
RESEARCH Open Access

Fine mapping and replication of QTL in outbred
chicken advanced intercross lines
Francois Besnier1*, Per Wahlberg2, Lars Rönnegård3, Weronica Ek1, Leif Andersson1,2, Paul B Siegel4,
Orjan Carlborg1,5

Abstract

Background: Linkage mapping is used to identify genomic regions affecting the expression of complex traits.
However, when experimental crosses such as F2 populations or backcrosses are used to map regions containing a
Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other
experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by
repeated intercrossing of F2 animals and successive generations, which decrease linkage disequilibrium in a
controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL,
only a few AIL datasets, all originating from inbred founders, have been reported in the literature.

Methods: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines
divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and
genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been
detected in the F2 population. In parallel, we have developed a novel strategy to analyse the data that uses both
genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting
juvenile body weight.

Results: Five of the nine QTL detected with the original F2 population were confirmed and fine-mapped with the
AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were
confirmed as a single locus, except for one, which split into two linked QTL.

Conclusions: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the
analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key
factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the
statistical methods we have developed to efficiently study outbred AIL populations will increase the number of
organisms for which in-depth complex traits can be analyzed.

Background
In domestic animal populations, F2 crosses between
divergently selected outbred lines are commonly used to
map QTL [1-3]. However, only one generation of recom-
bination occurs, in an F2 pedigree (gametes of the F1 gen-
eration) and linkage disequilibrium (LD) can be strong
along the chromosomes. This long-range LD can be used
to detect associations between QTL and markers even at
a low marker density, e.g. one marker per 10 or 20 centi-
Morgans (cM) [1,4]. However, because of the extensive

LD, using an F2 design results in large confidence inter-
vals for QTL locations [5] that potentially contain hun-
dreds of genes.
To map QTL with a higher resolution, it is necessary

to adopt a fine-mapping strategy that would ideally pro-
duce a QTL peak covering a chromosome region small
enough to contain only a few genes. Such a strategy
would facilitate identification of candidate mutations.
Precision of fine-mapping relies on the use of dense
SNP marker maps that provide genotypic information at
cM or sub-cM intervals. However, using a high or med-
ium high marker density in an F2 population provides
only a moderate improvement in the resolution because
the population has undergone only one generation of
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recombination [5]. In such a population, most of the
marker alleles are inherited together and share the same
genetic information i.e. they are Identical By Descent
(IBD) within the same haplotype block [6]. Reducing the
extensive linkage disequilibrium present in an F2 popu-
lation requires breeding additional filial generations by
repeated intercrossing, i.e. using F2 individuals to gener-
ate an F3 generation and so on, to form an Advanced
Intercross Line (AIL) pedigree [6-8]. Each generation of
breeding introduces new recombination events and
thereby decreases LD between markers and QTL. Thus,
an AIL makes it possible to re-analyze and fine-map
QTL originally detected in the F2 generation.
Here, we developed new methods to fine-map QTL

using data from an AIL produced from outbred lines.
We used a nine-generation AIL pedigree produced from
an intercross between two lines of chickens divergently
selected for body weight at 56 days of age [9]. All ani-
mals in the pedigree were genotyped using SNP markers
located at approximately 1 cM intervals in nine chromo-
somal regions where significant or suggestive QTL had
previously been identified in an independent F2 inter-
cross between the lines [10,11]. The nine regions were
screened for QTL influencing body weight at 56 days of
age (BW56), with the objective of replicating previous
results and reducing the size of the confidence intervals
containing the QTL.

Methods
Animals
To create the AIL used in this study, a large intercross
pedigree was set up by crossing individuals from two
divergent chicken lines, i.e. a High Weight Selected line
(HWS) and a Low Weight Selected line (LWS), which
were obtained as follows. A selection experiment
initiated in 1957 was designed to select two chicken
lines for high- and low-body weight from the same base
population, which consisted of crosses between seven
partly inbred lines of White Plymouth Rock chickens.
Then, individuals with a high-body weight at 56 days of
age (BW56) were selected as parents for the line HWS
and chickens with a low BW56 were selected as parents
for the line LWS [9].
The AIL was initiated with HWS and LWS individuals

from generation 40 [10-12] for which sex-averaged
mean body weights at the age of selection were1522 g
(SE: ± 36 g) for HWS and 181 g (SE: ± 5 g) for LWS
animals. The observed mean heterozygosity, H0, at all
autosomal loci, after 40 generations, was 0.146 in line
HWS and 0.156 in line LWS [13]. To create the AIL, 10
HWS males were mated with 22 LWS females and 8
LWS males were mated with 19 HWS females to pro-
duce 83 F1. The number of individuals produced in sub-
sequent generations varied (Table 1); about 100

individuals for generations F2, F4, F5, F6 and F7; 405
individuals for generation F8 because F8 animals have
accumulated the highest number of recombinations and
are expected to provide the best resolution for QTL
mapping; and 437 individuals for generation F3, which is
a suitable size to detect QTL in regions where genetic
polymorphism may have been lost by genetic drift dur-
ing the last generations of the intercross. Breeding con-
ditions differed for producing the F8 versus previous
generations, i.e. fewer sires and younger dams were used
to produce the F8, resulting in smaller egg size and ulti-
mately smaller animals (Table 1). This was accounted
for in our statistical model by correcting for a genera-
tion effect.

DNA extraction, marker selection and genotyping
Nine chromosome regions (see Table 2; segment names
follow the Jacobsson et al. [10] nomenclature) contain-
ing significant or suggestive QTL for body weight
detected in the original F2 population [10,11] were cho-
sen for this study. DNA was extracted from blood sam-
ples by AGOWA (Berlin, Germany). Fifteen individuals

Table 1 Descriptive statistics for the AIL pedigree

Generation Nb of
animals

Nb of males
contributing to

the next
generation

Average body
weight

at 56 days of age
(g) ± SE

F0 HWS 29 10 1522 ± 36

F0 LWS 30 8 181 ± 5.4

F1 83 8 NA

F2 90 32 663.9 ± 18.6

F3 437 65 696.7 ± 8.1

F4 128 58 594.6 ± 11.9

F5 128 51 656.1 ± 14.0

F6 100 35 770.1 ± 16.9

F7 107 10 661.8 ± 17.2

F8 405 NA 373.6 ± 6.3

Total 1529 NA 594.2 ± 5.7

Table 2 Chromosome segments selected for the
replication study

Chromosome QTL segment* Start (bp)** End (bp)**

1 Growth1 169,634,954 181,087,961

2 Growth2 47,929,675 65,460,002

2 Growth3 124,333,151 133,581,122

3 Growth4 24,029,841 68,029,533

4 Growth6 1,354,213 13,511,203

4 Growth7 85,459,943 88,832,107

5 Growth8 33,696,791 39,052,438

7 Growth9 10,916,819 35,491,706

20 Growth12 7,109,709 13,899,993

*Jacobsson et al. 2006 [10]; **position as in Chicken genome assembly of
May 2006.
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from each parental line were genotyped for approxi-
mately 13,000 genome-wide SNP markers, as described
by Wahlberg et al. [14]. A subset of 304 segregating
SNP was selected from the nine QTL regions to, in the
best possible way, discriminate between alleles inherited
from the HWS and LWS lines. For SNP markers that
are bi-allelic, a marker that discriminates between alleles
inherited from the HWS and LWS lines would have a
high frequency (p) of one allele in the LWS line, and a
high frequency (q) of the other allele in the HWS line.
In the ideal case, p(HWS) = q(LWS) = 1 (i.e. fixation
for alternative alleles in the two lines), the molecular
signature of the markers is sufficient to determine the
line of origin of any allele without uncertainty. As this
situation rarely occurred for the markers available in the
present study, markers were selected as follows: First,
differences in marker allele-frequencies between the
HWS and LWS lines were evaluated for all markers in
the QTL regions. Then, markers were selected based on
decreasing differences in marker allele frequencies
between the lines, and on their positions at regular
intervals on the chromosome segments. In the present
study, only 33% of the markers were considered highly
informative with allele frequencies p(HWS) ≥0.9, and q
(LWS) ≥0.7 or vice versa. All individuals in the AIL (n =
1529) were genotyped for these markers using the Gold-
enGate assay (Illumina, CA) at the SNP technology plat-
form in Uppsala (Sweden).

IBD estimation
When detecting QTL by the variance component
method, the covariance matrix (Π) of the random QTL
effect must be estimated as an IBD matrix i.e. a n*n
matrix that contains, at a given genomic position, the
expected number of alleles IBD between all pairs of
individuals in the studied population or pedigree [1].
Therefore, to perform a genome-scan for QTL using a
variance component based analysis, an IBD matrix is
needed for each tested genome position τ.
IBD matrices can be estimated using methods based

on descent tree likelihood [15], by Monte Carlo Marcov
Chain methods [16], or deterministically [17]. For the
present study, we used a deterministic IBD estimation
method that utilizes pedigree, genotype and haplotype
information to infer IBD probabilities based on the
approach described by Pong-Wong et al. [18]. The use
of haplotype information together with deterministic
IBD estimation is, in the present case, motivated by its
computational efficiency.
Most IBD estimation approaches [15-18] are based on

genotype and pedigree information only, whereas mar-
ker-phases (or related measurement of the alleles inheri-
tance pathway thorough the pedigree), which are needed

to obtain the final IBD probabilities, are estimated
alongside the IBD by the algorithm. Deterministic meth-
ods [17,18] only use informative markers (where marker
phase can be inferred without uncertainty) and therefore
only uses part of the available information, whereas
iterative methods [15,16] provide better precision in IBD
estimation, but also higher computational demand.
However, if haplotypes are estimated by an independent
routine, and included in the input data, it can increase
the amount of information available for the determinis-
tic algorithm. Here, we use an algorithm that first esti-
mates haplotypes using a Genetic Algorithm based
method [19], and subsequently includes this haplotype
information to improve the accuracy of the determinis-
tic IBD estimation. Because the present study involves
analysing several times the same genomic region to test
different hypotheses about the population structure, sev-
eral versions of an IBD matrix are computed for the
same locus. This is thus more efficient to isolate the
computationally demanding part of the analysis (recur-
sive haplotype estimation) in a preliminary step that
only needs do be done once for each genomic region,
and then to adopt a fast deterministic IBD estimation
algorithm for the second step that is repeated several
times for each locus.
Due to the recursive approach, the deterministic IBD

estimation algorithm [18] is also flexible. IBD probabil-
ities are computed recursively from the first (F0) to the
last (F8) generation, which makes it possible to include
a genetic covariance structure among the founder indivi-
duals of the pedigree. This covariance can be computed
independently based on population history [20], or
based on genetic data [21]. The algorithm simply reads
the matrix of covariance between founders of the pedi-
gree as input data, and computes the IBD relationship
of the last generations as a function of the given founder
population structure.
Here, we estimated IBD probabilities recursively in the

AIL pedigree as in [18], taking the covariance among
the founders into account [21]. Haplotypes were used as
input if they were deemed robust [19] but individual
marker genotypes were used when haplotype estimates
were uncertain. The estimated IBD matrices at each
tested location, τ, were then used as input in the var-
iance component (VC) QTL analysis.

Variance component QTL analysis
VC model
The classical VC approach to map QTL assumes that
QTL alleles in the founder population are uncorrelated
[22,23]. Since the VC approach makes no distinction
between the line origin of the alleles, this approach is
not suitable to analyse outbred crosses between
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divergent lines [2,21]. Therefore we used a VC approach
[21] that accounts for correlation among QTL alleles
within the founder lines.
Consider the variance component model with uncor-

related founder allele effects:

y X v e= + + (1)

where y is the vector of individual phenotypes, b the
vector of fixed effects, X the design matrix of fixed
effects, v a vector of random QTL effects, and e the vec-
tor of residual effects. The variance of y is then given by

V v e( )y I= +Π 2 2

where Π is the genotype IBD matrix calculated at

chromosome position τ,  v
2 is the genetic variance due

to the QTL, I is the identity matrix, and  e
2 is the resi-

dual variance.
An alternative, and equivalent, presentation of model

(1) is [24,21]:

y X Zv e= + + * (2)

where v* is the vector of the effects of m independent
and identically distributed (iid) base generation QTL
alleles, assumed normally distributed with variance

m
2
, m
2

is the number of individuals in the base genera-

tion, Z is an incidence matrix of size n × m that relates
individuals with the QTL alleles in the base generation,

and e is the residual vector with variance  e
2 .

The assumption of uncorrelated QTL allele effects in
the base generation, implies that in model (2): V(v*) =

1
2

2 v mI where Im is an identity matrix of size m × m.

Equivalently in model (1), the sub-matrix corresponding

to the first m
2

rows and the first m
2

columns of Π (i.e.

IBD relationships between the founders at locus τ ) is an
identity matrix.
In crosses between divergent lines, QTL allele effects

should be correlated with the origin of the base genera-
tion line. This is the underlying assumption of common
linear regression based methods used for QTL mapping
in outbred crosses [25,26]. To consider the correlation
of the alleles in the founder lines when mapping QTL,
under the assumption that QTL are not fixed within the
founder lines, we introduce rA and rB as the correla-
tions between the effects of founder QTL alleles from

lines A and B, respectively. Then, the covariance struc-

ture of v* is not 1
2

2 v mI any longer as in model (2), but

instead:
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where rA and rB are estimated as in [21]. When QTL
alleles are fixed in the founder lines, as assumed in lin-
ear regression based QTL mapping [25,26], rA = rB = 1.
The example given here illustrates a case where the

founder population includes one individual from line A
and three individuals from line B. The AIL population
studied in the present article was obtained by crossing
30 LW with 29 HW animals. Since average body
weights can vary considerably between generations
(Table 1) and sexes, we fitted a mixed linear model with
generation and sex as fixed effects.
QTL detection scan
We computed the score statistic at each marker as in
[21] to test for QTL in the nine chromosome regions.
Markers were assigned to their genomic locations using
the dense consensus chicken genetic map [27,28].
First, we computed the score statistic at 1 cM intervals

in the genome, using model A:

y X v e= + +

without including a polygenic effect in the model.
Second, we calculated the score statistic at each mar-

ker, using model B:

y X v e= + + + a

which differs from model A by including a random
polygenic effect (a) in the model. The polygenic effects
were calculated based upon the additive genetic relation-
ship matrix between all animals in the pedigree.
Estimation of QTL allele fixation within lines
When a significant QTL was detected in the chromo-
some segment scanned with either of the two alternative
hypotheses (A or B), we tested whether the level of fixa-
tion within lines (r) was significantly different from zero
(i.e. H0: r = 0). For simplicity, the correlation between
effects of founder QTL alleles was assumed to be the
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same in both lines. Therefore, the same value of r was
considered for the LWS and HWS lines. A likelihood
ratio test was used to compare three alternative models
that were defined based on assuming i) independence of
alleles (r = 0), ii) fixation of alleles (r = 1), and iii) segre-
gation of alleles (0 <r < 1). When model iii) was declared
most likely (0 <r < 1), correlations within the LWS and
HWS lines (rA and rB) were estimated separately follow-
ing the same approach as in the Flexible Intercross Ana-
lysis (FIA) described by Rönnegård et al. (2008) [21].
Significance thresholds
Significance thresholds for the scans were derived using
randomization testing. Residuals estimated from the null
model y = Xb + e (model A) or y = Xb + a + e (model
B) were permuted. One thousand replicates of the phe-

notypic data were simulated with y X= + 
  , (or

y X= + + 
 ã for model B) where  is the vector of

permuted residuals,  and ã are the estimated fixed and

random effects obtained from the null model. For each
replicate, the score statistic was calculated at every
tested position in the selected region. As in Valdar et al.
[29], the maximum score value from each replicate was
then fitted to a generalized extreme value distribution
using the evd library in R [30,31]. 5% and 1% signifi-
cance thresholds were then estimated respectively by the
95% and 99% quantiles of the fitted distribution.

Results
QTL detection scan
In scans using model A (without a polygenic effect), all
nine QTL regions identified with the original F2 popula-
tion [10,11] also contained significant QTL with the AIL
pedigree. A QTL profile including all chromosome seg-
ments is in Figure 1A. The QTL on chromosome 7

(Growth9) was split into multiple peaks that together
covered most of the selected chromosome segment,
whereas the other segments Growth1, Growth2,
Growth3, Growth4, Growth6, Growth7, Growth8 and
Growth12 contained a single QTL peak. In the scans
using model B (with a random polygenic effect), only
Growth1, Growth2, Growth4, Growth9 and Growth12
contained significant QTL (Figure 1B).
Estimates of locations and genetic effects for all the

QTL are summarized in Table 3. QTL positions
reported in Table 3 are the maximum point (mode) of
the curve. As model B provided the strongest statistical
support for the QTL, the allele effects reported in Table
3 were measured at the location supported by model B
when the peaks for both models did not coincide.
Growth1 and Growth9.1 mapped to the same position

in scans with model A or B. Growth4 was located within
the same large interval (24 to 38 Mb) as previously, with
a 4 Mb difference between estimates from scans using
models A and B. Similarly, for Growth2 the same loca-
tion was found with a 4 Mb difference between esti-
mates from scans using models A (60 Mb) and B (64
Mb). For Growth12, two peaks were detected at 9 and
11 Mb with both models but the peak at 9 Mb was
more significant in the scan with model B. Average
effects of QTL alleles at Growth1, Growth2, Growth4,
Growth6, Growth8, Growth9 and Growth12 were as
expected: negative for the LWS alleles and positive for
the HWS alleles. Effects of QTL alleles at Growth3 and
Growth7 were cryptic, contrary to the original observa-
tion [10], with a positive effect for LWS alleles and a
negative effect for HWS alleles.

QTL fine-mapping
Since QTL-mapping with AIL increases resolution com-
pared to F2 designs, it is possible to test whether the
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Figure 1 QTL scan in a nine generation AIL pedigree with model A (A) and model B (B). The score statistic is plotted against the position
in Mb for each of the nine analyzed chromosome segments; the 5% experiment-wise significance threshold is given as a horizontal dashed line.
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studied segments contain one or several regions that con-
tribute to the QTL effect. The QTL profiles initially
obtained (Figure 1) suggested that several segments might
contain more than a single signal. Therefore, a second
scan was performed for the segments for which the detec-
tion of a QTL was replicated with model A. In this case,
only the phenotypes of individuals from the last generation
(F8, n = 400), with the lowest linkage disequilibrium, were
included. IBD between these individuals were, however,
computed using the genotypes from all individuals in the
pedigree to obtain the best possible QTL genotype esti-
mates. In this scan, a two-QTL model was fitted to evalu-
ate the evidence for multiple linked QTL in these regions.
In these analyses, the genetic variance of one of the two

QTL in the region was included in the null model of the
VC analysis while that of the other was included as a main
effect. These analyses showed that there were two inde-
pendent effects in the Growth9 region at approximately 20
Mb and 35 Mb and these were named Growth9.1 and
Growth9.2, respectively. The two regions Growth9.1 and
Growth9.2 are considered as different QTL in the rest of
the manuscript (Table 3).
For several QTL segments, the peak obtained with the

AIL was narrower than with the original F2 population,
which illustrates the higher resolution of QTL mapping
using AIL. Figure 2 compares QTL peaks obtained with
the F2 population and with the AIL for Growth1 on
chromosome 1 and Growth9 on chromosome 7. The

Table 3 Genomic location and genetic effect of the replicated QTL

QTL Chromos Position (bp)*
Model A

Position (bp)*
Model B

Average allele
effect LWS
alleles

Average allele
effect HWS

alleles

Growth1 1 173,709,609 173,709,609 -30.4 ± 6.7 36.4 ± 6.5

Growth2 2 60,710,066 64,098,899 -0.32 ± 7.3 13.9 ± 7.2

Growth3 2 130,113,120 NA 22.4 ± 6.6 -14.6 ± 6.8

Growth4 3 37,345,273 33,882,778 -7.2 ± 6.5 16.8 ± 6.7

Growth6 4 12,635,648*** NA -11.2 ± 10.3 44.0 ± 12.4

Growth7 4 87,824,674*** NA 2.7 ± 7.129 -4.5 ± 7.0

Growth8 5 35,422,843*** NA -16.6 ± 6.9 20.8 ± 6.9

Growth9.1 7 21,585,687 21,585,687 -15.2 ± 6.6 16.6 ± 6.7

Growth9.2 7 32,701,577*** NA -5.4 ± 6.7 11.5 ± 6.7

Growth12 20 11,137,932 9,100,162 -11.5 ± 6.4 19.8 ± 6.2

***position as in Chicken genome assembly of May 2006.
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Figure 2 Comparison of the QTL profiles for Growth9 (A) and Growth1 (B) in the original F2 pedigree and the nine generation AIL
pedigree.
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peak width of Growth1 with the AIL was about 1/3 of
the peak with the F2 design (Figure 2B). The single QTL
(Growth9) on chromosome 7 identified with the F2 pedi-
gree could be separated into two narrow QTL with the
AIL (Figure 2A). Due to recombinations accumulated in
successive generations, the size of the QTL region was
also considerably smaller in the scan carried out with
the AIL than that with the F2 design for Growth2,
Growth4 and Growth12 QTL, whereas the peaks for
Growth3, Growth6, Growth7 and Growth8 still covered
the entire genotyped segment (Figure 1).

Estimation of allele correlation within lines
A preliminary analysis indicated that independence of
the alleles was common in the present pedigree. We
hereafter considered allele independence as the null
hypothesis and then tested for possible fixation or segre-
gation within the lines. When comparing the likelihood
of these two alternative hypotheses of fixation (r = 1) or
segregation (0 < r <1) of QTL alleles within founder
lines, segregation was identified for Growth1 (P < 0.02)
and for one (Growth9.1) of the two QTL on chromo-
some 7 (P < 0.05). For the other QTL, the model
assuming independence (r = 0) of the alleles could not
be rejected.
At Growth1, the estimated correlation of the allelic

effects was 0.14 in the LWS line and 0.74 in the HWS
line. For Growth9.1, the within-line correlation was 0.61
for LWS and 0.88 for HWS. For these two regions, the
FIA model [21] indicates a higher level of fixation within
the HWS line than within the LWS line.
For each base generation allele at Growth1 that was

transmitted to at least seven descendants, the substitu-
tion effect was calculated (see Figure 3A). Alleles from
both HWS and LWS lines had both positive and nega-
tive effects on body weight, with more dispersion of the
effects in the LWS line (Figures 3B and 3C), where alle-
lic effects varied from-105 g to +103 g (mean = -21 g).
Alleles from the HWS line had mostly positive effects,
ranging from -75 g to +90 g (mean = 22 g)

Discussion
Analysis of data obtained with an advanced intercross
line originating from inbred founders is straightforward
because alternative alleles of the markers are fixed in
each founder line. In such designs, it is sufficient to col-
lect the data from later generations in the pedigree and
then use standard QTL mapping software developed for
inbred intercross populations for the analysis. The
major difference between the F2 and the following gen-
erations of the AIL is the increase in recombination
events. However, QTL analysis with an AIL originating
from outbred founders is not trivial because fixation of
neither markers nor QTL can be assumed in the original

lines. In order to maximize the power to replicate QTL
detection and fine-mapping using an AIL produced
from outbred founders, we propose that the genotypes
and phenotypes of all the individuals in the pedigree
and not just of those from later generations should be
collected and analysed. In our work, we have applied
this strategy to an experimental chicken dataset and
analyzed the data for nine genomic regions for which
significant or suggestive QTL had been previously iden-
tified with an F2 design between the same chicken lines
[10,11]. Two alternative models were used for QTL
detection: (1) a model (A) without a random polygenic
effect, which detected significant QTL in all nine regions
and (2) a more stringent model (B) that included a ran-
dom polygenic effect, which reduced the number of sig-
nificant QTL to five regions. This difference in number
of QTL detected is due to the fact that the covariance
matrix of the polygenic effect included in model B is by
definition very similar to the covariance matrix of the
QTL effect when marker information is poor. The infor-
mation content estimated from the IBD coefficients [32]
appeared indeed to be lower in some regions where
QTL was detected in model A but not in model B
(Growth 3 Growth 7 Growth 8). However, one of the
low information content regions (Growth 9.1) was
nevertheless detected in both models. This makes it dif-
ficult to determine whether the loss of QTL with model
B is due to false positive signals obtained with model A,
or to the fact that marker information content is simply
too low to distinguish between a QTL effect and a poly-
genic effect in a multigenerational intercross pedigree.
Based on our results, it can be concluded that Growth1,
Growth2, Growth4, Growth9.1 and Growth12 contain
QTL that are strongly supported by both models. The
allelic effects in these regions are positive for the HWS
allele and negative for the LWS allele, as expected in an
AIL resulting from a cross between two divergently
selected lines. In addition to these five significant QTL
regions detected with both models, the remaining
regions (Growth3, Growth6, Growth7, Growth8, and
Growth 9.2) are likely to contain QTL based on the ana-
lyses using model A. This may be resolved by further
analyses with more informative markers.
Eight QTL acted in the same direction in both the F2

population and the AIL i.e. the effect of their HWS
alleles were additive and led to higher BW56 as in [10],
while two QTL acted in opposite directions. This differ-
ence can be explained by the lack of fixation of QTL
alleles within the founder lines (as illustrated by the
range of estimated allelic effects in Figure 3), where
alleles with positive and negative effects were present in
both the HWS and LWS lines. Since multiple alleles
exist in both lines, the estimated difference between the
average effects of alleles inherited from HWS and LWS
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animals is a mixture of high and low effect alleles. Thus,
when analyzing a particular generation in a population,
the results will depend on the actual set of alleles
sampled from a limited number of ancestors. As the
number of founders for each generation is rather small,
genetic drift will have an influence on the results. It is

worth noting that several of the QTL confirmed in our
study were not detectable using methods that assume
allelic fixation in the founder lines. Their detection
relied on the use of a variance component approach
that does not assume fixation. Another potential expla-
nation for the difference in observed effects is epistasis,
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Figure 3 Estimated allele effects on bodyweight at 56 days of age for the base generation alleles of the Growth1 QTL in the AIL
pedigree. In A, allelic effects are plotted sorted by effect-size and line origin, in B and C density distributions of the allele substitution effect are
given for LWS (B) and HWS (C) alleles, respectively.
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which is known to be strong among QTL in this pedi-
gree [33]. Therefore, the size of the genomic region con-
taining the QTL and the direction of its effect depend
on the genetic background at other loci. Differences in
allele frequencies at interacting loci might influence the
marginal effects of QTL and even lead to genetic effects
that change direction depending on the allele frequency
at the loci with which it interacts. Although an in-depth
study of epistasis is beyond the scope of this paper, pre-
liminary tests provide some strong evidence for epistasis
in this pedigree, with, e.g., the LWS allele of Growth3
having a positive effect when combined with the HWS
allele of Growth12 but a negative effect when combined
with the LWS allele. A third possibility is that recombi-
nation in subsequent generations has disrupted linkage
disequilibrium between linked QTL so that the QTL
effect at the position tested in the current study deviates
significantly from the one observed in the F2 generation.
The nine selected chromosome segments were first

scanned for single QTL using a variance component
approach. The assumption of a single QTL in each seg-
ment appears valid for all regions but Growth9. When
including all phenotype data from the F2-F8 generations,
the segment containing Growth9 had a complex QTL
profile indicating multiple independent genetic effects.
A two-QTL analysis was then performed including only
the phenotypic data from the F8 generation. Since link-
age disequilibrium is lower in this last generation, reso-
lution should be higher when using this smaller dataset.
In this analysis, the QTL region splits into two signifi-
cant QTL at 20 and 35 Mb (Figure 2A). The peak
observed between the two peaks at 30 Mb in the single-
QTL scan is not significant, indicating that it is most
likely a false “ghost” signal due to linkage with the two
neighbouring regions.
Our scan permits the detection of QTL that segregate

within the parental lines. Thus, it is a powerful approach
to detect QTL in crosses produced from divergent
outbred lines. It identified ten QTL in nine distinct
chromosome regions. Two regions (Growth1 and
Growth9.1) showed significant (p < 0.05) within-line cor-
relations between allele effects. The estimated correla-
tion of the within-line allele effects, calculated from the
FIA model, was higher within the HWS line (0.74) then
within the LWS line (0.14) for Growth1. This was con-
sistent with the variability among allele substitution
effects shown in Figure 3, which is larger among LWS
alleles than among HWS alleles. For the remaining eight
QTL, we could not reject the null-hypothesis of inde-
pendent allelic effects (even within-line). Since the par-
ental lines had been divergently selected and display
highly divergent phenotypes, a stronger correlation of
allelic effects in the founder lines was expected.

However, segregation within lines is not unlikely,
because the lines were not inbred, the QTL effects were
rather small and the time of divergence between the
lines was relatively short. This finding could, however,
also be explained by a lack of power in the segregation
analyses in this pedigree since it contains a large num-
ber of founder alleles with rather few observations for
each inherited allele.

Conclusions
Here, we have produced, genotyped and analyzed a large
AIL obtained from outbred parents. Most of the QTL
originally detected in the F2 population were confirmed,
which indicates that appropriately sized replication popu-
lations and powerful statistical tools are crucial to refine
original QTL findings and dissect the genetics underlying
complex phenotypes. Replicating the detection of the
QTL and fine-mapping their location with an AIL
strengthen the original findings, and validate AIL as a
valuable tool to explore the genetic basis of complex
traits. We also believe that the methods available now to
analyze outbred intercross populations can be useful for
in-depth genetic studies of a wider range of organisms
and can provide answers to research questions that are
not approachable using inbred model organisms.
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