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Abstract

Background: The distribution of residual effects in linear mixed models in animal breeding applications is typically
assumed normal, which makes inferences vulnerable to outlier observations. In order to mute the impact of
outliers, one option is to fit models with residuals having a heavy-tailed distribution. Here, a Student’s-t model was
considered for the distribution of the residuals with the degrees of freedom treated as unknown. Bayesian
inference was used to investigate a bivariate Student’s-t (BSt) model using Markov chain Monte Carlo methods in a
simulation study and analysing field data for gestation length and birth weight permitted to study the practical
implications of fitting heavy-tailed distributions for residuals in linear mixed models.

Methods: In the simulation study, bivariate residuals were generated using Student’s-t distribution with 4 or 12
degrees of freedom, or a normal distribution. Sire models with bivariate Student’s-t or normal residuals were fitted
to each simulated dataset using a hierarchical Bayesian approach. For the field data, consisting of gestation length
and birth weight records on 7,883 Italian Piemontese cattle, a sire-maternal grandsire model including fixed effects
of sex-age of dam and uncorrelated random herd-year-season effects were fitted using a hierarchical Bayesian
approach. Residuals were defined to follow bivariate normal or Student’s-t distributions with unknown degrees of
freedom.

Results: Posterior mean estimates of degrees of freedom parameters seemed to be accurate and unbiased in the
simulation study. Estimates of sire and herd variances were similar, if not identical, across fitted models. In the field
data, there was strong support based on predictive log-likelihood values for the Student’s-t error model. Most of
the posterior density for degrees of freedom was below 4. Posterior means of direct and maternal heritabilities for
birth weight were smaller in the Student’s-t model than those in the normal model. Re-rankings of sires were
observed between heavy-tailed and normal models.

Conclusions: Reliable estimates of degrees of freedom were obtained in all simulated heavy-tailed and normal
datasets. The predictive log-likelihood was able to distinguish the correct model among the models fitted to
heavy-tailed datasets. There was no disadvantage of fitting a heavy-tailed model when the true model was normal.
Predictive log-likelihood values indicated that heavy-tailed models with low degrees of freedom values fitted
gestation length and birth weight data better than a model with normally distributed residuals.
Heavy-tailed and normal models resulted in different estimates of direct and maternal heritabilities, and different
sire rankings. Heavy-tailed models may be more appropriate for reliable estimation of genetic parameters from field
data.
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Background
Animal breeding applications commonly involve the fit-
ting of linear mixed models in order to estimate genetic
and phenotypic variation or to predict the genetic merit
of selection candidates. Measurement errors and other
sources of random non-genetic variation comprise the
residual term, the effects of which are often assumed to
be normally distributed with zero mean and common
variance. These assumptions may make inferences vul-
nerable to the presence of outliers [1,2]. Heavy-tailed
densities (such as Student’s-t distribution) are viable
alternatives to the normal distribution, and provide
robustness against unusual or outlying observations
when used to model the densities of residual effects. In
the event that the degrees of freedom are estimated to
be large, i.e. in excess of 30, these methods converge to
normally distributed residuals [3].
Mixed effects linear models with Student’s-t distribu-

ted error effects have been applied to mute the impact
of residual outliers, for example in a situation where
preferential treatment of some individuals was suspected
[4]. Von Rohr and Hoeschele [5] have demonstrated the
application of a Student’s-t sampling model under four
different error distributions in statistical mapping of
quantitative trait loci (QTL). They have determined that
additive and dominance QTL and residual variance esti-
mates are much closer to the simulated true values
when the data itself is heavy-tailed and the analysis is
performed with the skewed Student’s-t model rather
than with a normal model. Rosa et al. [6] have analyzed
birth weight in a reproductive toxicology study and
compared normal as well as robust mixed linear models
based on Student’s-t distribution, Slash or contaminated
normal error distributions. Marginal posterior densities
of degrees of freedom for the Student’s-t and Slash
error distributions are concentrated about single digit
values, suggesting the inadequacy of the normal distri-
bution for modelling residual effects. The heavy-tailed
distributions result in significantly better fit than a nor-
mal distribution. Kizilkaya et al. [3] have applied thresh-
old models with normal or Student’s-t link functions for
the genetic analysis of calving ease scores and they have
shown that predictive log-likelihoods strongly favour a
Student’s-t model with low degrees of freedom in com-
parison with a normal distribution. Cardoso et al. [7]
have used heavy-tailed distributions to study residual
heteroskedasticity in beef cattle and have found that a
Student’s-t model significantly improves predictive log-
likelihood value. Chang et al. [8] have compared multi-
variate heavy-tailed and probit threshold models in the
analysis of clinical mastitis in first lactation cows, and
have shown that a model comparison strongly supports
the multivariate Slash and Student’s-t models with low

degrees of freedom over the probit model. The objec-
tives of this research were to 1) examine by simulation
if Bayesian inference under a bivariate Student’s-t distri-
bution of residuals can accommodate models with either
light-tailed or heavy-tailed residuals, and 2) investigate
the practical implications of fitting a Student’s-t distri-
bution with unknown degrees of freedom for the resi-
duals in bivariate field data. In both cases, results were
compared to those from the conventional approach of
assuming bivariate normal (BN) residuals.

Methods
We first present the theory and methods for multiple
traits that are applicable to both the simulation and the
analysis of field data on gestation length and birth
weight using a model that accommodates heavy-tailed
residuals.

Statistical model
A linear mixed model for animal i is

y X b a hi i i i i= + + +Z W  (1)

where yi = (yi,1 ... yi , m)’ is a vector of phenotypic
values of animal i for m traits, b is a vector of fixed
effects, a is a vector of random genetic effects, h is a
vector of uncorrelated random effects such as herd
effects, Xi, Zi and Wi, are design matrices for animal i,
corresponding to the vectors of the fixed effects (b), ran-
dom genetic effects (a), and uncorrelated random effects
(h).
Conventional analyses might assume the vector �i in

equation (1) is multivariate normally distributed (N(0,
R0)), where
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In contrast, we assume �i in (1) is multivariate heavy-
or light-tailed by expressing the residual in the usual
manner but divided by a scalar random variable that
varies for each animal i but is consistent across the
traits. That is,
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where li in equation (2) is a positive random variable
[9]. Values of li approaching 0 produce heavy-tailed
residuals for both traits, whereas values exceeding 1
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would produce light-tails. The marginal density of �i is a
multivariate Student’s-t density with scale parameter R0

and df ν, such that the marginal residual variance

becomes Var i E( | , ) R R R0 0 2
 


= =

−
⎛
⎝⎜

⎞
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[4,7,9].

Prior and full conditional posterior distributions
A flat prior was assumed for the fixed effects (b).
Genetic effects (a) were assumed to be distributed as
multivariate normal, with null mean vector and (co)var-
iance matrix A ⊗ G0 where A is the numerator relation-
ship matrix and ⊗ denotes the Kronecker product [10].
Uncorrelated random effects and residuals were
assumed to follow multivariate normal distributions
with null means and (co)variance matrices I ⊗ H0 and I
⊗ R0 where I is the identity matrix. Flat prior distribu-
tions were assigned to G0, H0 and R0.
The multivariate normal distribution requires no dis-

tributional specification of li in equation (2), because li
= 1 for all i = 1, 2,...,n. The distribution of li in equation
(2) for multivariate Student’s-t is a Gamma(ν/2, ν/2) dis-
tribution with density function

p
v

i i
v
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Where li > 0, Γ(.) is the standard Gamma function,

i = 1, 2,...,n and ν > 0. A prior of p( )
( )




=
+
1

1 2 for ν >

0 was assigned to ν [3].
Inferences on parameters of interest can be made

from the posterior distributions constructed using
MCMC methods such as Gibbs sampling or Metropolis-
Hastings [11-13]. The fully conditional posterior distri-
butions of each of the unknown parameters are used to
generate proposal samples from the target distribution
(the joint posterior). The fully conditional posterior dis-
tributions of fixed (b), genetic (a) and uncorrelated ran-
dom (h) effects are multivariate normal with mean

[ , , ]b a h
∧ ∧ ∧ and covariance matrix C, where [ , , ]b a h

∧ ∧ ∧ are
solutions to Henderson’s mixed model equations con-
structed with heterogeneous residual variances, R 0λ i

-1

and C is the inverse of this mixed-model coefficient
matrix [4]. The (co)variance matrices G0, H0 and R0

have inverse Wishart conditional posterior distributions,
which can also be constructed from [ , , , ]b a h

∧ ∧ ∧ ∧
 where


∧ is solution for li [9].
The fully conditional posterior distributions of li for

the multivariate Student’s-t model is
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where e = yi - Xib - Zia - Wih.

The fully conditional posterior distribution of df ν for
the multivariate Student’s-t model does not have a stan-
dard form, and so a sampling strategy for nonstandard
distributions is required. A random-walk Metropolis-
Hastings (MH) algorithm was used to draw samples for
ν [11]. In the MH algorithm, a normal density with
expectation equal to the parameter value from the pre-
vious MCMC cycle was used as the proposal density.
The MH acceptance ratio was tuned to intermediate
rates (40-50%) during the MCMC burn-in period to
optimize MCMC mixing [3]. Sampled values of ν < 2
were truncated to 2 so that covariance matrix,
R RE = ( )−0 2


 , for the residuals of (1) is defined.

Simulation study
A simulation study was carried out to validate Bayesian
inference on the bivariate Student’s-t models, and assess
the ability of model choice criterion (predictive log-likeli-
hood) to correctly choose the model with better fit. For
this purpose, the simulation study was undertaken using
three sire models to simulate the bivariate data, these
models varying in the nature of the simulated residual
effects. We refer to the model used to simulate the data
as the true model. These three models were the bivariate
normal which effectively has infinite ν (BN-∞) and the
bivariate Student’s-t model with ν = 4 or 12 (BSt-4, BSt-
12). Ten replicated data sets were generated for each of
the three true models. Phenotypes of 50 progeny from
each of 50 unrelated sires for two traits, yi = (yi, 1 yi, 2)’
were simulated using equation (1). The vector of fixed
effects b only included a gender effect with b1 = (11 90)’
for trait 1 and b2 = (38 32)’ for trait 2. The random
genetic effects (a) and uncorrelated random effects (h)
included 50 sires and 100 herds, respectively, assuming:
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where G0 is the sire (co)variance matrix,
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and H0 is the herd (co)variance matrix
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Residuals were assumed ei ~ N (0, R0), where
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Heritabilities of simulated traits were h1
2 0 43= . and

h2
2 0 53= . , respectively. For each animal i, li was 1 for

BN-∞ or generated from Gamma(ν/2, ν/2) for BSt - ν with
ν = 4, 12. Offspring were assigned to herd and gender
groups by random sampling from a uniform distribution.
Gestation length and birth weight data
Gestation length (GL) up until first calving and the resul-
tant calf birth weight (BW) data were recorded on the
national population of Italian Piemontese cattle from Jan-
uary 1989 to July 1998 by Associazione Nazionale Alleva-
tori Bovini di Razza Piemontese (ANABORAPI), Strada
Trinità 32a, 12061 Carrù, Italy. Only herds represented
by at least 100 records over that period were considered
in the study [14], providing a total of 7,883 animals from
677 sires and 747 MGS. Table 1 summarizes the statistics
for GL and BW. BSt and BN models given in equation (1)
were used to analyze GL and BW data. The fixed effects
(b) of dam age in months, sex of the calf, and their inter-
action were considered by combining eight different first-
calf age group classes (20 to 23, 23 to 25, 25 to 27, 27 to
29, 29 to 31, 31 to 33, 33 to 35, and 35 to 38 months)
with sex of calf for a total of 16 nominal age-sex sub-
classes. A total of 1,186 herd-year-season (HYS) sub-
classes were created from combinations of herd, year,
and two different seasons (from November to April and
from May to October) as in Carnier et al. [15] and Kizilk-
aya et al., [3] and treated as uncorrelated random effects
(h) [14]. The range for number of observations in HYS
subclasses was between 1 and 33, and average number of
records for HYS effect was 7. The random genetic effects
(a) included 1,929 sires (s) and MGS (m) from the pedi-
gree file. While the number of observations ranged from
1 to 406, average observations for each sire in data file
was 12. We also assumed:
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where G0 is the sire-MGS (co)variance matrix,
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Marginal residual variances, heritabilities and genetic
correlations
Residual scale parameters (R0) in heavy-tailed models
cannot be directly compared with the residual (co)var-
iance (R0) in the normal model, nor used in estimation of
heritabilities, residual or phenotypic correlations.
The scale parameters must be appropriately transformed
into marginal residual (co)variance parameters
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for BN and BSt models, using
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 where ν > 2, respectively,

given by Stranden and Gianola [4] and Cardoso et al. [7].
Heritabilities and genetic correlations are of interest

from the perspective of direct and maternal effects in an
animal model, but the fitted models for GL and BW
included genetic effects for sire and MGS, and some
fractions of the genetic effects were included in the resi-
dual terms. Transformations were applied to convert the
sire-MGS parameters and estimates to their animal
model equivalent. The additive genetic (co)variance
matrix including direct (D) and maternal (M) genetic
variances from sire-MGS model was obtained as GDM =
PG0P′ [16] where GDM is an additive genetic (co)var-
iance matrix,
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Direct and maternal ( hGi j,

2 ) heritability, and genetic
correlation ( rG Gi j k j, ,′ ) estimates were obtained from esti-
mates of variance and covariance components according
to:

Table 1 Summary statistics for gestation length (GL) and
birth weight (BW) in Italian Piemontese cattle

Trait N Mean Minimum Maximum SD

GL (day) 7,883 290 260 320 8.1

BW (kg) 7,883 39.6 22 56 4.1
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Where G and G′ = D or M, i and k for the trait of GL
or BW and j for the model of BN or BSt.
Kendall rank correlations between posterior means of

sire genetic effects obtained from the BN and BSt mod-
els were used to compare the ordering of the genetic
evaluations of the sires for GL and BW [17]. Compari-
sons were also made between rank orders of the top
100 selection candidates from 1,929 animals in the pedi-
gree file for the BN model.

Model comparison
Model comparisons in the simulation study, and for the
analysis of field data, were carried out using predictive
log-likelihoods (PLL) from BN and BSt models. The
PLL over all observations (n) under Model Mk (k = BN
or BSt) was obtained as:
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(j), Mk) across G MCMC samples [18].

A PLL difference exceeding 2.5 was used as indication
of an important difference in model fit, following Raftery
[19].
In the simulation study, the impact of alternative

models was quantified by computing the correlations
(râ, a) between the simulated true (a) and predicted (â)
sire effects in each of the three fitted models. Further,
the prediction error variance (PEV) V(a - â)) of the sire
effects was calculated to provide an informative com-
parative assessment of model prediction performance.
Higher correlations and lower prediction error variances
will be associated with fitted models that are better at
predicting breeding values than models with low corre-
lations and high prediction error variance. Some fitted
models might be significantly better than others from a
likelihood framework, yet have little impact on selection
response if they do not markedly change correlations.

Minimizing the prediction error variances is important
when investment decisions depend upon the magnitude
of the sire predictions, not just the ranking of the sires.

MCMC implementation
Graphical inspection (time series traces) of the chains
along with Heidelberger and Welch Diagnostic [20] for
the Gibbs output using CODA (Convergence Diagnostics
and Output Analysis package in R) [21] were used to
determine a common length of burn-in period. A burn-
in period of 50,000 for simulated and field data analysis
was defined as the number of cycles discarded at the
start of the MCMC chain to ensure sampling from the
correct marginal distributions. A further 50,000 post
burn-in MCMC cycles in the simulated and field data
analysis were generated for each of the BSt and BN mod-
els. Every successive post burn-in sample was retained, so
that 50,000 samples were used to infer posterior distribu-
tions of unknown parameters. Posterior means of the
parameters were obtained from their respective marginal
posterior densities. Interval estimates were determined as
posterior probability intervals (PPI) obtained from the 2.5
and 97.5 percentiles of each posterior density to provide
95% PPI. The effective number of independent samples
(ESS) for each parameter was determined using the initial
positive sequence estimator of Geyer [22] as adapted by
Sorensen et al. [23].

Results and discussion
Simulation study
The predictive log-likelihood values in Table 2 were com-
puted for BSt and BN models fitted to the simulated
heavy-tailed and normal datasets. When the true model
had residuals with heavy-tails, the fitted models with
heavy-tails (BSt) were significantly better than the normal
model (BN). When the true model had normally distribu-
ted residuals, all the fitted models performed equally well.
The difference in PLL between the fitted models with
heavy-tails and the normal model was inversely related to
the degrees of freedom of the simulated residuals. Note

Table 2 Comparisons of average predictive log-
likelihood1 (PLL) from ten replicates between bivariate
Student’s-t (BSt) and normal (BN) fitted models (in
column) for different true simulated models (in rows)
with varying residual degrees of freedom (DF)

Fitted Model3

True Model2-DF BSt BN

BSt-4 -1,483 -1,988

BSt-12 -718 -754

BN-∞ -284 -284
1Predictive log-likelihood values were reported after adding 14,000
2Used to simulate data
3Used in analysis of simulated data
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that normally distributed residuals can be thought of as
having infinite degrees of freedom, and in this case there
were no differences between the fitted models.
Inference on ν based on BSt model analysis of BSt-4,

BSt-12 and BN-∞ data sets is given in Table 3. Posterior
means of ν seems sharp and unbiased, and the 95% pos-
terior probability intervals for ν concentrated on low
values for BSt-4 and BSt-12 data sets. Conversely, infer-
ence on ν for BN-∞ data was larger than 100, consistent
with what was expected, and the 95% posterior probabil-
ity interval was wider by concentrating on values higher
than 30, indicating strong evidence of normally distribu-
ted data. Furthermore, relatively larger ESS of ν were
obtained from BSt-4 and BSt-12 data sets when com-
pared with that from BN-∞ data sets [3], indicating more
samples would be needed to attain a minimum of 100 as
advocated by Bink et al. [24] and Uimari et al. [25].
Tables 4, 5 and 6 summarize inferences on sire, herd

and marginal error variances based on the replicated

datasets from the three different populations, comparing
BSt and BN fitted models. Large ESS were attained for
sire, herd and marginal error variances, indicating stable
MCMC inference. The 95% posterior probability inter-
vals for sire and herd variance components from the
three fitted models widely overlapped and included the
true parameter values. Furthermore, the posterior means
from the three fitted models were almost identical.
When the true model was BSt-4 or BN-∞, inferences on
marginal error (co)variance components using the BSt
and BN fitted models were similar, found to be sharp
and seemingly unbiased, and true parameter values were
covered by 95% equal-tailed PPI of parameters (Table 6).
Average correlations between true and estimated sire

effects and average PEV from two replicates using BSt
and BN fitted models are presented in Table 7 and 8.
When the true model was BSt, both the correlation and
PEV indicate that the heavy-tailed fitted models were
superior, especially when the true value of ν = 4. When
the true model was BN, all fitted models performed
identically. In general, the accuracy and PEV results
from BSt and BN models suggest that heavy-tailed fitted
models can improve accuracy and PEV when the true
model is heavy-tailed, but a robust Bayesian analysis
using heavy-tailed models does not deteriorate accuracy
and PEV if the true model is normal.

Application to gestation length and birth weight
Inference on degrees of freedom, variance components and
heritabilities
The analyses produced PLL values for BSt and BN mod-
els of -47,006 and -48,006 respectively. The log-scale
differences between model PLL values for BSt versus
BN models were 1,000, which greatly exceeds 2.5 and

Table 3 Average posterior inference on degrees of
freedom from ten replicates using the bivariate
Student’s-t (BSt) fitted model

BSt Fitted Model2

True Parameters True Model1 PM ± SE3 95% PPI4 ESS5

ν = 4 BSt-4 4.1 ± 0.06 [3.6, 4.6] 1,594

ν = 12 BSt-12 13.3 ± 1.18 [9.8, 19.1] 294

ν = ∞ BN-∞ 2377 ± 654 [2140, 3365] 14
1Used to simulate data
2Used in analysis of simulated data
3Posterior mean ± Standard Error
495% equal-tailed posterior probability interval based on the 2.5th and 97.5th

percentiles of the posterior density
5Effective sample size

Table 4 Average posterior inference on sire (co)variances from ten replicates using the bivariate Student’s-t (BSt) and
normal (BN) fitted models with different residual degrees of freedom (DF)

Fitted Model2

BSt BN

True Parameters True Model1 PM ± SE3 95% PPI4 ESS5 PM ± SE 95% PPI ESS

 s1
2 = 2.0 BSt-4 2.24 ± 0.16 [1.32, 3.62] 20,983 2.31 ± 0.18 [1.30, 3.83] 20,694

BSt-12 2.44 ± 0.14 [1.48, 3.88] 24,767 2.39 ± 0.14 [1.44, 3.81] 25,794

BN-∞ 2.49 ± 0.17 [1.52, 3.93] 26,715 2.49 ± 0.17 [1.53, 3.93] 28,154

 s s1 2
= 1.5 BSt-4 1.41 ± 0.17 [0.40, 2.76] 23,326 1.43 ± 0.18 [0.33, 2.89] 23,146

BSt-12 1.93 ± 0.19 [0.83, 3.47] 27,428 1.89 ± 0.19 [0.80, 3.42] 28,683

BN-∞ 1.77 ± 0.22 [0.72, 3.23] 28,441 1.77 ± 0.21 [0.71, 3.22] 30,064

 s2

2 = 4.0 BSt-4 4.23 ± 0.30 [2.59, 6.70] 24,192 4.33 ± 0.33 [2.57, 6.99] 23,978

BSt-12 4.77 ± 0.29 [2.97, 7.48] 27,674 4.80 ± 0.30 [2.98, 7.55] 29,102

BN-∞ 4.46 ± 0.39 [2.79, 6.96] 29,013 4.45 ± 0.39 [2.78, 6.98] 29,365
1Used to simulate data
2Used in analysis of simulated data
3Posterior mean ± Standard Error
495% equal-tailed posterior probability interval based on the 2.5th and 97.5th percentiles of the posterior density
5Effective sample size
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decisively indicates the inadequacy of the normality
assumption for the distribution of error terms. These
results are in agreement with Chang et al. [8] and Car-
doso et al. [17], who found that the Student’s-t distribu-
tion was a better fit to the clinical mastitis data and
postweaning gain data, respectively, compared to Slash
and normal distributions.
The estimated ESS for ν is 1,227 and those for var-

iance components are given in Tables 9, 10 and 11. The
ESS for these parameters ranged from 323 to 15,789,
indicating sufficient MCMC mixing. These values were
found to be considerably higher than 100, which has
been suggested as the minimum ESS for reliable statisti-
cal inference [24,25].
The posterior distribution of ν from the BSt model,

and its posterior mean (M) and 95% PPI corresponding
to the 2.5 (L) and 97.5 (U) percentiles of the posterior

distribution are in Figure 1. The posterior mean of ν for
the BSt model was 3.70, with 95% PPI of (3.44, 3.97).
This density, characterized by small values of ν for BSt
model confirms that the assumption of normally distrib-
uted residuals is not adequate for the analysis of
Piemontese GL and BW data.
Posterior inferences on sire-MGS and HYS (co)var-

iances for GL and BW are summarized in Tables 9 and
10, using posterior means and 95% PPIs from BSt and
BN models. Posterior distributions of (co)variances were
nearly symmetric in BSt and BN models. Posterior
means of sire-MGS (co)variances were similar across
models, and 95% PPI widely overlapped. Posterior
means of sire-MGS (co)variances from BN model, how-
ever, were lower than that from BSt model for GL, and
were larger than that from BSt model for BW. Covar-
iances from BN model, including sire or MGS effect for

Table 5 Average posterior inference on herd variances from ten replicates using the bivariate Student’s-t (BSt) and
normal (BN) fitted models with different residual degrees of freedom (DF)

Fitted Model2

BSt BN

True Parameters True Model1 PM ± SE3 95% PPI4 ESS5 PM ± SE 95% PPI ESS

 h1

2 = 1.5 BSt-4 1.71 ± 0.10 [1.07, 2.56] 12,027 1.74 ± 0.14 [1.01, 2.71] 10,437

BSt-12 1.82 ± 0.12 [1.19, 2.65] 16,133 1.82 ± 0.12 [1.18, 2.65] 16,802

BN-∞ 1.71 ± 0.08 [1.12, 2.48] 17,543 1.70 ± 0.08 [1.12, 2.47] 17,537

 h2

2 = 6.0 BSt-4 6.33 ± 0.30 [4.47, 8.79] 24,120 6.49 ± 0.28 [4.47, 9.17] 22,810

BSt-12 6.69 ± 0.28 [4.77, 9.22] 27,704 6.72 ± 0.24 [4.79, 9.28] 27,956

BN-∞ 6.33 ± 0.27 [4.55, 8.71] 29,800 6.33 ± 0.27 [4.55, 8.71] 29,881
1Used to simulate data
2Used in analysis of simulated data
3Posterior mean ± Standard Error
495% equal-tailed posterior probability interval based on the 2.5th and 97.5th percentiles of the posterior density
5Effective sample size

Table 6 Average posterior inference on marginal error (co)variances from ten replicates using the bivariate Student’s-
t (BSt) and normal (BN) fitted models with different residual degrees of freedom (DF)

Fitted Model2

BSt BN

True Parameters True Model1 PM ± SE3 95% PPI4 ESS5 PM ± SE 95% PPI ESS

 E1

2 = 30.0 BSt-4 30.45 ± 0.51 [27.44, 34.05] 3,336 30.29 ± 0.44 [28.61, 32.07] 42,430

 E1

2 = 18.0 BSt-12 17.87 ± 0.17 [16.75, 19.07] 9,516 17.82 ± 0.16 [16.83, 18.87] 43,135

 E1

2 = 15.0 BN-∞ 14.94 ± 0.11 [14.10, 15.82] 43,387 14.94 ± 0.11 [14.11, 15.82] 43,204

 E E1 2
= 8.0 BSt-4 8.20 ± 0.38 [6.45, 10.10] 11,384 8.37 ± 0.66 [6.95, 9.83] 44,553

 E E1 2
= 4.8 BSt-12 4.61 ± 0.13 [3.69, 5.56] 32,416 4.57 ± 0.12 [3.72, 5.44] 44,370

 E E1 2
= 4.0 BN-∞ 3.94 ± 0.10 [3.23, 4.67] 43,729 3.94 ± 0.10 [3.23, 4.66] 44,238

 E2

2 = 40.0 BSt-4 40.07 ± 0.65 [35.98, 44.94] 3,566 39.57 ± 0.74 [37.37, 41.90] 45,168

 E2

2 = 24.0 BSt-12 24.60 ± 0.31 [23.04, 26.27] 10,145 24.54 ± 0.28 [23.17, 25.98] 45,130

 E2

2 = 20.0 BN-∞ 20.13 ± 0.18 [19.00, 21.31] 42,782 20.12 ± 0.18 [19.00, 21.31] 45,079
1Used to simulate data
2Used in analysis of simulated data
3Posterior mean ± Standard Error
495% equal-tailed posterior probability interval based on the 2.5th and 97.5th percentiles of the posterior density
5Effective sample size
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BW with sire or MGS effect for GL were higher than
those from BSt and BS models. Posterior means of HYS
variances from BSt and BN models were similar and
ranged from 4 to 4.25 for GL, and 2.43 to 2.56 for BW
from the two models. Posterior inference for the mar-
ginal residual (co)variances based on BSt and BN mod-
els are presented in Table 11. The marginal residual
variance for GL, and covariance between GL and BW
from BSt model seemed to agree with those from the
BN model; however, the posterior mean of marginal
residual variance for BW from the BSt model was signif-
icantly higher than that of the BN model.
Posterior densities of direct and maternal heritabilities,

and genetic correlations from BSt and BN models for
GL and BW are shown in Figures 2 and 3. Posterior
means of direct (0.47) and maternal (0.29) heritabilities
from BSt and BN models were similar for GL. However,
posterior means of direct (0.28) and maternal (0.23) her-
itabilities from BN models were higher than those (0.23
and 0.18) from the heavy-tailed model for BW (Figure
2). In contrast to our findings, Cardoso et al. [7] and
Chang et al. [8] have found no real difference in poster-
ior means for heritabilities whether using Student’s-t,
Slash or normal models. Posterior means of direct herit-
abilities from BSt and BN models for GL and BW traits
were lower; however, those of maternal heritabilities
were higher than the values reported by Ibi et al. [26]
and Crews [27]. Posterior means (-0.87, -0.86) of genetic

correlations between D and M effects of GL, and those
(-0.73, -0.71) of BW from BSt and BN models in Figure
3 were significantly negative and very similar with over-
lapping posterior densities. They were higher than those
reported in literature [26,27], and the negative posterior
mean of the genetic correlation implies an antagonistic
relationship between D and M effects. The posterior

Table 7 Average correlations between true and predicted
sire effects from ten replicates using the bivariate
Student’s-t (BSt) and normal (BN) fitted models with
different residual degrees of freedom (DF)

Fitted Model2

Trait1 Trait2

True Model1-DF BSt BN BSt BN

BSt-4 0.90 0.87 0.92 0.90

BSt-12 0.93 0.93 0.95 0.95

BN-∞ 0.94 0.94 0.95 0.95
1Used to simulate data
2Used in analysis of simulated data

Table 8 Prediction error variance of sire effects using the
bivariate Student’s-t (BSt) and normal (BN) fitted models
with different residual degrees of freedom (DF)

Fitted Model2

Trait1 Trait2

True Model1-DF BSt BN BSt BN

BSt-4 0.36 0.44 0.51 0.67

BSt-12 0.29 0.30 0.41 0.44

BN-∞ 0.23 0.23 0.33 0.33
1Used to simulate data
2Used in analysis of simulated data

Table 9 Posterior inference on sire-MGS (co)variances for
gestation length (GL) and birth weight (BW) using the
bivariate Student’s-t (BSt) and normal (BN) models

BSt BN

Parameters PM1 95% PPI2 ESS3 PM 95% PPI ESS

 sGL
2 8.42 [6.65, 10.43] 894 8.13 [6.27, 10.31] 384

 s sGL BW
0.13 [-0.43, 0.72] 774 0.16 [-0.48, 0.81] 496

 s mGL GL
2.75 [1.77, 3.76] 567 2.73 [1.63, 3.81] 323

 s mGL BW
-0.54 [-1.04, -0.04] 524 -0.74 [-1.32, -0.21] 405

 sBW
2 1.02 [0.68, 1.43] 528 1.12 [0.75, 1.55] 550

 s mBW GL
0.26 [-0.13, 0.69] 429 0.40 [-0.09, 0.90] 230

 s mBW BW
0.36 [0.15, 0.58] 428 0.39 [0.18, 0.62] 484

mGL

2 2.24 [1.47, 3.16] 389 2.04 [1.17, 3.05] 232

m mGL BW
0.27 [-0.03, 0.57] 430 0.32 [-0.01, 0.69] 336

mBW

2 0.53 [0.34, 0.74] 457 0.59 [0.38, 0.87] 371
1Posterior mean
295% equal-tailed posterior probability interval based on the 2.5th and 97.5th

percentiles of the posterior density
3Effective sample size

Table 10 Posterior inference on herd-year-season (co)
variances for gestation length (GL) and birth weight (BW)
using the bivariate Student’s-t (BSt) and normal (BN)
models

BSt BN

Parameters PM1 95% PPI2 ESS3 PM 95% PPI ESS

 hGL
2 4.00 [3.02, 5.10] 2,122 4.21 [3.00, 5.60] 1,661

 hBW

2 2.43 [2.04, 2.85] 3,282 2.56 [2.14, 3.00] 3,403
1Posterior mean
295% equal-tailed posterior probability interval based on the 2.5th and 97.5th

percentiles of the posterior density
3Effective sample size

Table 11 Posterior inference on marginal residual (co)
variances for gestation length (GL) and birth weight (BW)
using the bivariate Student’s-t (BSt) and normal (BN)
models

BSt BN

Parameters PM1 95% PPI2 ESS3 PM 95% PPI ESS

 EGL

2 51.86 [48.43, 55.84] 2,376 48.90 [47.22, 50.64] 9,039

 E EGL BW
3.77 [3.01, 4.56] 8,213 3.20 [2.63, 3.78] 11,671

 EBW

2 13.37 [12.47, 14.41] 2,367 11.14 [10.76, 11.53] 15,789
1Posterior mean
295% equal-tailed posterior probability interval based on the 2.5th and 97.5th

percentiles of the posterior density
3Effective sample size
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densities of genetic correlations between D effects on
one trait and M effects on another included zero, indi-
cating non-significant correlations.
The posterior means of li in the BSt model can be used

to assess the extent to which any particular pair of
records presents an outlier for either trait in comparison
to a normal error assumption. Low values of li (i.e. closer
to zero) indicate at least one deviant record among the
two traits, whereas values of li close to 1 show that the
corresponding pair of records match the normal model
[17]. The ranges of posterior means of li obtained for dif-
ferent animals from the BSt models varied between 0.09
and 1.75. The values of li are plotted against estimated
values of residuals for BW and GL in Figure 4. The distri-
butions of posterior means of li less than 0.3 (left figure)
or less than 0.2 (right figure) are given in Figure 4. The
figure on the right plots posterior mean values of li less
than 0.2, representing outliers 3 or more standard devia-
tions (SD) from the mean for GL or BW. When the pos-
terior mean values of li are close to unity, the estimated
values of residuals approach normally distributed resi-
duals, indicating adequate model fit.
In general, random effects contributing to bivariate

traits may be correlated positively, negatively or uncor-
related. Accordingly, it is reasonable that effects may
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Figure 1 Posterior densities of degrees of freedom obtained
from bivariate Student’s-t (BSt) model fitted to gestation
length (GL) and birthweight (BW). M represents posterior mean, L
represents the 2.5th percentiles of the posterior density, U represent
97.5th percentiles of the posterior density.
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weight (BW) obtained from bivariate Student’s-t (BSt) or normal (BN) models.
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vary in their distribution and that residuals for one trait
might conceptually be heavy-tailed while others may be
light-tailed. Further, it is conceivable that individual ani-
mals could exhibit trait specific lambda values. However,
in the context of the traits considered in this experi-
ment, it is not unreasonable to imagine that the lambda
values could be consistent across the traits because
gestation length and birth weight are positively corre-
lated, at phenotypic, genetic and residual levels, and that
non-genetic effects that produce residual outliers for
one trait such as gestation length might similarly effect
birth weight. In fact, single-trait analyses of GL and BW
indicate that both traits are heavy-tailed with 2.91 (GL)
and 3.66 (BW) for posterior means of ν. A more general
model that assumes a bivariate distribution for trait-spe-
cific l values is more technically demanding than the
model used in this paper, but warrants further research.
Inference on sire effects
Sire ranking based on posterior means of the sire effects
from BSt and BN models for GL and BW compared
using Kendall rank correlations are in Figure 5. The

rank correlation between BN and BSt models was 0.77
for GL, and 0.81 for BW, indicating re-ranking of sires
among models.
Considering only sires ranked in the top 100 for GL

and BW using the BN model, 82% and 75% of them
were found to be same for GL and BW in the top 100
animals by BSt model. The rank correlations between
BN and BSt models decreased considerably to about 0.6
for GL and about 0.5 for BW (Figure 5). Cardoso et al.
[17] have found similar results in a multibreed genetic
evaluation of postweaning gain in Nelore-Hereford cattle
and have suggested that a low rank correlation among
the top sires may have greater implications for genetic
evaluations and selection decisions than the correlation
results involving all sires. Figure 5 shows that posterior
means of sire effects from BN model shrank to a greater
extent under the BSt model. Substantial re-ranking of
sires was observed due to the greater shrinkage of the
posterior mean of sire effects in BSt model, and this re-
ranking was more pronounced in BW than in GL.
Stranden and Gianola [28] have pointed out that
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Figure 5 Scatter plots of posterior means of all and top 100 sire effects for gestation length (GL) and birth weight (BW) in Italian
Piemontese cattle, obtained by bivariate Student’s-t (BSt) or normal (BN) models.
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animals that are phenotypic outliers will exhibit more
extreme predictions of genetic merit under the BN
model compared to the heavy-tailed models that mute
the effects of the large residuals.

Conclusions
Bayesian techniques are capable of fitting models where
residuals have a heavy-tailed distribution with unknown
degrees of freedom. Model comparisons, using PLL, in
the simulation study typically favoured the BSt models
over the BN-∞ model when the true models were
heavy-tailed. Further, there was no difference in PLL
between BSt and BN-∞ models and there were no dis-
advantages of fitting a BSt model when the true model
was normal.
Bivariate residual distributions can be assumed nor-

mal, or Student’s-t in the analysis of field data. Predic-
tive log-likelihood values used as model choice criteria
in the bivariate analysis of GL and BW data indicated
that the BSt model with low degrees of freedom fitted
better than the BN model. Posterior means of direct and
maternal heritabilities from the BN model were similar
or higher than those from the BSt model. Appreciable
differences were observed in sire ranking overall and
specifically in the top 100 sires based on rank correla-
tions between BSt and BN model sire effects. These
results indicate that genetic evaluation and selection
strategies will be sensitive to the assumed model. Ani-
mals whose li values were close to zero in BSt model
were identified as having one or more outlying records.
An interesting extension for future studies would be
that of allowing different scale parameter specification
for each trait in the BSt model.
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