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correlations.

also generates breeding values for the recovery process.

Background: Many methods for the genetic analysis of mastitis use a cross-sectional approach, which omits
information on, e.g.,, repeated mastitis cases during lactation, somatic cell count fluctuations, and recovery process.
Acknowledging the dynamic behavior of mastitis during lactation and taking into account that there is more than
one binary response variable to consider, can enhance the genetic evaluation of mastitis.

Methods: Genetic evaluation of mastitis was carried out by modeling the dynamic nature of somatic cell count
(SCC) within the lactation. The SCC patterns were captured by modeling transition probabilities between assumed
states of mastitis and non-mastitis. A widely dispersed SCC pattern generates high transition probabilities between
states and vice versa. This method can model transitions to and from states of infection simultaneously, i.e. both
the mastitis liability and the recovery process are considered. A multilevel discrete time survival model was applied
to estimate breeding values on simulated data with different dataset sizes, mastitis frequencies, and genetic

Results: Correlations between estimated and simulated breeding values showed that the estimated accuracies for
mastitis liability were similar to those from previously tested methods that used data of confirmed mastitis cases,
while our results were based on SCC as an indicator of mastitis. In addition, unlike the other methods, our method

Conclusions: The developed method provides an effective tool for the genetic evaluation of mastitis when
considering the whole disease course and will contribute to improving the genetic evaluation of udder health.

Background

Mastitis is a common disease in dairy cattle with severe
economic consequences [1]. It has been shown that sus-
ceptibility to the disease varies between breeds and indi-
viduals, with heritabilities ranging from 0.07 to 0.12 [2,3].
Genetic evaluation of the disease is an important issue
and a wide range of methods is available. Methods can be
divided into cross-sectional or longitudinal approaches.
Cross-sectional methods consider each lactation as a sta-
tic process, whereas longitudinal methods model changes
in disease states during the lactation. The variables
mostly used in mastitis analyses are recorded cases of
clinical mastitis (CM) or somatic cell counts (SCC).
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Routine recording of CM is not performed in most coun-
tries and SCC can be used as a proxy in the genetic eva-
luation, due to its high genetic correlation with CM [4-6].

Cross-sectional analyses of recorded cases of CM con-
sider either CM as a binary variable, distinguishing
between absence of cases and occurrence of at least one
case during lactation, or the lactation average SCC. A
shortcoming of these methods is that they ignore the
dynamic nature of mastitis, e.g., multiple cases of masti-
tis or the longitudinal SCC pattern. The dynamic nature
of mastitis is taken into account to various extents in
longitudinal approaches, for example by counting the
number of CM cases during a lactation using a Poisson
model [7] or by modeling presence or absence of CM in
pre-specified lactation intervals using a longitudinal
threshold liability model, which gives as many heritabil-
ity estimates as intervals [8,9]. Other longitudinal
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methods include time in lactation either as a variable in
the model, e.g., time to first case in a survival analysis
[10], or as an explanatory variable in a random regres-
sion model, making heritability a function of time
[11-14].

In [15-17], SCC was analyzed longitudinally, using dif-
ferent patterns based on deviations from the typical
SCC curve, to investigate how these patterns might be
related to pathogen-specific cases of CM. Traits derived
from lactation SCC data have also been used to capture
longitudinal features such as mastitis intensity through
the number of peaks (consecutive SCC test days above a
certain level), recovery pace through peak lengths, and
lactation fluctuation by the standard deviation of SCC
[18-20].

In longitudinal studies, the degree at which the
dynamic nature of mastitis is accommodated varies, but
research in this field is moving to more sophisticated
methods in which the longitudinal approach is one
aspect that is stressed. Results from such studies show
that considering the longitudinal aspect improves the
genetic evaluation of CM.

We present an alternative longitudinal approach in
which genetic evaluation of mastitis is performed based
on changes in SCC during lactation. These changes are
captured by modeling transition probabilities between
assumed states of mastitis and non-mastitis. The
method simultaneously models the transition probability
of developing mastitis and the probability of recovering
from an infection. The former has been the focus of
many studies but the infection recovery process has
been little investigated. In our approach, we model both
aspects to capture as much genetic information as possi-
ble from the SCC lactation pattern.

Methods

Transition probability model

We assumed that during lactation a cow can move
between two possible states: mastitis and non-mastitis,
referred to as diseased (D) and healthy (H) states. A
pre-specified SCC level marks the boundary between the
states. The boundary B(t) varies along the lactation
according to a multiple m of an average lactation curve
L(7) for primiparous cows, according to

B(t)=m x L(7) (1)

where 7 is time in lactation, starting at calving. L(t)
was modeled by a spline function, parameterized
according to data in the Jélla research herd, University
of Agricultural Sciences, Uppsala, Sweden [21]. Two dif-
ferent values of m were used (m = 10 and 15). The
probability of moving from a healthy to a diseased state

(HD)

for cow i is denoted x; and the probability of
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moving from a diseased to a healthy state, ni(DH) . The

transition probabilities for cow i may be summarized in
a transition matrix 77r;,

2)

o[ T 1D
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7,OH)

which gives the probabilities of changing states or
remaining in the current state. A transition between two
particular states is repeatable, i.e. a cow can be in a spe-
cific state more than once during a given lactation. An
episode is defined as the duration of each state; after a
transition, a new episode begins, leading to multiple epi-
sodes within the lactation. The transition probabilities
reflect the SCC fluctuations. A widely dispersed pattern,
i.e. with many fluctuations between high and low SCC

(HD) (DH)
i

levels, will generate higher values of 7; and 7

(high transition probabilities between states) and lower
values of 1 — ;D) and 1 — 7;°®) (low probabilities
of remaining in a current state), compared to values for
an individual with a SCC pattern similar to the average
lactation curve. A desired structure of the transition
matrix would be to have high values of 1 — 7;®) and

(DH) (HD)
T

(obviously together with low values of 7, and

1 — 7;PH ), which reflect an individual who rarely
develops mastitis but if it does, has a quick recovery.

When modeling survival data with repeated events,
such as repeated mastitis cases during lactation, multile-
vel models are effective and powerful tools [22]. In these
models, repeated transitions are viewed as an extra level
in a higher level hierarchical structure. Here, we use a
three-level structure, in which episodes are nested
within cows, and herds and sires are cross-classified on
the highest level. Data for mastitis and SCC are most
often interval-censored, i.e. the actual time for a transi-
tion between states is unknown. When data is collected
retrospectively, a state change is only known to have
occurred at some point between two data collection
times. Although the underlying process is continuous,
the structure of the data calls for a model that recog-
nizes its discrete nature. Therefore, a continuous time
survival model such as the Cox proportional hazards
model [23] was rejected in favor of a multilevel discrete
time survival model. Statistical descriptions and evalua-
tions of multilevel survival models with repeated events
can be found in [24-26]. By restructuring and expanding
the dataset, the multilevel binary response model can be
fitted using logistic regression, as in our study, or using
other standard methods for discrete response data.

The transition probability 7;; is the discrete equivalent
of the continuous time hazard function and is defined as
the probability that a transition occurs at some time
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between any two measurements for cow i, daughter of
sire j, and member of herd k. The model for the transi-
tion probability of moving from a healthy to a diseased

(HD)

state, nijk , 1S expressed as:

(HD) (HD)
fijkt ~Ber (nijk ) and .
o)

(HD) HD (HD) (HD)
)=ﬂ( )+Sj +h, i

logit (nijk

where f; #ID) _ 1 if a transition occurred in time inter-

ijkt
val ¢ and otherwise = 0. A more complete description of
the binary variable fi;.ZD) and the definition of ¢ are

given in the “Data expansion” section. Variables

7 (0 (o)) and " (0, (o))

are random sire and herd effects and

2
elgIZD)wN (0, (ae(HD)) ) is the random residual effect.

The transition probability of recovery nig.kDH), i.e. the
probability of moving from a diseased to healthy state, is
modeled in a corresponding way,
f.gliH)NBer (niS.EH)> and

1

. DH DH DH DH
logit (nig.k )> = pPH) +s]( )+ h,g ) +e§jk )

(4)

2
with random effects sj(DH)NN (0, (as(DH)) ),

2 2
hiDH)~N (0, (O;EDH)> ) and eg;H)~N <O, <0e(DH)) ) .
The two transitions probabilities are expressed condi-
tional on the current state. In a given interval, a cow

can only change states in one direction (or stay in the
same state).

Simulations and Bayesian inference

As shown by Allison [27] and Browne et al. [22], the
likelihood function for a discrete time multilevel model
is equivalent to the likelihood for the regression analysis
of a dichotomous dependent variable. Therefore, the
multilevel discrete time model can be fitted using stan-
dard software packages for logistic regression, where the
response variable is the binary indicator of the occur-

HD DH . .
rence of an event f.;kt ) or i](.k[ ). The choice of infer-

1
ence of the model is open to both a classical or a
Bayesian estimation approach, however, the modular
nature of Markov chain Monte Carlo (MCMC) algo-
rithms in Bayesian inference make them an attractive
choice to estimate discrete time repeated events [22]. In
addition, it has been shown that Bayesian estimates are
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less biased than maximum likelihood estimates for ran-
dom-effect logistic regression models [28]. In this paper,
Bayesian estimates were obtained with the multilevel
software program MLwiN, which is developed by the
Centre of Multilevel Modeling, University of Bristol
[29]. This software offers the choice of classical or Baye-
sian estimation and has many features and options to fit
multilevel models, including parameter expansion,
which is discussed in the next section. The MCMC
approach in MLwiN consists of iterative Metropolis-
Hastings (MH) and Gibbs sampler steps to successively
update the model parameters. Gibbs sampling is used
for variances and univariate-update random-walk Metro-
polis sampling with Gaussian proposal distributions for
fixed effects and residuals. For a complete description of
the MCMC steps and conditional densities, see [22,30].
Vague priors were used. The variances of the random
effects had an inverse Gamma prior with small para-
meters and a uniform prior was used for the fixed inter-

cepts (B):

p(o?)~T 7! (e e)
p(B) x1
e =0.001.

Estimates of parameters in the HD direction were
based on 10 000 iterations with a burn in of 500,
whereas estimates in the DH direction were based on
100 000 iterations with a burn in of 5000. The strongly
reduced dataset for DH estimations called for longer
iteration chains to obtain convergence and to estimate
variances with the same accuracies as the HD estimates.

Parameter expansion

As previously mentioned, MCMC methods can reduce
estimation bias in the discrete time survival model.
However, data expansion results in very large datasets
for which the MCMC algorithm can be slow and gener-
ate chains that exhibit poor mixing. This was apparent
for the MCMC algorithms of o,, especially for estima-
tion of parameters in the DH direction. One of the
main causes of poor mixing in the MCMC algorithm is
correlated model parameters. When correlations exist
between random effects and their variances, and the var-
iances are close to zero, the MCMC chain can get stuck
close to zero, both for the variance and its random
effect. Parameter expansion is a reparameterization
method, which reformulates the statistical model by
replacing certain parameters with others that are not
correlated and therefore generate MCMC chains with
much better mixing than the original chains [22,31,32].
The reparameterization is done in such a way that it is
possible to recover the original parameters in the model.
The method is a built-in option in MLwiN and is used
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in the estimations reported in this paper, resulting in
much better mixing and therefore faster convergence
and less need for long iteration chains.

Simulated data

The process used to generate data on mastitis was an
extension of the simulations by Carlén et al. [33] and
Schneider et al. [34]. These studies generated data on
milk production, interval between calving and first ovu-
lation, conception and mastitis liability. Mastitis history
data were simulated as a binary trait until the first case
of mastitis or the end of the lactation. For this study, we
extended the program to include repeated cases of mas-
titis and also SCC data connected to every binary
response.

Weekly SCC values were simulated for 12 datasets
that consisted of all possible combinations of two popu-
lation sizes, two mastitis frequencies and three genetic
correlations between mastitis and recovery liabilities.
Five replicates were used for each population structure.
Two population sizes were used i.e. 24 000 and 60 000
first-parity cows. The cows were the daughters of 400
unrelated sires distributed over 1200 herds, with a fixed
herd size of 20 or 50, resulting in average daughter
group sizes of 60 and 150, respectively. The larger popu-
lation size is similar in structure to the situation in Swe-
den, where the average size of herds participating in
official milk recording varied between 50 and 60 in the
past five years [35], and the number of daughters per
young bull tested for mastitis resistance ranged from
150 to 200 [36]. Without prior knowledge about the
possible genetic correlation between mastitis and recov-
ery liabilities, three correlations were simulated: -0.2, 0,
and 0.2. Furthermore, two mastitis incidence scenarios
were used (Table 1). Scenario one was chosen to reflect
previous estimates of the incidence of mastitis in field
data of Swedish first-parity cows [5,11,33], where a case
of mastitis was defined as a veterinary-treated clinical
mastitis. The recurrence rate of CM was based on data
from the research herd of the Department of Animal
Breeding and Genetics, Swedish University of Agricul-
tural Sciences [1]. The second scenario was not justified
by previous studies but was chosen to take into consid-
eration the possible higher frequencies of mastitis in

Table 1 Average values for the two mastitis frequency
scenarios

Scenario 1 Scenario 2
1. Mastitis lactation (%) 16.5 40.0
2. Mastitis cases per lactation 0.28 0.95
3. Mastitis cases per affected lactation 1.50 240

1. Percent of lactations with at least one case of clinical mastitis; 2. Total
number of cases/total number of lactations; 3. Total number of cases/total
number of lactations with at least one case of clinical mastitis
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multiparous cows and the fact that not all cases of mas-
titis may be veterinary-treated. It is also of theoretical
interest to investigate the difference in performance of
the method for different frequencies since it may be
useful for other repeated disease data with higher fre-
quencies. For both scenarios, the average probability of
recovery from one week to the next, was 0.65 (equal to
the rate in the Jilla research herd [21]). If a cow devel-
ops mastitis in a given week, the probability that it is
still infected the following week is 0.35, 0.35% = 0.123
for two weeks later, 0.35°> = 0.043 for three weeks later,
etc..

Mastitis history data were simulated as a binary trait
with underlying normally distributed mastitis and recov-
ery liabilities. The mastitis and recovery liabilities for
each cow were modeled by a herd effect, the animal’s
breeding value, and an environmental value. Breeding
values for the cows were simulated by adding half the
breeding value of the sire, half the breeding value of the
dam and a Mendelian sampling term. The environmen-
tal value corresponds to a permanent cow effect, which
means that the liability value represents a mean liability
over lactation. A weekly random variable was added to
allow the mastitis liability to vary from week to week.
Before the weekly variations were added, the variance in
the liabilities (~N(0, 0.8%)) was chosen to give a mastitis
heritability of 0.1, which is in line with what is normally
found in cross-sectional linear models (on the underly-
ing scale) [5,37,38]. Together with the weekly random
component (~N(0, 0.6%)), variances added up to a phe-
notypic variance of 1. The additive genetic variance was
0.036, which resulted in a simulated heritability of 0.036
for the weekly data (0.039 if the herd variance of 0.072
is excluded from the phenotypic variance). The recovery
liabilities were simulated in the same way and with the
same parameters.

For cases in which mastitis did not develop in the pre-
vious week, the mastitis liability of the current week
generated the next binary outcome. If the resulting mas-
titis liability was above a defined threshold which corre-
sponded to the targeted mastitis frequency, the cow
developed mastitis. If mastitis did develop in the pre-
vious week, the current recovery liability decided the
next week’s binary outcome. If the recovery liability was
above the threshold of -0.4 (corresponding to the rela-
tive recovery frequency of 0.65), the cow was free from
the infection, and if not, the cow remained infected for
(at least) another week.

The binary CM data was then used to simulate SCC
observations: values for uninfected test days (days when
the cow’s SCC level is measured) were simulated as ran-
dom deviations (¢ = 0.64 according to previous studies
[1]) from a baseline curve and test days with mastitis
infections as random deviations from a function with
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instant SCC increase, followed by a successive decline
down to the baseline level. The baseline curve was mod-
eled by a three-phase linear spline function parameter-
ized according to [39]. Another spline function
expressed the immediate increase of SCC from the base-
line at the time of infection and the successive decline
down to the baseline level during the following weeks.
This spline function was created according to findings
by De Haas et al. [15] by generalizing the effects of Sta-
Pphylococcus aureus, Escherichia coli, Streptococcus dysga-
lactiae, and Streptococcus uberis on SCC.

Data expansion
Before applying the method to the data, the sequence of
SCC lactation data was converted into a sequence of
binary responses, which indicated whether a transition
had occurred within each time interval. Cow, sire, and
herd indicators were repeated as many times as there
were binary responses in the lactation. Furthermore, a
time indicator was added, to number the time intervals
repeatedly until a transition. After a transition, the
counter started over again and ran until the next transi-
tion or the end of the lactation. There was no restriction
on the cows having the same number of measurements
or the same interval between measurements. In theory,
a cow only needs two consecutive measurements
although, in practice, very short series carry little infor-
mation. Long intervals between measurements can also
lead to information loss due to missed transitions. How-
ever, evaluation concerns the performance of the sires,
not that of the individual cows, thus longer intervals
between measurements can to some extent be compen-
sated by more daughters per sire.

The t:th SCC value (in order within a lactation) for
cow i, daughter of sire j, and member of herd k is
denoted yjp t = 1,.., T; where T; is the number of mea-
surements for cow i within the same lactation. The dis-
crete variable ¢ should not be confused with T which is a
continuous variable for time in lactation, starting at cal-
ving. The binary response /,j, states whether the f:th
order SCC value for cow i is below (H) or above (D) the
boundary stated in (1) and is formally expressed as

= {0 it hee) ©
0 lfyijkt < B(w)

where 7; is the time since calving for the #:th order
response of cow i.

Two new datasets were created out of the binary
sequence /1, t = 1,.., T;. The first dataset was used to
analyze mastitis liability and contained transitions from
healthy to diseased states. The second dataset contained
transitions from diseased to healthy states and was used
to analyze the recovery process. The first dataset was
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much larger than the second because it included all
cows, while the second contained only cows that had
developed mastitis at least once. Transitions between
states were recorded as a binary variable f;j;, which
states whether or not a transition took place between
two consecutive measurements, ¢ and ¢ + 1. For each
cow and lactation, two binary series were created
according to

(D) 1 ifh,jkt =0 and hijk(t+1) =1
fijkt = 0 lf hijk[ =0 and hijk(t+1) =0 (7)
delete if hij, = 1 and hjj1) =0or 1

for H to D transitions and

oH 1if hijkt =1 and hijk(p,l) =0
fia” =1 0if iy = 1 and hiege) = 1 8)
delete if hijkt =0and hijk(t+1) =0orl

for D to H transitions (t = 1,..., T;-1). For example, a
sequence of h;; = [0010001110100], containing 13 mea-
surements and three cases of classified mastitis (one
which lasted over three measurements) for cow i, gener-

ated ;" =[0100110] and f{;"" = [10011], together

(HD)

with two time indicators Vi =[1212311] and

i =
intervals until a transition occurred (i.e. the elements in
fijr until a 1 appears) or till the end of the sequence is
reached. Since a cow could change states more than
once during a lactation, the time indicators could start
over several times. For the HD transitions, the counter
started at 1 at the first measurement that is classified as
healthy (most often the very first one) counting until a
transition to a diseased state occurs. The counter started
over again when or if the cow returned to a healthy
state. For transitions in the other direction, the counter
started when the cow developed the first case of classi-
fied mastitis and stopped when it returned to a healthy
state. If the cow returned to a diseased state, the coun-
ter started over again. A cow without a case of classified
mastitis did therefore not generate any data for transi-
tions in the D to H direction. At the same time, the
duration of a diseased state was usually much shorter
than that of a healthy state. This resulted in a strongly
reduced data-set for D to H transitions in comparison
to the data in the H to D direction. To complement f;;
and vy, three more sequences k;;, s;x and h;; were cre-
ated, which contained indicators for cow, sire and herd.
Each sequence was just a replicate of the same indicator
duplicated as many times as the length of f;; and v;.
The expanded data material for the HD direction con-

HD) (HD) 4 (HD) _(HD) (HD)
ffjk » Vi ’kijk » S and hijk

[11231]. The time indicators numbered the

tained for all cows,
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while the data in the DH direction contained, f( H),

kl(]fH) kl(]fH), sl(ij) and hl(jiH) for all cows that had at

least one case of classified mastitis.

The transition probabilities in (2) can be expressed in
terms of fj;. The probability of developing mastitis for
cow i can be expressed as

L™ - 0) ©)

and was the same for cow i throughout the entire lac-
tation, i.e. for all values of ¢, (t = 1,..., T;-1). The prob-
ability to recover was consequently expressed as

f(DH) )

(HD) (HD) _
ljk - <fl( t+1) —

(DH) (DH)
1]k - (fz(t+1)

(10)

Analysis of simulation results

Breeding values were estimated in separate analyses for
the two transitions directions (HD and DH). Correla-
tions between true breeding values (TBV) and estimated
breeding values (EBV), i.e. accuracy of selection, for

both HD (rg,m)) and DH (rlgeH)) directions, were cal-

culated for all combinations of population sizes, mastitis
frequencies, and genetic correlations (rg). In addition,
correlations between EBV in the HD and DH directions
were calculated for the same combinations in order to
check if the negative, neutral and positive genetic corre-
lations between mastitis and recovery liabilities in the
simulated data are reproduced by the method.

Results
As shown in Table 2 a larger daughter group size,
higher mastitis frequency and a higher boundary level

generated higher accuracies of EBV ((rgéD)) and

(r}geH)>). For mastitis liability, the method generated

correlations between TBV and EBV that ranged from
0.53 to 0.83. For recovery liabilities, it was clear that the
severely reduced dataset affected the estimates unfavor-
ably. Because of the large number of cows without mas-
titis, the datasets were reduced to sizes between 1/6 and
2/5 of the original data. Despite this, the method mana-
ged to generate rather high accuracies even in the DH
direction (0.25 to 0.62).

There were no major differences in the correlations
between TBV and EBV when comparing them for the
different simulated values of the genetic correlations
between mastitis and recovery liabilities (rg = -0.2, 0.2,
and 0) (Table 2). Whether or not the different values of
rc in the simulated data are reproduced in the calcu-
lated correlation between EBV in the HD and DH
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direction are reported in Table 3. Calculated correla-
tions were rather scattered but with a pattern showing
that the method manages to acknowledge the positive
and zero simulated values of rg by generating calculated
correlations of approximately the same magnitude as rg.
However, the negative values of rg in the simulated data
are not reproduced in the calculated correlations
between the EBV in the two directions. Instead, these
estimated correlations have values around zero.

Discussion

Model

Mastitis has been the focus of several research projects
and is considered in breeding programs in many coun-
tries (e.g., [40]). However, in the genetic evaluation of
udder health, only the mastitis liabilities are taken into
account, leaving aside the recovery process.

Our main objective was to evaluate a new method that
simultaneously models transitions to and from states of
mastitis considering both the mastitis liability and the
recovery process. For example, the method can distin-
guish between two cows, each with mastitis once during
lactation but one showing fast recovery and the other
suffering from a protracted infection. Naturally, our aim
is to have as few mastitis infections as possible. How-
ever, mastitis is unavoidable and a relatively frequent
problem among dairy cows. Thus, the capacity for fast
recovery is also of interest.

The multilevel discrete time survival model is well sui-
ted to analyze the repeated nature of mastitis data.
Green et al. [41] used a similar model to investigate
how cow, farm and management factors during the dry
period influence the incidence of clinical mastitis after
calving. However, in their study, only the first case of
mastitis was considered, leaving out repeated events in
the analysis. The method’s ability to take repeated mas-
titis cases within the same lactation into account was
shown in our study through higher correlations between
TBV and EBV for higher mastitis frequencies.

Besides the extra genetic information that can be cap-
tured by considering repeated cases, it has another ben-
eficial aspect. A higher mastitis frequency reduces the
proportion of falsely classified cases, which in turn gives
more accurate EBVs. For example, a 10% mastitis mis-
classification rate among a group of 100 cows with 10
real cases leads to nine falsely classified individuals (10%
of the 90 that do not have mastitis). This means 47% (9
of 19) of the mastitis classifications are false. The same
misclassification rate among an equally large group, but
with 30 real cases, results in seven falsely classified indi-
viduals (10% of the 70 that do not have mastitis). In this
case, 19% (7 of 37) of the mastitis classifications are
false. A higher classification error percentage for lower
mastitis frequencies also appears if the misclassification
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Table 2 Average correlations between true and estimated breeding values

Daughters/sire 60 150
Mastitis frequency (cases/lactation) 0.28 0.95 0.28 0.95
Scenario 1 Scenario 2 Scenario 1 Scenario 2
Transition direction HD DH HD DH HD DH HD DH
rc=0 B(x) = 10 x L(z) 0.532 0.249 0.697 0.387 0.749 0.381 0.836 0.550
(0.012) (0.018) (0.012) (0.021) (0.009) (0.016) (0.005) (0.013)
Cows 24000 4149 24000 10151 60000 10374 60000 25450
Herds 1200 1095 1200 1197 1200 1187 1200 1200
Br) = 15 x L(z) 0.549 0.271 0.702 0.436 0.751 0.410 0.838 0.619
(0.007) (0.013) (0.012) (0.018) (0.009) (0.012) (0.005) (0.006)
Cows 24000 4128 24000 10139 60000 10328 60000 25411
Herds 1200 1092 1200 1197 1200 1186 1200 1200
re =02 B(r) = 10 x L(z) 0.589 0.268 0.684 0.407 0.760 0.386 0.834 0.533
00148 (0.015) 0.0108 (0.014) (0.013) (0.028) (0.007) (0.016)
Cows 24000 4131 24000 10161 60000 10366 60000 25453
Herds 1200 1094 1200 1198 1200 1184 1200 1200
Br) = 15 x L(z) 0.592 0.301 0.690 0.467 0.766 0.436 0.837 0.612
(0.013) (0012 (0.011) (0.016) (0.013) (0.021) (0.006) (0.010)
Cows 24000 4115 24000 10148 60000 10322 60000 25425
Herds 1200 1093 1200 1197 1200 1183 1200 1200
re=-02 B(r) = 10 x L(z) 0.588 0.236 0.683 0.396 0.764 0.372 0.820 0.562
(0.017) (0.019) (0.013) (0.021) 0.011) (0.021) (0.015) (0.012)
Cows 24000 4136 24000 10189 60000 10423 60000 25428
Herds 1200 1087 1200 1123 1200 1187 1200 1200
B(zr) = 15 x L(7) 0.591 0.257 0.688 0.431 0.766 0.468 0.824 0.607
(0.016) (0.019) (0.011) (0.013) (0.010) (0.045) (0.014) (0.011)
Cows 24000 4118 24000 10176 60000 10408 60000 25396
Herds 1200 1084 1200 1195 1200 1187 1200 1200

Correlations (in bold) between true and estimated breeding values in the healthy to diseased (HD) and diseased to healthy (DH) directions (( (HD)) and

Ty
(DH) . _— . . . .
Tpy ) for different combinations of genetic correlation (rg), daughters per sire, mastitis frequency, and boundary level (B(z)); the number of cows and herds

used for each correlation are also reported; reported values in the table are the mean and standard errors (within parentheses) based on five replicates

Table 3 Average correlations between estimated breeding values in the HD and DH direction

Daughters/sire 60 150

Mastitis frequency (cases/lactation) 0.28 0.95 0.28 0.95
Scenario 1 Scenario 2 Scenario 1 Scenario 2

=0 B(z) = 10 X L(z) 0.048 0.060 0.020 0.003
(0.027) (0.025) (0.018) (0.019)
B(z) = 15 X L(z) 0.074 0.172 0.066 0.134
(0.010) (0.025) (0.017) (0.016)
r6 =02 B(r) = 10 x L(7) 0.125 0.115 0.056 0.134
(0.092) (0.005) (0.021) (0.032)
B(z) = 15 X L(z) 0.113 0.167 0.114 0.270
(0.026) (0.024) (0.019) (0.031)
rs =-02 B(x) = 10 X L(r) -0.005 -0.003 -0.074 -0.068
(0.008) (0.026) (0.030) (0.042)
B(z) = 15 X L(z) 0.046 0.079 -0.037 0.041
(0.004) (0.016) (0.022) (0.047)

Correlations (in bold) between estimated breeding values in the healthy to diseased direction and the diseased to healthy direction for different combinations of
genetic correlation (rg), daughters per sire, mastitis frequency, and boundary level (B(z)). Reported values in the table are the mean and standard errors (within
parentheses) based on five replicates
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goes in the other direction, i.e. mastitis cases are falsely
classified as non-mastitis.

Classification

Misclassifications are unavoidable when SCC is used as
an indicator of mastitis. If the boundary between H and
D is too low, high random fluctuations around “normal”
SCC levels will lead to falsely classified cases of mastitis.
There is a trade-off between classifying normal but ele-
vated SCC values as infected if the level is too low and
missing possible infections if the level is too high. The
results in Table 2 show that the higher boundary level
gives higher correlations between EBV and TBV. This is
especially apparent for DH transitions, for which the
reduced data was more sensitive to misclassifications
than the complete data. Boundaries higher than
15 x L(t) were also tested (not reported here) but did
not give an increase in accuracies. On the contrary, if
the levels are too high, the results deteriorate.

In this simplified simulation study, the setting of the
boundaries (and its consequences) are of course easier
to determine than in a real-life dataset. However, the
SCC response to a mastitis case was based on real-life
observations and the boundaries should therefore be
reasonably correct to use also in real-life data.

Performance
The simulated data in this study was used previously to
evaluate linear models (LM), threshold models (TM)
and survival analysis (SA) [33]. Confirmed cases of mas-
titis were modeled either as a binary variable (separating
absence of mastitis and 1 or more cases during lacta-
tion) or as time to first case. Correlations between TBV
and EBV in that study were 0.53-0.60 and 0.70-0.76 for
60 and 150 daughters, respectively. The mastitis lacta-
tion percentage coincides with scenario 1 in this paper,
i.e. the lower mastitis frequency. The corresponding cor-
relations for scenario 1 of the transition method are
0.55-0.59 and 0.75-0.77 (Table 2), showing that the
results for the transition method are well in line with
those in [33]. Considering that the transition method
analyzes SCC values as an indicator of mastitis, while
the previous methods analyzed confirmed mastitis cases,
the results are even more promising. When the mastitis
frequency was higher, the transition method generated
even higher correlations, i.e. up to 0.7 for 60 daughters
and 0.84 for 150 daughters. A higher mastitis frequency
leads to a larger number of lactations with more than
one case. More individuals with repeated events makes
the transition method even more favorable compared to
the other three methods. These results show good pro-
spects for second and higher lactations.

An additional advantage of the transition method is
the information generated on the recovery process.
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These results are not comparable to the LM, TM, and
SA methods, because of their one-way approach. How-
ever, survival analysis could be used in a similar manner
as the transition method. By analyzing the time between
infection and recovery, the results could be compared
with the recovery results from the transition method.
Nevertheless, traditional survival analysis does not take
repeated cases into account, neither in the DH nor in
the HD direction, which means that a cow can only
develop mastitis once and recover once. However, there
are a few attempts to analyze repeated cases, where one
suggestion is the survival score model [42].

A positive genetic correlation between mastitis and
recovery liabilities has two characteristics: cows that
easily develop an infection also recover easily (Profile 1),
while cows with high disease resistance have a longer
recovery time (Profile 2). Cows with Profile 1 have a
better chance to generate accurate EBV for their sires
than cows with Profile 2 because cows with Profile 1
show their true capacity of moving between states with-
out getting stuck in one of the two states. Cows with a
high resistance to the disease, cannot show there apti-
tude for recovery, simply because they rarely develop
mastitis. They are “stuck” in the healthy state.

A negative genetic correlation between mastitis and
recovery liabilities is reflected by having cows with low
mastitis resistance and long recovery time (Profile 3)
and cows with high disease resistance and quick recov-
ery (Profile 4). The inertia factor is even more apparent
for data with a negative genetic correlation between
mastitis and recovery liabilities, because it is then pre-
sent for data of both characteristics i.e. Profile 3 and 4.
Cows with Profile 3 do not show their inclination for
repeated events because they easily get stuck in a dis-
eased state. Among the cows in Profile 4, their inclina-
tion for fast recovery will not be evident because these
cows hardly develop mastitis. The inertia factor is prob-
ably the major reason why the zero and positive genetic
correlations are correctly estimated by the method while
the negative genetic correlations are not.

Mastitis and recovery liabilities could be estimated
jointly in a bivariate model with a prior on the correla-
tion between the two liabilities. In this study, we decided
against this for practical reasons and because of the few
transitions that occur for the same cow (0.28 (0.95) mas-
titis cases per lactation), together with the inertia factor,
could easily make the estimates of the correlations very
imprecise. Even for the high frequency scenario, half of
the cows had no mastitis and it is impossible (or at least
very model dependent) to determine what the recovery
rate is for cows that do not develop mastitis. Genetic cor-
relation between mastitis and recovery liability could be
estimated more accurately with multiple lactations per
cow and/or from covariances on a sire level. Whether a
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genetic correlation exists between mastitis and recovery
liability is yet to be investigated but the inertia factor
should be recognized in such studies.

One should remember that the method used to gener-
ate the simulated data is not logistic-normal but uses a
probit model. In spite of this, the logit analysis gave esti-
mates close to the values used in data generation. This
indicates that our method is not very sensitive to model
specification errors. Use of a probit model for analysis is
simpler than the logit model, in the sense that is does
not require a MH step in the Gibbs sampler. However,
the logistic model is less sensitive to outliers for expla-
natory variables. In practice, the generating mechanism
behind the data is unknown, making it difficult to spe-
cify the correct model for data analysis. However, the
two models usually give very similar results [43].

Further developments

Different possibilities for developing and improving the
method could be investigated. One possibility is to
develop the method by adding a new state representing
subclinical mastitis cases. We would then model transi-
tion probabilities between three possible states. The
method could also be used to analyze repeated con-
firmed mastitis cases instead of SCC, excluding the need
to classify cows based on SCC. However, complete data
of confirmed or veterinary-treated cases are rather rare
in field data but sometimes a combination of the two
data types is available. The method could accommodate
all available data in the genetic evaluation by combining
SCC data with incomplete mastitis data. Generalizing
the model to allow for time-dependent transition prob-
abilities is another possibility which could be done by
including a lactation stage effect in the analysis of the
transitions.

Mastitis classification may be improved by going from
a strict limit between states to a more flexible and rea-
listic classification. Mixture models have been used suc-
cessfully to classify mastitis types, e.g. [44,45], but not in
combination with the transition probability model. Mul-
tivariate mixture models give the possibility to classify
mastitis on the basis of more than one variable and to
model overlapping groups, which may improve classifi-
cation even further.

Associations between pathogen-specific mastitis and
SCC pattern have been demonstrated [15,16]. Different
patterns distinguish between long or short increase in
SCC and also between lactations with or without recov-
ery. Transition probabilities could be used to describe
characteristic patterns of SCC and to identify pathogen-
specific mastitis. The transition probability method may
also be suitable for a wide range of other diseases for
which individuals fall in and out of two or more states
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and the states are either confirmed or classified by one
or more classification variables.

Conclusions

This paper presents and evaluates a novel longitudinal
model for genetic evaluation of mastitis. The model cap-
tures the dynamic nature of the disease by modeling
mastitis liability and by including the recovery process
and repeated cases into the analysis. Although a more
complete evaluation of the method is necessary, espe-
cially on field data, the results point towards a signifi-
cant gain when broadening the genetic evaluation of
udder health to include the whole disease course.
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