
RESEARCH Open Access

Genetic heterogeneity of residual variance -
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Abstract

Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic
control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear
mixed models with genetic effects in the residual variance part of the model can be used. Such models have
previously been fitted using EM and MCMC algorithms.

Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared
residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model.
The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on
the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter
size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from
4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three
minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology,
especially the variance components in the residual variance part of the model.

Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can
be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of
observations. An important future development of the DHGLM methodology is to include the genetic correlation
between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.

Background
In linear mixed models it is often assumed that the resi-
dual variance is the same for all observations. However,
differences in the residual variance between individuals
are quite common and it is important to include the
effect of heteroskedastic residuals in models for tradi-
tional breeding value evaluation [1]. Such models, hav-
ing explanatory variables accounting for heteroskedastic
residuals, are routinely used by breeding organizations
today. The explanatory variables are typically non-
genetic [2], but genetic heterogeneity can be present
and it is included as random effects in the residual var-
iance part of the model.
Modern animal breeding requires animals that are

robust to environmental changes. Therefore, we need

methods to estimate both variance components and
breeding values in the residual variance part of the
model to be able to select for animals having smaller
environmental variances. Moreover, if genetic heteroge-
neity is present then traditional methods for predicting
selection response may not be sufficient [3,4].
Methods have previously been developed to estimate

the degree of genetic heterogeneity. San Cristobal-
Gaudy et al. [5] have developed an EM-algorithm. Sor-
ensen & Waagepetersen [6] have applied a Markov
chain Monte Carlo (MCMC) algorithm to estimate the
parameters in a similar model, which has the advantage
of producing model-checking tools based on posterior
predictive distributions and model-selection criteria
based on Bayes factor and deviances. At the same time,
Bayesian methods to fit models with residual heteroske-
dasticity for multiple breed evaluations [7] and general-
ized linear mixed models allowing for a heterogenetic* Correspondence: lrn@du.se
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dispersion term [8] have been developed. Wolc et al. [9]
have studied a sire model, with random genetic effects
included in the residual variance, by fitting squared resi-
duals with a gamma generalized linear mixed model.
However, Lee & Nelder [10] have recently developed

the framework of double hierarchical generalized linear
models (DHGLM). The parameters are estimated by
iterating between a hierarchy of generalized linear mod-
els (GLM), where each GLM is estimated by iterative
weighted least squares. DHGLM give model checking
tools based on GLM theory and model-selection criteria
are calculated from the hierarchical likelihood (h-likeli-
hood) [11]. Inference in DHGLM is based on the h-like-
lihood theory and is a direct extension of the
hierarchical GLM (HGLM) algorithm [11]. Both the the-
ory and the fitting algorithm are explained in detail in
Lee, Nelder & Pawitan [12]. HGLMs have previously
been applied in genetics (e.g. [13,14]) but animal breed-
ing models have not been studied using DHGLM.
A user-friendly version of DHGLM has been imple-

mented in the statistical software package GenStat [15].
To our knowledge, DHGLM has only been applied on
data with relatively few levels in the random effects (less
than 100), whereas models in animal breeding applica-
tions usually have a large (>>100) number of levels in
the random effects. The situation is most severe for ani-
mal models, where the number of levels in the random
genetic effect can be greater than the number of obser-
vations, and the number of observations often exceeds
106. Thus, a method to estimate genetic heterogeneity
of the residual variance in animal models with a large
number of observations is desirable.
The aim of the paper is to study the potential use of

DHGLM to estimate variance components in animal
breeding applications. We evaluate the DHGLM metho-
dology by means of simulations and compare the
DHGLM estimates with MCMC estimates using field data
previously analyzed by Sorensen & Waagepetersen [6].

Materials and methods
In this section we start by defining the studied model.
Thereafter, we review the development of GLM-based
algorithms to fit models with predictors in the residual
variance. The DHGLM algorithm is presented and we
continue by showing how a slightly modified version of
DHGLM can be implemented in ASReml [16]. There-
after, we describe our simulations and the data from
Sorensen & Waagepetersen [6] that we reanalyze using
DHGLM.
We consider a model consisting of a mean part and a

dispersion part. There is a random effect u in the mean
part of the model and a random effect ud in the disper-
sion part (subscript d is used to denote a vector or a
matrix in the dispersion part of the model). The studied

trait y conditional on u and ud is assumed to be normal.
The mean part of the model is

E y u ud( | , )   (1)

with a linear predictor

  X Zb u (2)

The dispersion part of the model is specified as

var y u ud( | , )   (3)

with a linear predictor

log b ud d d d( ) .  X Z (4)

Let n be the number of observations (i.e. the length of y),
and let q be the length of u and qd the length of ud.
Normal distributions are assumed for u and ud, i.e. u ~N
(0, Iq  u

2 ) and ud ~N (0, Iqd  d
2 ), where Iq and Iqd are

identity matrices of size q and qd, respectively. The fixed
effects in the mean and dispersion parts are b and bd,
respectively. In the present paper, u and ud are treated as
non-correlated so that
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We allow for more than one random effect in the
mean and dispersion parts of the model. Furthermore, it
is possible to have a random effect with a given correla-
tion structure. The correlation structure of u can be
included implicitly by modifying the incidence matrix Z
[12]. If we have an animal model, for instance, the rela-
tionship matrix A can be included by multiplying the
incidence matrix Z with the Cholesky factorization of A.
Cholesky factorization of A may, however, lead to
reduced sparsity in the mixed model equations.
Distributions other than normal for the outcome y can

be modelled in the HGLM framework, as well as non-
normal distributions for the random effects, but these
will not be considered here. HGLM theory in a more
general setting is given in the Appendix.

Linear models with fixed effects in the dispersion
We start by considering a linear model with only fixed
effects both in the mean and dispersion parts. Using
GLM to fit these models has been applied for several
decades [17]. Maximum likelihood estimates for the
fixed effects in the dispersion part can be achieved by
using a gamma GLM with squared residuals as response.
The basic idea is that if the fixed effects b in the mean

part of the model were given (known without uncer-
tainty) then the squared residuals are ei i

2
1
2~   (for

Rönnegård et al. Genetics Selection Evolution 2010, 42:8
http://www.gsejournal.org/content/42/1/8

Page 2 of 10



observation i), i.e. gamma distributed with a scale para-
meter equal to 2 (with E ei( )2 = ji and V ei i( )2 22  ).
The squared residuals may be fitted using a GLM [18]
having a gamma distribution together with a log link
function. Hence, a linear model is fitted for the mean
part of the model, such that

y b e X (6)

where ji are estimated from the gamma GLM with

E ei i( )2   (7)

log bd( ) .  Xd (8)

However, b is estimated and we only have the pre-
dicted residuals ê i . The expectation of ê i

2 is not equal
to ji and a REML adjustment is required to obtain
unbiased estimates. This is achieved by using the
leverages hi from the mean part of the model. The fit-
ting algorithm gives REML estimates [19] if we replace
eq. 7 by

E e hi i i( / ( ))2 1    (9)

and use weights (1 - hi)/2, (since
V e h hi i i i( / ( )) / ( )2 21 2 1   [12]). The leverage hi for
observation i is defined as the i:th diagonal element of
the hat matrix [20]

H X X X X ( ) .T TW W1 (10)

Here, W is the weight matrix for the linear model in
eq. 6, i.e. wi = 1/ ̂i . The estimation algorithm iterates
between the fitting procedures of eq. 9 and eq. 6, and
the diagonal elements wi in W are updated on each
iteration using ̂i , the predicted values from the dis-
persion model. Note that this algorithm gives exact
REML estimates and is not an approximation
[19,21,22].

Linear mixed models and HGLM
Here, a linear mixed model with homoskedastic resi-
duals is considered. Lee & Nelder [11] have shown
that REML estimates for linear mixed models can be
obtained by using a hierarchy of GLM and augmented
linear predictors. An important part of the fitting pro-
cedure is to present Henderson’s [23] mixed model
equations in terms of a weighted least squares pro-
blem. This is achieved by augmenting the response
variable y with the expectation of u, where E(u) = 0.
The linear mixed model

y b u e

V T
u n e

  

 

X Z

ZZ I 2 2

may be written as an augmented weighted linear
model

y ea a T (11)
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The variance-covariance matrix of the augmented resi-
dual vector is given by
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The estimates from weighted least squares are given
by

T T Tt t
aW Wyˆ . 

This is identical to Henderson’s mixed model equa-
tions where the left hand side can be verified to be
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The variance component  e
2 is estimated by applying

a gamma GLM to the response ê i
2 /(1 - hi) with weights

(1 - hi)/2, where the index i goes from 1 to n. Similarly,
 u

2 is estimated by applying a gamma GLM to the
response û j

2 /(1 - hj) with weights (1 - hj)/2, where the
index j goes from 1 to q and hj comes from the last q
leverages of the augmented model. The augmented
model gives leverages equal to the diagonal elements of

H T T T T W ( ) .t tW 1 (13)

Leverages with values close to 1.0 indicate severe
imbalance in the data. For the last q diagonal elements
in H, 1-hj is equivalent to the reliabilities [24] of the
BLUP values of u.
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This algorithm gives exact REML estimates for a lin-
ear mixed model with normal y and u [12].

Linear mixed models with fixed effects in the dispersion
within the HGLM framework
Since the linear mixed model can now be reformulated
as a weighted least squares problem, we can use the fit-
ting algorithm for weighted least squares described
above to estimate b, u together with the fixed effects in
the dispersion part of the model bd, as well as the var-
iance component in the mean part of the model  u

2 .
This HGLM estimation method has previously been

used in genetics to analyse lactation curves with hetero-
geneous residual variances over time [14], where it was
shown that the algorithm gives REML estimates. A
recently developed R [25] package hglm [26] is also
available on CRAN http://cran.r-project.org, which
enables fitting of fixed effects in the residual variance.

Double HGLM
Now we extend the model further and include random
effects in the dispersion part. A gamma GLM is fitted
using the linear predictor

log b ud d d d( ) .  X Z (14)

By applying the augmented model approach similar to
eq. 11 also to the dispersion part of the model we obtain
a double HGLM (DHGLM)
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q
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Here, 1qd denotes a vector of ones so that its loga-
rithm matches the expectation of ud, where E(ud) = 0
(see Table 7.1 in [12]).
The mean part of the model is fitted as described in

the previous section. The dispersion part of the model is
fitted by using an augmented response vector yd based
on the squared residuals from eq. 11
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The vector of individual deviance components dd is
subsequently used to estimate  d

2 by fitting a gamma
GLM to the response dd, j/(1 - hd, j) with weights (1 -
hd, j)/2, where dd, j is the j:th component of dd and hd, j
is the j:th element of the last qd leverages.
Algorithm overview
The fitting algorithm is implemented as follows.

1. Initialize  u
2 ,  d

2 and W.
2. Estimate b and u by fitting the model for the
mean using eq. 11 (i.e. Henderson’s mixed model
equations) and calculate the leverages hi.

3. Estimate  u
2 by fitting a gamma GLM to

the response û j
2 /(1 - hj) with weights (1 - hj)/2,

where hj are the last q diagonal elements of the hat
matrix H.
4. Estimate bd and ud from eq. 15 (using
Henderson’s mixed model equations) with
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, and calculate the

deviance components dd and leverages hd
5. Estimate  d

2 by fitting a gamma GLM to the
response dd, j/(1 - hd, j) with weights (1 - hd, j)/2
6. Update the weight matrix W as

W
diag
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(18)

7. Iterate steps 2-6 until convergence

We have described the algorithm for one random
effect in the mean and dispersion parts of the model but
extending the algorithm for several random effects is
rather straightforward [12]. The algorithm has been
implemented in GenStat [12,15] where the size of the
mixed model equations is limited and thus could not be
used in our analysis. Hence, we implemented the algo-
rithm using PROC REG in SAS®, but found that it was
too time consuming to be useful on large data sets.
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A faster version of the algorithm was therefore
implemented using the ASReml software [16]. As
described below, the ASReml implementation uses pena-
lized quasi-likelihood (PQL) estimation in a gamma
GLMM.

DHGLM implementation using penalized quasi likelihood
estimation
PQL estimates, for a generalized linear mixed model
(GLMM), are obtained by combining iterative weighted
least squares and a REML algorithm applied on the
adjusted dependent variable (which is calculated by line-
arizing the GLM link function) [27]. For instance, the
GLIMMIX procedure in SAS® iterates between several
runs of PROC MIXED and thereby produces PQL
estimates.
By iterating between a linear mixed model for the

mean and a gamma GLMM for the dispersion part of
the model using PQL, a similar algorithm as the one
described above can be implemented. If the squared
residuals of the adjusted dependent variable were used
in the DHGLM (as described in the previous section) to
calculate  d

2 instead of the deviance components, the
algorithm would produce PQL estimates [12]. Both of
these two alternatives to estimate  d

2 in a gamma
GLMM give good approximations [12,27]. Hence, both
methods are expected to give good approximations of
the parameter estimates in a DHGLM, but, to our
knowledge, the exact quality of these approximations
has not been investigated, so far.
ASReml uses PQL to fit GLMM and has the nice

property of using sparse matrix techniques to calculate
the leverages hi. Although we used ASReml to imple-
ment a PQL version of the DHGLM algorithm, any
REML software that uses sparse matrix techniques and
produces leverages should be suitable.
Let hasreml be the hat values calculated in ASReml and

stored in the .yht output file. They are defined in the
ASReml User Guide [16] as the diagonal elements of [X,
Z](TtWT)-1 [X, Z]t. So, the leverages h are equal to

1
2 e
Wasreml·hasreml where Wasreml is the diagonal matrix

of prior weights specified in ASReml and  e
2 is the esti-

mated residual variance.
The PQL version of the DHGLM algorithm was

implemented as follows.

1. Initialize W = In
2. Estimate b, u and  u

2 by fitting a linear mixed
model to the data y and weights W
3. Calculate yd, i = ê i

2 /(1 - hi) and W diagd
h  1

2
4. Estimate bd, ud and  d

2 by fitting a weighted
gamma GLM with response yd and weights Wd.

5. Update W = diag( ŷ d )
-1, where ŷ d are the pre-

dicted values from the model in Step 4.
6. Iterate steps 2-5 until convergence.

Convergence was assumed when the change in var-
iance components between iterations was less than 10-5.
The algorithm is quite similar to the one used by Wolc
et al. [9] to fit a sire model with genetic heterogeneity in
the residual variance, except that they did not make the
leverage corrections to the squared residuals. Including
the leverages in the fitting procedure is important to
obtain acceptable variance component estimates in ani-
mal models and also for imbalanced data.

Simulation study
To test whether the DHGLM approach gives unbiased
estimates for the variance components, we simulated
10,000 observations and a random group effect. The num-
ber of groups was either 10, 100 or 1000. An observation
for individual i with covariate xk belonging to group l was
simulated as: yikl = 1.0 + 0.5xk + ul + eikl, where the
random group effects are iid with ul ~N (0,  u

2 ), and the
residual effect was sampled from N(0, V (eikl)) with: V (eikl)
= exp(0.5 + 1.5xd, k + ud, l), where xd, k is a covariate. The
covariates xk and xd, k were simulated binary to resemble
sex effects. Furthermore, ud, l~N (0,  d

2 ) with cov(ul, ud, l)
= rsusd. The simulated variance components were  u

2 =
0.5 and  d

2 = 1.0, whereas the correlation r was either
0 or -0.5. The value of  d

2 = 1.0 gives a substantial varia-
tion in the simulated elements of ud, where a one standard
deviation difference between two values ud, l and ud, m
increases the residual variance 2.72 times. The simulated
value of  d

2 was chosen to be quite large, compared to
the residual variance, because large values of  d

2 should
reveal potential bias in DHGLM estimation using PQL
[27]. The average value of the residual variance was 3.5.
We replicated the simulation 20 times and obtained
estimates of variance components using the PQL version
of DHGLM.

Re-analyses of pig litter size: data and models
Pig litter size has been previously analyzed by Sorensen
& Waagepetersen [6] using Bayesian methods, and the
data is described therein. The data includes 10,060
records from 4,149 sows in 82 herds. Hence, repeated
measurements on sows have been carried out and a per-
manent environmental effect of each sow has been
included in the model. The maximum number of pari-
ties is nine. The data includes the following class vari-
ables: herd (82 classes), season (4 classes), type of
insemination (2 classes), and parity (9 classes). The data
is highly imbalanced with two herds having one observa-
tion and 13 herds with five observations or less. The
ninth parity includes nine observations.
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Several models has been analyzed by Sorensen &
Waagepetersen [6] with an increasing level of complexity
in the model for the residual variance and with the
model for the mean y = Xb + Wp + Za + e varying only
through the covariance matrix V (e). Here y is litter size
(vector of length 10,060), b is a vector including the fixed
effects of herd, season, type of insemination and parity,
and X is the corresponding design matrix (10,060 × 94),
p is the random permanent environmental effect (vector
of length 4,149), W is the corresponding incidence
matrix (10,060 × 4,149) and V (p) = I  p

2 , a is the addi-
tive genetic random effect, Z is the corresponding inci-
dence matrix (10,060 × 6,437) and V (a) = A  a

2 where
A is the additive relationship matrix. Hence the LHS of
the mixed model equations is of size 10,680 × 10,680.
The residual variance e was modelled as follows.

Model I: Homogeneous variance

V e exp bi( ) ( ) 0

where b0 is a common parameter for all i.
Model II: Fixed effects in the linear predictor for the residual
variance
In this model each parity and insemination type has its
own value for the residual variance

V e expi d i d( ) ( ), x b

where bd is a parameter vector including effects of
parity and type of insemination, and xd, i is the i:th row
in the design matrix Xd.
Model III: Random animal effects together with fixed effects
in the linear predictor for the residual variance

V e expi d i d i d( ) ( ), x b z a

where zi is the i:th row of Z and ad is a random ani-
mal effect with ad ~N ad

( , )0 2I .
Model IV: Both permanent environmental effects and
animal effects in the linear predictor for the residual
variance

V e expi d i d i d i d( ) ( ),  x b w p z a

where wi is the i:th row of W and pd is a random per-
manent environmental effect with pd ~N pd

( , )0 2I .
These four models are the same as in [6] with the dif-

ference that we do not include a correlation parameter
between a and ad in our analysis.

Results
Simulations
The DHGLM estimation produced acceptable estimates
for all simulated scenarios (Table 1), with standard errors
being large for scenarios with few groups, i.e. for a small

number of elements in u and ud. In animal breeding
applications, the length of u and ud is usually large and
we can expect the variance components to be accurately
estimated. The estimates were not impaired by simulat-
ing a negative correlation between u and ud although a
zero correlation was assumed in our fitting algorithm.

Analysis of pig litter size data
The DHGLM estimates and Bayesian estimates (i.e. pos-
terior mean estimates from [6]) were identical for the
linear mixed model with homogeneous variance (Model
I) and were very similar for Model II where fixed effects

Table 1 Estimated variance components in the model of
the mean and the residual variance using DHGLM. The
variance of the random effects in the mean and residual
parts of the model are  u

2 and  d
2 , respectively; results

given as mean (s.e.) of 20 replicates

Simulated values Estimates

No. groups Obs. per group  u
2  d

2 r  u
2  d

2

1000 10 0.5 1.0 0.0 0.50 1.06

(0.03) (0.06)

1000 10 0.5 1.0 -0.5 0.47 1.07

(0.03) (0.05)

100 100 0.5 1.0 0.0 0.51 0.98

(0.01) (0.03)

100 100 0.5 1.0 -0.5 0.49 1.01

(0.01) (0.04)

10 1000 0.5 1.0 0.0 0.53 0.80

(0.04) (0.10)

10 1000 0.5 1.0 -0.5 0.42 1.03

(0.04) (0.10)

Table 2 Comparison between DHGLM estimates and the
estimates obtained by Sorensen & Waagepetersen [6]
(referred to as S&W 2003 below)

Model for residual variance

Mean
model

Fixed effects Variances

Model  a
2  p

2 b0 δins δpar  ad
2  pd

2 r

I DHGLM 1.40 0.60 2.00

S&W 2003 1.40 0.60 2.00

II DHGLM 1.38 0.73 1.87 -0.15 0.34

S&W 2003 1.37 0.71 1.87 -0.15 0.34

III DHGLM 1.35 0.53 1.73 -0.17 0.32 0.13 *

S&W 2003 1.58 0.60 1.78 -0.16 0.34 0.11 -0.57

IV DHGLM 1.36 0.44 1.72 -0.17 0.32 0.09 0.06 *

S&W 2003 1.62 0.60 1.77 -0.17 0.35 0.09 0.06 -0.62

b0 is the intercept term in the model for the residual variance

δins is the fixed effect of insemination in the model for the residual variance

δpar is the fixed effect for the difference in first and second parity in the
model for the residual variance

*The correlation between a and ad was not estimated with DHGLM
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are included in the residual variance part of the model
(Table 2). For Model III and IV, including random
effects in the residual variance part of the model, the
DHGLM estimates deviated from the Bayesian point
estimates for the mean part of the model. Nevertheless,
the DHGLM estimates were all within the 95% posterior
intervals obtained by Sorensen & Waagepetersen [6].
The differences were likely due to the fact that the
genetic correlation r was not included as a parameter in
the DHGLM approach. The correspondence between
the two methods for the variance components in the
residual variance was very high.
The data was unbalanced with few observations within

some herds, i.e. two herds contain only single observa-
tions. The observations from these two herds have
leverages equal to 1.0 (Figure 1) and do not add any
information to the model. Leverage plots can be a useful

tool in understanding results from models in animal
breeding and our results show that they illustrate impor-
tant aspects of imbalance.
For Model IV, the DHGLM algorithm implemented

using ASReml converged in 10 iterations and the com-
putation time was less than 3 minutes on a Linux server
(with eight 2.66 GHz quad core CPUs and 16 Gb
memory).

Discussion
We have shown that DHGLM is a feasible estimation
algorithm for animal models with heteroskedastic resi-
duals including both genetic and non-genetic heteroge-
neity. Furthermore, a fast version of the algorithm was
implemented using the ASReml [16] software. Hereby,
estimation of variance components in animal models
with a large number of observations is possible. We

Figure 1 Leverages for the mean part of the model. Leverages hi for the 10,060 observations of pig litter size for Model IV with both
permanent environmental and animal random effects included in the residual variance part of the model.
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have explored the accuracy and speed of variance com-
ponent estimation using DHGLM but the algorithm also
produces estimated breeding values. It is important to
consider heteroskedasticity in traditional breeding value
evaluation, because failing to do so leads to suboptimal
selection decisions [2,7,28], and models with genetic
heterogeneity is important when aiming at selecting
robust animals [3]. Variance component estimation and
breeding value evaluation in applied animal breeding are
typically based on large data sets, and we therefore
expect that the proposed DHGLM algorithm could be
of wide-spread use in future animal breeding programs.
Especially, since breeding organizations usually have a
stronger preference for traditional REML estimation
than in the previously proposed Bayesian methods [6-8].
We have focused on traits that are normal distributed

(conditional on the random effects). The HGLM approach
permits modelling of traits following any distribution from
the exponential family of distributions, e.g. normal, gamma,
binary or Poisson. Equation 11 is then re-formulated by
specifying the distribution and by using a link function g(.)
so that g(μ) = Tδ (see Appendix). In this more general set-
ting, the individual deviance components [18] are used
instead of the squared residuals to estimate the variance
components. HGLM gives only approximate variance com-
ponent estimates if the response is not normal distributed.
For continuous distributions, including gamma, the
approximation is very good. For discrete distributions, such
as binomial and Poisson, the approximation can be quite
poor, but higher-order corrections based on the h-likeli-
hood are available [13]. Kizilkaya & Tempelman [8] have
developed Bayesian methods to fit generalized linear mixed
models with heteroskedastic residuals and genetic hetero-
geneity. This method is more flexible, since a wider range
of distributions for the residuals can be modeled, but it is
much more computationally demanding.
An important feature of the DHGLM algorithm is that

it requires calculation of leverages. Wolc et al. [9] have
fitted a generalized linear mixed model to the squared
residuals of a sire model without adjusting for the
leverages. However, for models with animal effects it is
essential to include the leverage adjustments. The effects
of adjusting for the leverages, or not, are similar to the
effects of using REML instead of ML to fit mixed linear
models, where ML gives biased variance component
estimates and the estimates are more sensitive to data
imbalance [12]. Moreover, the leverages can be a useful
tool to identify important aspects of data imbalance (as
shown in Figure 1).
DHGLM estimation is available in the user-friendly

environment of GenStat [12,15]. Fitting DHGLM in
GenStat is possible for models with up to 5,000 equa-
tions in the mixed model equations (results not shown).
Hence, the GenStat version of DHGLM is suitable for

sire models but not for animal models if the number of
observations is large. An advantage of GenStat, however,
is that it produces model-selection criteria for DHGLM
based on the h-likelihood. Nevertheless, it does not
include estimation of the correlation parameter r.
Simple methods based on linear mixed models have

been proposed [9,29] to estimate r, but an unbiased and
robust estimator for animal models still requires further
research. To our knowledge, methods to estimate r
within the DHGLM framework has not been developed
yet. An important future development of the DHGLM
is, therefore, to incorporate r in the model and to study
how other parameter estimates are affected by the inclu-
sion of r. Another essential development of such a
model would be to derive model-selection criteria based
on the h-likelihood (see [12]).

Appendix
H-likelihood theory
Here we summarize the h-likelihood theory for HGLM
according to the original paper by Lee & Nelder [11],
which justifies the estimation procedure and inference
for HGLM. H-likelihood theory is based on the principle
that HGLMs consist of three objects: data, fixed
unknown constants (parameters) and unobserved ran-
dom variables (unobservables). This is contrary to tradi-
tional Bayesian models which only consist of data and
unobservables, while a pure frequentist’s model only
consists of the data and parameters.
The h-likelihood principle is not generally accepted by

all statisticians. The main criticism for the h-likelihood
has been non-invariance of inference with respect to
transformation. This criticism would be appropriate if
the h-likelihood was merely a joint likelihood of fixed
and random effects. However, the restriction that the
random effects occur linearly in the linear predictor of
an HGLM is implied in the h-likelihood, which guaran-
tees invariance [30].
Let y be the response and u an unobserved random

effect. A hierarchical model is assumed so that y|u ~fm
(μ, �) and u ~fd(ψ, l) where fm and fd are specified distri-
butions for the mean and dispersion parts of the model.
Furthermore, it is assumed that the conditional (log-)like-
lihood for y given u has the form of a GLM likelihood

l y u
y b

a
c y( , ; | )

( )
( )

( , ) 
 

   


 (19)

where θ’ is the canonical parameter, j is the disper-
sion term, μ’ is the conditional mean of y given u where
h’ = g(μ’), i.e. g(.) is a link function for the GLM. The
linear predictor for μ’ is given by h’ = h + v where h =
Xb. The dispersion term j is connected to a linear pre-
dictor Xdbd given a link function gd(.) with gd(�) = Xdbd.

Rönnegård et al. Genetics Selection Evolution 2010, 42:8
http://www.gsejournal.org/content/42/1/8

Page 8 of 10



It is not feasible to use a classical likelihood approach
by integrating out the random effects for this model
(except for a few special cases including the case when
fm and fd are both normal). Therefore a h-likelihood is
used and is defined as

h l y u l v  ( , ; | ) ( ; )   (20)

where l(a; v) is the log density for v with parameter a
and v = v(u) for some strict monotonic function of u.
The estimates of b and v are given by 


h
b = 0 and 


h
v =

0. The dispersion components are estimated by maximiz-
ing the adjusted profile h-likelihood

h h log Hp
b b v v

 







 

1
2

2 1| |
,

 (21)

where H is the Hessian matrix of the h-likelihood.
Lee & Nelder [11] showed that the estimates can be

obtained by iterating between a hierarchy of GLM,
which gives the HGLM algorithm. The h-likelihood
itself is not an approximation but the adjusted profile h-
likelihood given above is a first-order Laplace approxi-
mation to the marginal likelihood and gives excellent
estimates for non-discrete distributions of y. For bino-
mial and Poisson distributions higher-order approxima-
tions may be required to avoid severely biased estimates
[12].

Double Hierarchical Generalized Linear Models
Here we present the h-likelihood theory for DHGLM
and refer to the paper on DHGLM by Lee & Nelder
[10] for further details.
For DHGLM it is assumed that conditional on the ran-

dom effects u and ud, the response y satisfies E(y|u, ud) =
μ and var(y|u, ud) = �V(μ), where V(μ) is the GLM var-
iance function, i.e. V(μ) ≡ μk where the value of k is com-
pletely specified by the distribution assumed for y|u, ud
[18]. Given u the linear predictor for μ is g(μ)= Xb + Zv,
and given ud the linear predictor for � is gd(�) = Xdbd +
Zdvd. The h-likelihood for a DHGLM is

h l y v v l v l vd d d   ( , ; | , ) ( ; ) ( ; )    (22)

where l(ad; vd) is the log density for vd with parameter
ad and vd = vd(ud) for some strict monotonic function
of ud.
In our current implementation we use an identity link

function for g(.) and a log link for gd(.).
Furthermore, we have v = u and vd = ud such that μ =

Xb + Zu and log(j) = Xdbd + Zdud. We restricted our
analysis to a normally distributed trait for var(y|u, ud)
such that var(y|u, ud) = j, and we also assumed u and
ud to be normal.

The performance of DHGLM in multivariate volatility
models (i.e. multiple time series with random effects in
the residual variance) has been studied in an extensive
simulation study [31]. The maximum likelihood esti-
mates (MLE) for this multivariate normal-inverse-Gaus-
sian model were available and the authors could
therefore compare the MLE with the DHGLM estimates.
The estimates were close to the MLE for all simulated
cases and the approximation improved as the number of
time series increased from one to eight. Hence, for the
studied time-series model, the DHGLM estimates
improve as the number of observations increases, given
a fixed number of elements in ud. These results high-
light that DHGLM is an approximation, but that the
approximation can be expected to be satisfactory when
y|u, ud is normally distributed.

Acknowledgements
We thank Danish Pig Production for allowing us to use their data and Daniel
Sorensen for providing the data. We thank Youngjo Lee and Daniel
Sorensen for valuable discussions on previous manuscripts. This project is
partly financed by the RobustMilk project, which is financially supported by
the European Commission under the Seventh Research Framework
Programme, Grant Agreement KBBE-211708. The content of this paper is the
sole responsibility of the authors, and it does not necessarily represent the
views of the Commission or its services. LR recognises financial support by
the Swedish Research Council FORMAS.

Author details
1Statistics Unit, Dalarna University, SE-781 70 Borlänge, Sweden. 2Department
of Animal Breeding and Genetics, Swedish University of Agricultural
Sciences, SE-750 07 Uppsala, Sweden. 3Animal Breeding and Genomics
Centre, Wageningen UR Livestock Research, PO Box 65, 8200 AB Lelystad,
The Netherlands.

Authors’ contributions
ES initiated the study. LR was responsible for the analyses and writing of the
paper. MF implemented a first version of the DHGLM algorithm in R and
performed part of the analyses. FF and HM initiated the idea of
implementing DHGLM using ASReml. All authors were involved in reading
and writing the paper.

Competing interests
The authors declare that they have no competing interests.

Received: 6 November 2009 Accepted: 19 March 2010
Published: 19 March 2010

References
1. Hill WG: On selection among groups with heterogeneous variance. Anim

Prod 1984, 39:473-477.
2. Meuwissen THE, de Jong G, Engel B: Joint estimation of breeding values

and heterogeneous variances of large data files. J Dairy Sci 1996,
79:310-316.

3. Mulder HA, Bijma P, Hill WG: Prediction of breeding values and selection
response with genetic heterogeneity of environmental variance. Genetics
2007, 175:1895-1910.

4. Hill WG, Zhang XS: Effects on phenotypic variability of directional
selection arising through genetic differences in residual variability. Genet
Res 2004, 83:121-132.

5. SanCristobal-Gaudy M, Elsen JM, Bodin L, Chevalet C: Prediction of the
response to a selection for canalisation of a continuous trait in animal
breeding. Genet Sel Evol 1998, 30:423-451.

Rönnegård et al. Genetics Selection Evolution 2010, 42:8
http://www.gsejournal.org/content/42/1/8

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/17277375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17277375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15219157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15219157?dopt=Abstract


6. Sorensen D, Waagepetersen R: Normal linear models with genetically
structured residual variance heterogeneity: a case study. Genet Res 2003,
82:207-222.

7. Cardoso FF, Rosa GJM, Tempelman RJ: Multiple-breed genetic inference
using heavy-tailed structural models for heterogeneous residual
variances. J Anim Sci 2005, 83:1766-1779.

8. Kizilkaya K, Tempelman RJ: A general approach to mixed effects modeling
of residual variances in generalized linear mixed models. Genet Sel Evol
2005, 37:31-56.

9. Wolc A, White IMS, Avendano S, Hill WG: Genetic variability in residual
variation of body weight and conformation scores in broiler chickens.
Poultry Sci 2009, 88:1156-1161.

10. Lee Y, Nelder JA: Double hierarchical generalized linear models (with
discussion). Appl Stat 2006, 55:139-185.

11. Lee Y, Nelder JA: Hierarchical generalized linear models (with Discussion).
J R Stat Soc B 1996, 58:619-678.

12. Lee Y, Nelder JA, Pawitan Y: Generalized linear models with random effects
Chapman & Hall/CRC 2006.

13. Noh M, Yip B, Lee Y, Pawitan Y: Multicomponent variance estimation for
binary traits in family-based studies. Genet Epidem 2006, 30:37-47.

14. Jaffrezic F, White IMS, Thompson R, Hill WG: A link function approach to
model heterogeneity of residual variances over time in lactation curve
analyses. J Dairy Sci 2000, 83:1089-1093.

15. Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM: GenStat for
Windows Introduction VSN International, Hemel Hempstead, 12 2009.

16. Gilmour AR, Gogel BJ, Cullis BR, Thompson R: Asreml user guide release 2.0
VSN International, Hemel Hempstead 2006.

17. Aitkin M: Modelling variance heterogeneity in normal regression using
GLIM. Appl Stat 1987, 36:332-339.

18. McGullagh P, Nelder JA: Generalized linear models Chapman & Hall/CRC
1989.

19. Verbyla AP: Modelling variance heterogeneity: residual maximum
likelihood and diagnostics. J R Stat Soc B 1993, 55:493-508.

20. Hoaglin DC, Welsch RE: The hat matrix in regression and ANOVA. Am Stat
1978, 32:17-22.

21. Nelder JA, Lee Y: Joint modeling of mean and dispersion. Technometrics
1998, 40:168-171.

22. Smyth GK: An efficient algorithm for REML in heteroscedastic regression.
Journal of Computational and Graphical Statistics 2002, 11:836-847.

23. Henderson CR: Applications of linear models in animal breeding University of
Guelph, Guelph Ontario 1984.

24. Meyer K: Approximate accuracy of genetic evaluation under an animal
model. Livest Prod Sci 1987, 21:87-100.

25. R Development Core Team: R: A Language and Environment for Statistical
Computing R Foundation for Statistical Computing, Vienna, Austria 2009.

26. Rönnegård L, Shen X, Alam M: hglm: A package for fitting hierarchical
generalized linear models. R Journal (accepted) 2010.

27. Breslow NE, Clayton DG: Approximate inference in generalized linear
mixed models. J Am Stat Ass 1993, 88:9-25.

28. Meuwissen THE, Werf van der JHJ: Impact of heterogeneous within herd
variances on dairy-cattle breeding schemes - a simulation study. Livest
Prod Sci 1993, 33:31-41.

29. Mulder HA, Hill WG, Vereijken A, Veerkamp RF: Estimation of genetic
variation in residual variance in female and male broilers. Animal 2009,
3:1673-1680.

30. Lee Y, Nelder JA, Noh M: H-likelihood: problems and solutions. Statistics
and Computing 2007, 17:49-55.

31. del Castillo J, Lee Y: GLM-methods for volatility models. Statistical
Modelling 2008, 8:263-283.

doi:10.1186/1297-9686-42-8
Cite this article as: Rönnegård et al.: Genetic heterogeneity of residual
variance - estimation of variance components using double hierarchical
generalized linear models. Genetics Selection Evolution 2010 42:8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Rönnegård et al. Genetics Selection Evolution 2010, 42:8
http://www.gsejournal.org/content/42/1/8

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/15134199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15134199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15588567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15588567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10821584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10821584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10821584?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Materials and methods
	Linear models with fixed effects in the dispersion
	Linear mixed models and HGLM
	Linear mixed models with fixed effects in the dispersion within the HGLM framework
	Double HGLM
	Algorithm overview

	DHGLM implementation using penalized quasi likelihood estimation
	Simulation study
	Re-analyses of pig litter size: data and models
	Model I: Homogeneous variance
	Model II: Fixed effects in the linear predictor for the residual variance
	Model III: Random animal effects together with fixed effects in the linear predictor for the residual variance
	Model IV: Both permanent environmental effects and animal effects in the linear predictor for the residual variance


	Results
	Simulations
	Analysis of pig litter size data

	Discussion
	Appendix
	H-likelihood theory
	Double Hierarchical Generalized Linear Models

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

