through i are stored in anterior cutsets, including

, and do not have to be recomputed. In this

paper we have introduced a second type of cutset, called a
posterior cutset, together with an algorithm for its effi-

cient computation. The posterior cutset  contains

the intermediate results from peeling all individuals that

did not contribute to  and are not contained in

the set Vi. Thus, by making use of the intermediate results

stored in both  and , only calculations

associated with peeling individuals in Vi (except m) need

to be repeated to compute the numerator  of 13. For

any m that is not in any Vi the expression used to compute

genotype probabilities (14) cannot be written as a product
of a single anterior and posterior. However, any of the
anterior the posterior cutsets used in 14 can be computed
efficiently. Thus, this new peeling based algorithm pro-
vides an efficient method to compute marginal genotype
probabilities for an arbitrary member of a pedigree with
loops. The computational cost of obtaining posterior gen-
otype probabilities for all members of a pedigree would
approximately be equal to twice that of computing the
likelihood because computing the likelihood only
requires computing the anterior cutsets while computing
all genotype probabilities would require computing the
posterior cutsets also. As stated by Jensen and Kong [15],
a peeling based algorithm would be more accessible to
researchers in genetics than the currently available junc-
tion-tree methods [10].

Throughout this paper the likelihood was written as a sum
over genotype variables. However, when the genotype of
an individual is defined over k loci, the number of geno-
types increases exponentially with k. In such situations,
writing the likelihood as a sum over allele state and origin

C gn
A

V nn− −
=1 1

( )g

C gn
A

n−1( )

Lg xn =

Ci
A

Vi
( )g

Ci
P

Vi
( )g

Ci
A

Vi
( )g

Ci
A

Vi
( )g Ci

P
Vi

( )g

Lg xm =

Real example pedigreeFigure 1
Real example pedigree.
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allele variables may lead to more efficient computations
[12]. Algorithms presented in this paper can be used to
calculate the posterior allele state and allele origin proba-
bilities by peeling over allele state and allele origin varia-
bles.
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Appendix
The pedigree given in Figure 2 will be used to illustrate the
theoretical concepts discussed above.

First we show how to use the Elston-Stewart algorithm to
compute the likelihood for a genetic model given this
pedigree. Next we describe how to calculate marginal pos-

terior genotype probabilities for an arbitrary member of
this pedigree using the efficient algorithm described
above.

Likelihood computations by peeling
As shown in 2, the likelihood given the observed data can
be written as

In the pedigree given in Figure 2, individuals are num-
bered according to a suitable peeling sequence. Note that
in 25 f1(g5, g4, g1) is the only function that involves g1.
Peeling g1 amounts to computing the sum over g1 of f1(g5,
g4, g1), for each combination of the genotypes for individ-
uals 5 and 4, and storing the results of these summations
in the anterior cutset

Note that  is a two dimensional table of size

N5 × N4, where N5 and N4 are the number of possible gen-

otypes for individuals 5 and 4. Replacing the sum over g1

of f1(g5, g4, g1) in 25 with  gives the likelihood

expression LE1:

Note that in LE1 f2(g5, g4, g2) is the only function that
involves g2. Therefore, the anterior cutset for 2 (obtained
by peeling g2) is

Replacing the sum over g2 of f2(g5, g4, g2) in LE1 with

 gives the likelihood expression LE2:

L f g f g

f g g g f g g g

f g g

ggg

=

×
×

∑∑∑ 7 7 6 6

5 7 6 5 4 7 6 4

3 5 4

167

( ) ( )

( , , ) ( , , )

( , ,, ) ( , , ) ( , , ).g f g g g f g g g3 2 5 4 2 1 5 4 1

(25)

C g g f g g gA

g

1 5 4 1 5 4 1

1

( , ) ( , , ).= ∑
C g gA

1 5 4( , )

C g gA
1 5 4( , )

L f g f g

f g g g f g g g f g g

g gg

=

×

∑ ∑∑
6 27

7 7 6 6

5 7 6 5 4 7 6 4 3 5 4

( ) ( )

( , , ) ( , , ) ( , , gg f g g g C g gA
3 2 5 4 2 1 5 4) ( , , ) ( , ).

C g g f g g gA

g

2 5 4 2 5 4 2

2

( , ) ( , , ).= ∑

C g gA
2 5 4( , )

L f g f g

f g g g f g g g f g g

g gg

=

×

∑ ∑∑
6 37

7 7 6 6

5 7 6 5 4 7 6 4 3 5 4

( ) ( )

( , , ) ( , , ) ( , , gg C g g C g gA A
3 2 5 4 1 5 4) ( , ) ( , )

Table 2: Marker allele scores for two markers flanking the 
causative recessive locus.

Individual M1A1 M1A2 M2A1 M2A2

A1 1 1 3 1
A2 2 2 2 2
A3 3 3 2 2
A4 2 1 1 2
A5 3 1 2 1
A6 3 1 2 1
A7 2 1 2 1
A8 2 3 2 2
A9 2 1 2 1
A10 2 2 2 2
A11 0 0 0 0
A12 2 1 2 1
A13 0 0 0 0
A14 0 0 0 0
A15 2 1 2 1
A16 2 1 2 1
A17 2 3 2 2
A18 2 3 2 2
A19 2 1 2 1
A20 0 0 2 1
A21 2 2 2 2
A22 2 2 2 2
A23 2 2 2 2
A24 2 2 2 2
A25 2 2 2 2
A26 2 3 2 2

Each marker has three alleles coded as 1,2 and 3, with 0 denoting a 
missing value.
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Note that in LE2 f3(g5, g4, g3) is the only function that
involves g3. Therefore, the anterior cutset for 3 (obtained
by peeling g3) is

Replacing the sum over g3 of f3(g5, g4, g3) in LE2 with

 gives the likelihood expression LE3:

Note that in LE3 not only f4(g7, g6, g4), but also

,  and  involve g4.

Thus, peeling g4 yields the following anterior cutset

The resulting anterior cutset  is a three

dimensional table of size N7 × N6 × N5, where N7, N6 and

N5 are the number of possible genotypes for individuals 7,

6 and 5.  replaces in LE3 the factors f4(g7, g6,

g4), ,  and  summed

over g4. Thus, the likelihood expression LE4 becomes

C g g f g g gA

g

3 5 4 3 5 4 3

3

( , ) ( , , ).= ∑ (26)

C g gA
3 5 4( , )

L f g f g

f g g g f g g g C g g

g gg
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×

∑ ∑∑
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g

4 7 6 5 4 7 6 4 3 5 4 2 5 4 1 5 4

4
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(27)
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4 7 6 5( , , )

C g g gA
4 7 6 5( , , )

C g gA
3 5 4( , ) C g gA
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L f g f g f g g g C g g gA

ggg

= ∑∑∑ 7 7 6 6 5 7 6 5 4 7 6 5

567

( ) ( ) ( , , ) ( , , ).

Table 3: Genetic profile of 26 individuals conditional on pedigree, marker and phenotypic data.

Genotype Probabilities

Individual Dam Sire Phenotype
Pr( ) Pr( ) Pr( ) Pr( )

A1, A4, A6 0 0 Normal 1.0 0.0 0.0 0.0
A2 0 0 Normal 0.0 0.5 0.5 0.0

A3, A5 0 0 Normal 1.0 0.0 0.0 0.0
A7 A1 A2 Normal 0.0 1.0 0.0 0.0
A8 A3 A2 Normal 0.00001 0.99999 0.0 0.0

A9, A10, A11 A4 A2 Normal 0.0 0.99999 0.00001 0.0
A12, A13 A4 A8 Normal 0.0 1.0 0.0 0.0

A14 A5 A9 Normal 0.0 1.0 0.0 0.0
A15, A16 A6 A10 Normal 0.0 1.0 0.0 0.0

A17 A6 A10 Normal 0.49995 0.49995 0.00001 0.0
A18 A6 A11 Normal 0.0 0.99999 0.00001 0.0
A19 A12 A9 Normal 0.00003 0.49999 0.49999 0.0
A20 A12 A9 Normal 0.00299 0.4985 0.4985 0.0
A21 A14 A15 Affected 0.0 0.0 0.0 1.0
A22 A14 A16 Affected 0.0 0.0 0.0 1.0
A23 A14 A7 Affected 0.0 0.0 0.0 1.0

A24, A25 A12 A9 Affected 0.0 0.0 0.0 1.0
A26 A13 A18 Affected 0.0 0.0 0.0 1.0

Pr( ) denotes the probability of an individual being homozygous for the recessive allele.

0
0

0
1

1
0

1
1

1
1

Simple pedigree with loopsFigure 2
Simple pedigree with loops.

1 2

3 4

5 6 7
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Note that in LE4 both f5(g7, g6, g5) and 

involve g5. Peeling g5 yields the following anterior cutset

This cutset replaces in LE4 the factors f5(g7, g6, g5) and

 summed over g5. Thus, the likelihood

expression LE5 becomes

In LE5 both f6(g6) and  involve g6. Peeling g6

yields the following anterior cutset

By replacing f6(g6) and  summed over g6 with

 in LE5, the likelihood expression LE6 becomes

Note, however, that the anterior cutset obtained by peel-
ing g7 yields the numerical value

and thus the likelihood expression LE7:

Genotype probability computations
Recall that for an arbitrary member of the pedigree (e.g.
individual 3) we can calculate marginal genotype proba-
bilities as follows

where  is the likelihood computed with g3 fixed at x.

As discussed earlier, using this procedure to compute mar-
ginal genotype probabilities for N unknown genotypes of
individual 3 requires recomputing the likelihood for the
entire pedigree N times. However by writing the likeli-
hood as in 12, these computations can be done efficiently.

Consider computing marginal posterior genotype proba-
bilities for individual 3. Recall that, as shown in 26,

 = Σg3 f3(g5, g4, g3). Using this in 12 we obtain

Note that 32 can be used to calculate the denominator of
31, while the numerator of 31 can be obtained by fixing
g3 in 32 at x. To complete the calculations, however, we

need to compute . This is done using the recur-

sive procedure described previously as shown below.

Step 1 of the procedure is to compute anterior cutsets for
all individuals in the pedigree, and this has already been

done. Following step 2, we determine that 

contributes to the computation of  (see

equation 27). Following step 3,

 is replaced with  in 27 and, for each value

of g4 and g5, the sum over g7 and g6 is computed to obtain

Following step 4, note that  is not com-

puted yet. Thus, steps 2, 3 and 4 are repeated as follows.

Following step 2, we determine that  con-

tributes to the computation of  (see equation

28). Following step 3,  is replaced with

 in 28 and, for each value of g7, g6 and g5, we

obtain

Following step 4, note that  is not computed

yet. Thus, steps 2, 3 and 4 are repeated as follows.

Following step 2, we determine that  contrib-

utes to the computation of  (see equation 29).
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Following step 3,  is replaced with  in

29 and, for each value of g7 and g6 we obtain

Following step 4, note that  is not computed yet.

Thus, steps 2, 3 and 4 are repeated as follows.

Following step 2, we determine that  contributes

to the computation of  (see equation 30).

Following step 3,  is replaced with  in 30

and, for each value of g7 we obtain

Following step 4, note that  = 1.0, and thus the cal-

culations for  can be completed. Now using

, the calculations for  can be com-

pleted, and using , the calculations for

 can be completed. Finally, using

, the calculations for  can be

completed.
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