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Abstract

Background: The most common application of imputation is to infer genotypes of a high-density panel of markers
on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions
resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another
application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be
particularly successful when a set of closely related individuals are genotyped.

Methods: Imputation on completely un-genotyped dams was performed using known genotypes from the sire of
each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype
frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages
were compared. Quality of imputation under different population structures was assessed. The impact of using
imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different
populations, heritabilities and sizes of training sets.

Results: Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method
used. The method that used allele frequencies performed better than the method based on haplotype frequencies.
Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger
proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set
increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending
on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the
lower the increase in accuracy achieved by adding imputed dams.

Conclusions: Whenever a reference population resembling the family configuration considered here is available,
imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training
set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with
lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds
for which the size of the reference population is limited.
Background
Prediction of breeding values of animals using genomic
information was proposed by Meuwissen et al. [1] and since
then the way breeding programs of livestock are conducted
has changed considerably. Due to recent advances in geno-
typing technologies, the amount of genomic information
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available for genomic selection (GS) has increased from a
few thousand [2] to 50k [3] and 800k [4] single nucleotide
polymorphism (SNP) markers and today tends towards
whole-genome sequence [5]. The population structures
observed in many livestock species are often characterized
by large full- and half-sib families, and by the presence of
animals (especially males) with a very large number of
progeny. These conditions make it possible to infer the
genotype of an un-genotyped individual using genomic
information from its family members, which is usually
referred to as pedigree-based imputation. High levels and
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extents of linkage disequilibrium (LD) have been reported
in livestock populations, such as cattle [6], sheep [7],
chickens [8], pigs [9] and horses [10]. The presence of high
LD between markers can be used to infer the genotype at
an un-genotyped locus based on available genotypes at
neighbouring markers, which is usually referred to as
population-based imputation. Such features make it pos-
sible to impute genotypes at untyped markers in a larger
panel of markers from genotypes obtained with a smaller
panel. In order to reduce genotyping costs, much effort has
been put on developing methods and software to impute
genotypes at high-density chips from animals genotyped at
low-density chips [11-15]. Accuracy of imputation may vary
depending on the source of information being used to infer
the genotypes and also on population structures. Hayes
et al. [16] investigated the success of imputation from 5 k
to 50 k genotypes in four sheep breeds and reported
accuracies ranging from 71 to 80% depending on the
breed. Erbe et al. [4] used the software BEAGLE [17] with-
out pedigree information to impute genotypes at 800 k
SNPs from dairy bulls genotyped at 50 k and reported
accuracies of imputation (defined as the proportion of
correctly imputed genotypes) ranging from 0.96 to 0.98 in
Jersey and Hosltein cattle, respectively. Meuwissen and
Goddard [18] applied a method for imputing whole-
sequence genotypes on individuals genotyped at a low
density panel and reported that 10% of the missing
genotypes were erroneously imputed.
In principle, an increase in marker density should

result in higher LD between the markers and the quantita-
tive trait loci underlying a given trait, and consequently in
more accurate genomic predictions. However, the advan-
tage of using a high-density panel for GS compared to a
low-density panel depends on which markers are included
in the low-density panel. Such a formulation can be
interpreted in terms of variable selection in a linear model,
which has been a topic of frequent research aiming at
reducing over-parameterisation in statistical models for
GS [19,20], as well as making the implementation of a
genomic breeding program more cost-effective [21]. Based
on simulation analyses, Habier et al. [22] showed that low-
density marker panels could be used in GS with a limited
loss in accuracy compared to that achieved with high-
density panels.
According to a study using dairy cattle data by Weigel

et al. [21], moving from a set of 300 markers to a set of
2000 markers represented a gain in accuracy of ~30%
or ~113%, depending on how the subsets of markers
were selected (with largest effects or equally spaced).
When moving from 2000 to 32 518 markers, gains in
accuracy were only ~8% or ~13%. There is further
empirical evidence that the relationship between gain in
accuracy and increase in marker density tends to reach a
plateau. VanRaden et al. [23] reported an average difference
in accuracy of only 0.4% between predictions from a 50 k
and a high-density (777 k) chip. As suggested by the results
from VanRaden et al. [24], an increase in the number of
animals in the training set should be more effective for
improving the accuracy of genomic predictions than
increasing the number of markers, especially when there is
evidence that the benefit from increasing density tends to
reach a plateau.
Many of the studies done with imputation so far have

focused on the increase in density of markers panels
through imputation and its impact on accuracy of
genomic predictions. Results from Weigel et al. [25] in
Jersey cattle indicated that if a suitable reference popula-
tion genotyped with a 50 k chip is available, genotyping
selection candidates with a 3 k instead of a 50 k chip
and then imputing the remaining genotypes would result
in a loss of predictive ability of only 5%. Dassonneville
et al. [26] also studied the effect of genotyping selection
candidates either with a 50 k or with a 3 k chip followed
by imputation and reported losses in reliability ranging
from 0.02 to 0.06 in Holstein cattle. Erbe et al. [4] used
dairy cattle data to investigate the impact on the accu-
racy of genomic predictions of an increase in marker
density from 50 k to 800 k through imputation, and
reported an average gain in accuracy of 0.01 in Holsteins
and 0.03 in Jersey cattle.
Imputation can be used to increase the number of

markers. However, the benefit is expected to reach a
plateau beyond a certain density. Imputation can also be
used to increase the size of the training set with animals
that were not genotyped at all. Cleveland et al. [27]
investigated the impact of imputation on genomic predic-
tions, and compared a training set of fully genotyped
males and females with a training set in which only males
were genotyped and females were imputed. An alternative
and interesting analysis would be to compare the accuracy
achieved in a training set with only genotyped males to
that achieved with a training set containing the imputed
females as well. A situation somewhat similar to that was
investigated by Pszczola et al. [28], who compared a train-
ing set of genotyped bulls with a training set enlarged by
imputed bulls. They used an additive relationship matrix
relating genotyped to un-genotyped bulls to perform the
imputation and reported an accuracy of imputation of
0.59, but the inclusion of the imputed bulls in training did
not increase the accuracy of genomic prediction. This may
be explained by the fact that the un-genotyped (imputed)
bulls in their population had no offspring and the highest
degree of relationship between them and the genotyped
bulls was half-sib or parent-offspring. Imputation may be
improved if the un-genotyped individuals to be imputed
are defined in a specific design such that genotypes can be
inferred with higher probabilities. For instance, imputation
is likely to be more accurate when genotyped close



Figure 1 Assumed family members with available genotypic
information (black) used for imputing an un-genotyped dam (red).
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relatives are available [29]. In some applications of GS, this
may occur naturally. For example, when a training set is
created for GS on traits that are expressed only in females,
as for new traits in dairy cattle for which the cows’ pheno-
types are difficult to measure (e.g. [30]) and/or for which
accurate conventionally estimated breeding values of bulls
are not yet available as an alternative response variable. In
most livestock species, the number of males used for
breeding is usually limited, thus when a reference popu-
lation of males is in an advanced stage (as in the dairy
industry, for example) most of the intensively used bree-
ding males have probably been already genotyped. We
consider a situation where a reference population of
females is created and all or most of their sires and mater-
nal grandsires have been already genotyped. In such cases,
there is a considerable amount of family information avail-
able that can be used to try to infer the genotypes of the
dams of these females. The configuration of the genotyped
family members in this specific design should allow a
much better quality of imputation of the un-genotyped
dams than when performing imputation in a general
framework on subjects from a pedigree with variable levels
of relationships to the genotyped individuals. Although
specific, this design is relevant since it will naturally arise
in all future applications of genomic selection for new
phenotypes.
The objectives of this work were: (1) to investigate the

performance of two imputation methods for a com-
pletely un-genotyped dam, using the information on its
genotyped family members and the mating partner plus
the estimates of either allele or haplotype frequencies;
(2) to investigate the effects of different population
structures, levels of LD and distribution of allele fre-
quencies on the success of imputation; and (3) to evalu-
ate the impact of enlarging a training set with imputed
dams on the accuracy of genomic predictions for differ-
ent populations, levels of heritability (h2) of the trait
under selection and sizes of training sets already
available.

Methods
Imputation procedures
In the approach presented here, the aim was to impute
the genotype of a completely un-genotyped dam. It is
assumed that the genotypes of its sire, of one offspring
and of this offspring’s sire are available. These three
animals will be referred as MGS, Offspring and Sire. The
situation is illustrated in Figure 1. Assume a bi-allelic
locus with alleles coded as allele 1 and allele 2. Let the
frequency of allele 1 in the population be p and the
frequency of allele 2 be q. In some cases, depending on
the genotype configuration of the genotyped relatives and
the mating partner and disregarding the probability of
mutation, the genotype of the dam can be inferred
unambiguously. For example, if the MGS is 11, the Off-
spring is 12 and the Sire is 11, then the dam must have
inherited an allele 1 from the MGS and given an allele 2
to the Offspring. Therefore one can infer that the dam’s
genotype is 12 with probability 1. In some other cases,
inference about the dam’s genotype cannot be made
unambiguously, but with a probability that is lower than 1.
The first imputation procedure (referred to as the

Single_Step method) uses the information from the MGS,
Sire and Offspring genotypes and allele frequencies to
infer the dam’s genotypes for all loci, unambiguously or
not. For each genotype configuration of the MGS,
Offspring and Sire, each possible genotype of the dam can
be assigned a probability, which in the ambiguous cases
can be expressed as a function of the allele frequencies.
These probabilities for each case were derived and are
available in Additional file 1: Table S1. Calculation was
done following Bayes’ theorem. Let the set of all three
possible genotypes in a locus be G ¼ 11 12 22f g and
M, S, O and D be the genotypes of the MGS, Sire,
Offspring and Dam. The posterior probability of the
Dam’s genotype was then calculated as:

PðD ¼ GijM ¼ Gj∩S ¼ Gk∩O ¼ GlÞ ¼
¼ PðO ¼ GljS ¼ Gk∩D ¼ GiÞPðD ¼ GijM ¼ GjÞ

X3
m¼1

P O ¼ Gl S ¼ Gk∩D ¼ GmÞP D ¼ Gm M ¼ GjÞ
������

The second imputation procedure is done in two stages
and therefore will be referred to as the Two_Step method.
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In a first step, only the Dam genotypes that can be
inferred with probability 1 are assigned (see Additional file
1: Table S1) and whenever the probability is lower than 1,
the Dam genotype is set to missing. In a second step, the
genotyping data from the Dam, containing assigned and
missing genotypes, are combined with all available geno-
typing data from the MGS, Offspring and Sire, and miss-
ing genotypes are filled in using LD information. The
second step was carried out using the software fastPHASE
[31] for haplotype reconstruction and inference of missing
genotypes.
To assess the efficiency of the two methods described

above, imputation of Dam genotypes was also performed
using two currently available imputation programs: find-
hap.f90 Version 2 [15] and AlphaImpute Beta 1.16 [29].
Simulation
For the comparison of imputation methods, genomic
data were simulated using the software QMSim [32].
The simulated genome consisted of one chromosome of
100 cM, on which 2000 bi-allelic markers (coded as
alleles 1 and 2) were randomly allocated. Marker allele
frequencies in the first historical generation were set
equal to 0.5 and the mutation rate was set to 2.5e-5. In
order to generate different genomic structures that may
influence the success of imputation, four populations
were simulated, which differed in the level of LD and
the presence or absence of selection. The increase in the
level of LD desired for two of the populations was
induced by simulating a bottleneck in the historical popu-
lation. Therefore, the four scenarios were created as
follows: no bottleneck and no selection (LowLD_NoSel),
no bottleneck and selection (LowLD_Sel), bottleneck and
no selection (HighLD_NoSel), and bottleneck and selec-
tion (HighLD_Sel). For each of the four scenarios, 10
replicates were simulated.
To generate a minimum level of LD for the two

scenarios without bottleneck, a historical population of
4000 animals was mated at random for 1600 discrete
generations, without selection, without migration and
with an equal number of animals from both genders.
Then the population size was increased to 4040 in the
following 20 generations and kept at a constant size for
20 additional generations. For the two scenarios with
bottleneck, the historical population was initially set to
2000 animals and mated at random for 2500 genera-
tions. After this, a bottleneck was simulated by gradually
decreasing the population size to 200 animals over the
following 70 generations; these 200 animals were further
mated at random for 10 generations. The population size
was then gradually expanded from 200 to 4040 animals
within the next 20 generations, and remained at a size of
4040 for 20 additional generations. In all four scenarios,
population size was 4040 in the last historical gene-
ration, which included 40 males.
Starting with the 4000 female and 40 male founders

from the last historical generation, 10 additional genera-
tions were simulated to form the recent population. In
the recent population, the proportion of male offspring
was 0.5, litter size was 1, a random mating design was
applied and replacement ratios for sires and dams were
0.5 and 0.25, respectively. These parameters were com-
mon to all four scenarios. For the two scenarios without
selection, a random selection design was used and the
culling design was based on the age of the animal. For
the two scenarios with selection, both selection and
culling designs were based on estimated breeding values
(EBV). These EBV were obtained by solving Henderson’s
mixed model equations [33] using pedigree information
and phenotypic records from a trait with h2 = 0.20. Since
the proportions of female and male offspring were iden-
tical, the last generation of the recent population
contained 2000 female offspring. Genotype imputation
was then performed on the dams of these 2000 female
offspring from the last generation.
To investigate the impact of imputation on the

accuracy of genomic predictions, the size of the training
set used for SNP effect estimation is a relevant para-
meter. For that purpose, the same simulation procedures
described above for the four scenarios were applied
again in another simulation, in which a larger population
was generated at the end. Instead of using a size of 4040
for the last historical generation, the number of female
founders was set to 32 000 so that 16 000 female
offspring in the last generation were available for the
imputation of their dams. As above, 10 replicates of each
scenario were simulated for the larger populations.

Assessment of LD in the simulated populations
Outputs from QMSim included information about the
paternal and maternal alleles of each locus, which
allowed the determination of linkage phase and the
calculation of haplotype frequencies. The level of LD in
the four simulated scenarios could then be assessed by
calculating the squared correlation coefficient (r2) bet-
ween each pair of markers in the last generation. To
minimize the influence of the minor allele frequency
(MAF) on the measure of LD, r2 values were computed
only for pairs of markers with a MAF greater than 0.05.
The decay of LD with increasing inter-marker distances
was also assessed by calculating the mean r2 within bins
of inter-marker distances.

Prediction of genomic breeding values
The impact of the imputation of Dam genotypes on the
accuracy of genomic predictions was investigated for the
imputation method with the best performance. For that



Table 1 Mean linkage disequilibrium (r2) within different
inter-marker distances in the simulated populations used
for the comparison of imputation methods

Scenario Inter-marker distance (kb)

<25 25-50 50-75 75-120 120-200 200-500

LowLD_NoSel 0.15 0.13 0.12 0.10 0.08 0.05

LowLD_Sel 0.28 0.26 0.25 0.23 0.21 0.18

HighLD_NoSel 0.35 0.29 0.25 0.21 0.17 0.11

HighLD_Sel 0.48 0.43 0.37 0.34 0.30 0.24

Values are means across 10 replicates.
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purpose, the simulated data sets with 16 000 female off-
spring in the last generation were used. Four different
sizes of training sets to estimate marker effects were cre-
ated by splitting each replicate into subsets containing
2000, 4000, 8000 and 16 000 female offspring. From
each subset, 90% of the animals were assigned to the
training set and the remaining 10% to the validation set.
Accuracy of genomic prediction was then assessed by
cross-validation, i.e. marker effects were estimated with
data from animals in the training set and used to predict
genomic breeding values of animals in the validation set.
The sizes of the training sets containing only genotyped
animals (TS) were 1800, 3600, 7200 and 14 400. Train-
ing sets augmented (TSA) with imputed Dams were
created, resulting in training sets of 3800, 7600, 15 200
and 30 400 animals. The impact of imputation was evalu-
ated by comparing the accuracies of genomic predictions
using TS or the corresponding TSA. To generate different
levels of heritability (h2), different magnitudes of residual
terms were added to the simulated true breeding values,
generating phenotypic values representing ten levels of h2,
ranging from 0.05 to 0.5 in steps of 0.05. For each size of
training set and each h2, allele substitution effects of every
locus on the simulated phenotypes were fitted in a
multiple random regression model similar to the
GBLUP method of Meuwissen et al. [1]. Estimated
SNP effects were calculated from the following mixed
model equations:

μ̂
α̂

� �
¼ ιtι ιtX

Xtι XtXþIϕ

� �−1
ιty
Xty

� �

where μ is an overall mean; α is the vector of allele
substitution effects; ι is a vector of ones, of order
equal to the number of animals in the training set; X
is the matrix of SNP genotypes, coded as the number
of copies (or dosage) of allele 2, of the animals in the
training set; y is the vector of phenotypes; I is an iden-
tity matrix of order equal to the number of markers
and ϕ is an assumed ratio of residual to marker vari-
ances. This ratio of variances was calculated using the
simulated h2 values and assuming a marker variance
equal to the additive variance divided by the number
of markers. For each scenario and replicate, only
markers with a MAF greater than 0.05 were used in
the estimation of SNP effects. Genomic breeding
values were then predicted as GEBV ¼ μ̂ιþ Zα̂ , where
Z is the matrix of SNP genotypes, coded as the
number of copies of allele 2, of the animals in the
validation set. Accuracy of genomic evaluation was
calculated as the correlation between GEBV and the
simulated true breeding values of the animals in the
validation set.
Results and discussion
LD and distribution of allele frequencies in the simulated
populations
An overview of the level and the decay of LD with inter-
marker distance for the four simulated populations used
to compare the imputation methods is presented in
Table 1. Bins of distance are expressed in kb assuming
that one Mb is equivalent to one cM. As intended, the
level of LD in the scenarios simulated with a bottleneck
in the historical population (HighLD_) was higher than
in the scenarios without bottleneck (LowLD_). Selection
was also a factor that increased the overall level of LD,
and even more strongly the extent of LD over larger
inter-marker distances. In the scenarios without selec-
tion, LD decreased much more rapidly than in the
scenarios with selection. At an inter-marker distance of
200–500 kb, the mean r2 was less than one third of the
mean r2 at an inter-marker distance smaller than 25 kb,
whilst in the scenarios with selection it was still more
than a half of that (Table 1). Plots of all pair-wise values
of r2 against inter-marker distance for all replicates of
the four scenarios are provided in Additional file 2:
Figure S1.
The different population structures simulated in the

four scenarios not only affected the pattern of LD, but
also caused different shapes of the distribution of allele
frequencies. Histograms of the frequencies of allele 2 for
all replicates of the four scenarios are provided in
Additional file 2: Figure S2. In the LowLD_NoSel sce-
nario (the one with the lowest level of LD), the distribu-
tion of allele frequencies was bell-shaped, with a much
higher frequency of markers with intermediate allele
frequencies compared to markers with extreme allele
frequencies. In the HighLD_NoSel scenario, the distribu-
tion was more uniform, with a slightly higher frequency
of markers with extreme allele frequencies. Selection
caused a higher frequency of markers with extreme allele
frequencies, especially in the scenario HighLD_Sel. Vari-
ability in the distributions across replicates was large in
the scenarios LowLD_Sel and HighLD_Sel, whilst a very
uniform pattern was observed in the LowLD_NoSel and
HighLD_NoSel scenarios.
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The level of LD directly affects the performance of the
Two_Step method, since information on haplotype
frequencies is used by fastPHASE to impute the missing
genotypes. The Single_Step method does not use LD
information but its performance will be affected by the
different shapes of the distribution of allele frequencies,
since the genotypes of markers with more extreme allele
frequencies are easier to impute.

Quality of imputation between scenarios
The success rates of imputation (defined as the percen-
tage of correctly imputed genotypes) for each imputation
method and each scenario, averaged across replicates,
are presented in Table 2. Mean success rates ranged
from 0.70 to 0.85 in the Single_Step and from 0.60 to
0.80 in the Two_Step method. Pszczola et al. [28] simu-
lated a dairy cattle population and imputed genotypes
on completely un-genotyped bulls in a mixed model
approach using the additive relationship matrix, and
reported an accuracy of imputation of 0.58. In their
approach, imputation was performed using only in-
formation from related genotyped animals, and the
highest degree of relationship between genotyped and
un-genotyped animals in their simulated population was
half-sib or parent-offspring. Cleveland et al. [27] investi-
gated genotype imputation on dams in the training set
in a simulated population. Their method used segrega-
tion analysis and information on haplotype frequencies,
and they reported a success rate of 69% when dams were
completely un-genotyped. Nevertheless, the available
family information for each dam in their training dataset
did not exactly correspond to the situation considered in
our design, as shown in Figure 1.
Overall, the Single_Step method performed better than

the Two_Step method for the four simulated scenarios.
As expected, the quality of imputation with the
Two_Step method increased with higher levels of LD. A
similar trend was observed with the Single_Step method.
Although LD information is not directly used in the
Single_Step method, its performance was influenced by
the level of LD since the simulated populations with a
higher level of LD presented distributions of allele
frequencies with greater densities at more extreme allele
frequencies (see Additional file 2: Figure S2). At any given
locus, the quality of imputation with the Single_Step
method depends on the probability with which the Dam’s
genotype can be imputed. As can be seen in Additional
Table 2 Percentage of correctly imputed genotypes of the Da

Imputation method

LowLD_NoSel Low

Single_Step 0.70 ± 0.003 0.77

Two_Step 0.60 ± 0.004 0.71

Values are the means ± standard deviations across 10 replicates.
file 1: Table S1, this probability is a function of the allele
frequencies at the locus and the genotype configuration of
the MGS, Sire and Offspring. The larger the number of
loci for which the genotype can be imputed with a
probability of one, the higher is the expected proportion
of correctly assigned genotypes to a given Dam. The
number of unambiguously assigned genotypes is expected
to have an even greater impact on the quality of imput-
ation with the Two_Step method. This number defines
how many loci can be assigned in the first step, which is
the only step where information on genotypes of the
MGS, Sire and Offspring is used. In order to better assess
the dependency of the relative success rate of each method
on the number of unambiguously assigned genotypes,
Dams were grouped in three classes according to the
number of loci imputed with a probability of one: less
than 100 loci, between 100 and 300 loci, and more than
300 loci. Distributions of the number of unambiguously
imputed loci per Dam for all replicates of the four sce-
narios are provided in Additional file 2: Figure S3. The
average success rate within each group for each replicate
is shown in Figure 2 for each of the four simulated scena-
rios. As expected, the larger the number of genotypes that
could be inferred with a probability of one, the higher the
quality of imputation for both methods. A similar rela-
tionship between success rate and proportion of alleles
inferred without ambiguity was also reported by Hickey
et al. [29]. In our study, this effect was more pronounced
with the Two_Step method because Dams with no or very
few assigned genotypes in the first step move to the
second step with all or almost all genotypes set to missing.
Imputation in the second step is then based exclusively or
mostly on haplotype frequencies alone. Weigel et al. [34]
masked different proportions of SNP genotypes in some
animals from a data set of Jersey cattle and used
fastPHASE to impute them. They reported mean success
rates ranging from 0.66 to 0.72 when 1 to 2% of geno-
types were available. Mean success rates increased to
0.75 to 0.88 when 5 to 10% of genotypes were available
and to 0.90 to 0.94 when 20% of the genotypes were
available. These success rates are similar to those
observed in our HighLD_ scenarios (Figure 2). The ave-
rage numbers (percentage) of unambiguous loci per Dam
were 159.3 (8.0%), 154.5 (7.7%), 107.6 (5.4%) and 99.9
(5.0%) for LowLD_NoSel, LowLD_Sel, HighLD_NoSel and
HighLD_Sel, respectively. Nevertheless, these 5 to 8% of
genotypes inferred unambiguously that were made
ms for two imputation methods

Scenario

LD_Sel HighLD_NoSel HighLD_Sel

± 0.045 0.81 ± 0.005 0.85 ± 0.019

± 0.056 0.75 ± 0.005 0.80 ± 0.021



Figure 2 Average proportion of correctly imputed genotypes within each class of Dams, from both imputation methods for each
simulated population structure. Each data point is the mean percentage within Dam class in a given replicate. Classes correspond to number
of genotypes unambiguously inferred: blue square (lower than 100), green circle (between 100 and 300) and red triangle (greater than 300).
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available to fastPHASE in the second step are in general
different SNP between Dams. The average success rate
with the Single_Step method was greater than with the
Two_Step method for all groups of Dams. The difference
in performance of the two methods was larger for lower
levels of LD and for a smaller number of loci that could
be inferred in the first step of the Two_Step method (i.e.,
the number of unambiguous cases). The higher the level
of LD, the closer the performance of the two methods,
especially for the group of Dams with more than 300 loci
inferred in the first step. This illustrates a higher depend-
ency of the Two_Step method on the level of LD. In the
scenario with the highest level of LD (HighLD_Sel), the
success rates of both methods were almost the same for
the group of Dams that had more than 300 unambigu-
ously inferred genotypes. Even for the simulated scenario
with the highest level of LD, the Two_Step method did
not outperform the Single_Step method. This indicates
that, for the specific design considered here (Figure 1), the
probabilities derived from family information used in the
Single_Step were more useful to infer genotypes at
ambiguous loci than LD information. For the unambigu-
ous loci, the two methods are exactly the same. A differ-
ence is observed only when all genotype probabilities at
the locus are lower than 1. Depending on the MAF at the
locus and the genotypic configuration of the MGS, Sire
and Offspring, the most probable genotype from
Single_Step method may still be associated with a poster-
ior probability that is higher than could be inferred based
on haplotype frequencies alone.
The average success rate for both methods of imput-

ation for Dams that had more than 300 unambiguously
inferred genotypes in the HighLD_Sel scenario was ~0.92
(Figure 2). This proportion is similar to what one would
expect to achieve when moving from a low density to a
higher density panel of markers e.g. [35,36]. In both
approaches described here, this level of success rate could
be achieved for completely un-genotyped Dams.
The Two_Step method could be compared to impu-

tation from low to high density (e.g., 3k to 50k), in which
first a ‘low density chip’ is built based on the unambiguous
cases and then the rest is filled in with LD information.
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However, three main differences must be pointed out: (i)
the Two_Step method starts from completely un-
genotyped animals; (ii) after the first step, Dams have
genotypes for a ‘low density chip’ but with a different chip
for each Dam and not a set of evenly spaced markers
common to all Dams; and (iii) information on the geno-
typed relatives is used only in the first step, which means
that after the ‘low density chip’ is built the only informa-
tion available for imputation is LD, whereas in a low to
high density approach, one would still have the possibility
of using family information. Obviously, if a low density
panel of SNP was also available for these Dams, the
average success rate would be even greater, but at the cost
of genotyping the Dams for the low density chip. Inspec-
tion of the number of genotypes which can be imputed
unambiguously may provide an approximate estimate of
the expected success rate that may be achieved by imput-
ation. Such an estimate could then be used as an aid to
choose the Dams to be genotyped with a low density
chip. In the case of a group of Dams, for which say 10
or 15% of the loci can be unambiguously inferred from
family information alone, one could choose to leave
them completely un-genotyped and do imputation
with the Single_Step method. Knowledge about the
population structure under consideration (e.g., level of
LD and distribution of allele frequencies) would also
be required in such a decision process. In order to
account for that, simple experiments (e.g., genotyping
and imputing a small number of Dams) could be
conducted to empirically estimate the expected success
rate for Dams with a given number of loci inferred
with a probability of one.
One aspect of the imputation procedures proposed

here is that genotypic information is assumed to be
available on a specific set of animals (Figure 1), including
one offspring. These methods can, however, be extended
to situations in which a number of genotyped offspring
are available, which should considerably improve the
quality of imputation. Such improvement would be
expected for both methods, since a larger number of
offspring would most likely result in a larger number of
unambiguous cases.
Table 3 Correlation between true and imputed genotypes fro

Imputation method

LowLD_NoSel Low

Single_Step 0.76 ± 0.003 0.83

Single_Step* 0.81 ± 0.003 0.86

Two_Step 0.57 ± 0.008 0.74

findhap.f90 0.52 ± 0.006 0.69

AlphaImpute 0.83 ± 0.003 0.87

Values are the means ± standard deviations across 10 replicates.
Comparison with available software
According to the algorithm described in Additional file
1: Table S1, the genotype at each locus can be assigned
to be 11, 12 or 22. For genomic selection purposes and
according to how marker genotypes are modelled (i.e. as
a covariate representing the number of copies of a given
allele), genotypes at each locus can also be assigned a
continuous value within the range 0–2. Instead of the
number of copies of allele 2, genotypes are defined as
allele 2 dosage. This definition avoids loss of information
caused by rounding the genotype to one of the three
classes. Allele dosages for each genotype configuration
of the MGS, Sire and Offspring as a function of allele
frequencies were derived and are provided in Additional
file 1: Table S2 (this version will be further referred to as
the Single_Step*). Since our aim was to compare the
results with those obtained with other software, which,
in some cases, construct imputed genotypes as the sum
of allele probabilities (e.g., AlphaImpute), genotypes
were imputed as allele dosage. Quality of imputation in
this case was assessed via the correlation coefficient
between real and imputed allele dosages, and will be
further referred here as the accuracy of imputation.
Evaluating the quality of imputation in this way also has
some advantages compared to the success rate, for the
reasons pointed out by Hickey et al. [37]. Accuracy of
imputation from all methods and software are presented
in Table 3. Imputing an allele dosage instead of assigning
the most probable genotype resulted in a gain in accu-
racy from 2.3% (HighLD_Sel) to 6.4% (LowLD_NoSel).
Imputation accuracies from findhap.f90 were lower

than accuracies from Single_Step* and Two_Step. The
algorithm implemented in findhap.f90 is a combination
of pedigree haplotyping and population haplotyping.
Our results indicate that the amount of genotyping
information available in the situation considered here
(i.e., MGS, Sire and Offspring) seemed to be insufficient
for the pedigree haplotyping algorithm to satisfactorily
impute a completely un-genotyped Dam. Many other
studies reporting performance results from findhap.f90
applied the program with the main purpose of imputing
genotypes from low to high density chips [15,35,36]. In
m different imputation methods and programs

Scenario

LD_Sel HighLD_NoSel HighLD_Sel

± 0.038 0.88 ± 0.004 0.90 ± 0.013

± 0.028 0.90 ± 0.003 0.93 ± 0.009

± 0.066 0.80 ± 0.006 0.85 ± 0.021

± 0.065 0.74 ± 0.006 0.82 ± 0.030

± 0.024 0.86 ± 0.004 0.89 ± 0.010



Table 4 Mean linkage disequilibrium (r2) within different
inter-marker distances in the simulated populations used
for the comparison of the accuracy of genomic
predictions with and without imputation

Scenario Inter-marker distance (kb)

<25 25-50 50-75 75-120 120-200 200-500

LowLD_NoSel 0.14 0.12 0.10 0.08 0.06 0.03

LowLD_Sel 0.21 0.19 0.18 0.16 0.14 0.12

HighLD_NoSel 0.36 0.30 0.26 0.22 0.17 0.11

HighLD_Sel 0.43 0.37 0.32 0.29 0.24 0.18

Values are the means across 10 replicates.
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such cases, findhap.f90 can take more advantage of the
population haplotyping algorithm because of the observed
genotypes from the low density chip and may perform
imputation with an accuracy greater than 0.95. To resemble
an application with a small chip, we performed another
series of imputation runs with findhap.f90, in which Dams
had genotypes for 125 evenly spaced markers. Average
imputation accuracies from findhap.f90 when moving
from the sparse (125) to the dense (2000) set of markers
were 0.96 (LowLD_NoSel), 0.98 (LowLD_Sel), 0.97
(HighLD_NoSel) and 0.98 (HighLD_Sel). These numbers
are not comparable to the results in Table 3. They are
rather used to illustrate the magnitude of accuracy expected
when imputation is applied to move from low to high
density chips, which also indicates a strong dependency of
the performance of findhap.f90 on the number of unam-
biguously imputed loci.
Accuracies of imputation from AlphaImpute were

higher than from the Two_Step method, especially in
the LowLD scenarios. In some cases, although the
complete genotypes cannot be inferred unambiguously,
one can at least be sure about the presence of one of the
alleles. This piece of information is neglected by the
Two_Step method, since when moving from the first to
the second step, the only information available for
haplotype reconstruction are the unambiguous geno-
types. An improvement in imputation accuracy from the
Two_Step method could be achieved if known alleles
were also taken into account in the haplotyping step.
This information seems to be more efficiently used by
the algorithm implemented in AlphaImpute, which is a
combination of long-range phasing and haplotype library
imputation. Results from AlphaImpute were similar to
results obtained with Single_Step*. In the LowLD sce-
narios, AlphaImpute performed better and in the
HighLD scenarios, results from Single_Step* were better.
The strength of AlphaImpute is its flexibility, since it
can handle different levels of relationship between the
surrogate and the genotyped animals. The strength of
the Single_Step* method is its simplicity and ease of pro-
gramming, which enables very fast imputation. Since the
difference in performance was smaller in the LowLD
than in the HighLD scenarios and the intended applica-
tion was for the specific situation considered here,
Single_Step* was the method of choice to investigate the
impact of imputation on accuracy of genomic
predictions.

Impact on the accuracy of genomic breeding values
An overview of the level and the decay of LD with
inter-marker distance for each of the four simulated
populations used to investigate the impact of impu-
tation on the accuracy of genomic predictions is
presented in Table 4. Trends are quite similar to those
in Table 1. Augmentation of TS into TSA was done by
imputing Dams’ genotypes using the Single_Step* method.
Correlations between GEBV and true breeding values in
the validation set using either TS or TSA to estimate SNP
effects are shown in Figure 3 for the four simulated
scenarios and for different h2 and numbers of offspring.
As a general trend, accuracy of genomic predictions
increased with increasing h2 and increasing sizes of train-
ing sets. This is consistent with the formula proposed by
Daetwyler et al. [38], in which the expected accuracy of
genomic prediction with GBLUP is calculated as a func-
tion of the number of animals in the training set, h2 and
the number of independent chromosome segments. The
simulated population structure also had an impact on
prediction accuracy. As expected, accuracies on average
increased with increasing levels of LD observed from
scenario LowLD_NoSel to scenario HighLD_Sel. These
differences between scenarios are also consistent with the
formula of Daetwyler et al. [38], in which they suggest
calculating the number of independent chromosome
segments as a function of the genome length and the
effective population size, following Goddard [39]. These
parameters should in turn vary for different genome and
population structures, with different levels of LD and
distributions of allele frequencies. All correlation coeffi-
cients between the GEBV and true breeding values in the
validation set obtained with TS and TSA for all simulated
scenarios, h2 and numbers of offspring are provided in
Additional file 1: Table S3. Although the imputation
accuracies were smaller for Single_Step than for
Single_Step*, the accuracies of genomic breeding
values using either method were almost identical (differ-
ences were smaller than 1% on average) and show exactly
the same pattern as for Single_Step* (results not shown).
An increase in the accuracy of GEBV was observed

when using TSA instead of TS, which demonstrates that
enlarging a training set with imputed Dams represents
an advantage. The extent of this advantage differed
between the different population structures simulated.
In the LowLD_NoSel scenario, the gain in accuracy,
expressed as percentage of the accuracy with TS, ranged
from 3.7% to 37.1%. The benefit of incorporating imputed



Figure 3 Accuracies of genomic prediction for different values of trait h2, number of female progeny in the last generation and
population structure. Red surfaces represent accuracies obtained with TS (90% of the progeny in the training set) and green surfaces represent
accuracies obtained with TSA (90% of the progeny + the imputed Dams).
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Dams in the training set was overall larger for this
scenario, despite the fact that with this scenario geno-
type imputation was performed with the poorest qua-
lity. In the other three scenarios, the maximum gains
were 11.1% (LowLD_Sel), 15.3% (HighLD_NoSel) and
11.9% (HighLD_Sel), and the minimum gains were
close to zero. Because imputation is not perfect, the
increase in accuracy obtained with TSA was generally
lower than what could be achieved by enlarging TS with
another set of genotyped offspring. For each of the four
scenarios, we compared the increase in accuracy obtained
when: (1) enlarging TS by doubling the number of geno-
typed offspring; or (2) enlarging TS with imputed Dams.
For example, in the LowLD_NoSel scenario with an h2 of
0.05, moving from a TS of 1800 to a TS of 3600 offspring
gave a gain in accuracy of 32% (from 0.31 to 0.41). Adding
the 2000 imputed Dams to a TS of 1800 offspring (i.e., a
TSA of 3800 animals) gave a gain in accuracy of 23%
(from 0.31 to 0.38), which is 72% of the gain in the first
case and reflects the fact that the proportion of correctly
imputed genotypes of Dams is lower than 1. On average,
across all h2 and numbers of offspring, the gain in
accuracy in the second case was 93% (LowLD_NoSel),
62% (LowLD_Sel), 78% (HighLD_NoSel) and 63%
(HighLD_Sel) of the gain in accuracy obtained in the first
case. The first case would require doubling the costs by
genotyping another set of offspring, whereas in the second
case, no additional costs for genotyping are needed. If
there is funding available for genotyping more animals,
then increasing the size of the training set with genotyped
animals should improve the accuracy of genomic predic-
tions more. Different strategies can be used to genotype
more animals, e.g. genotyping for a low density chip the
Dams with very few loci for which imputation can be
unambiguously made, as pointed out in the previous
section. Nevertheless, according to our results, even if all
available funding for genotyping has been spent, there is
still room for an additional improvement in genomic
predictions by enlarging TS with imputed Dams.
The magnitude of the gain in accuracy when moving

from TS to TSA varied not only between scenarios but
also for different values of h2 and numbers of offspring
already available in TS. The effects of h2, number of
offspring and simulated scenario on the difference
between accuracies obtained with TS and TSA were all
significant (P < 0.001). Pszczola et al. [28] added 1000
imputed bulls to a training set of 1000 genotyped bulls
and did not find any significant increase in accuracy of
genomic predictions. The authors attributed their find-
ing to the low accuracy of imputation in their study
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(0.58). Nevertheless, Pszczola et al. [28] reported a trend
of increasing difference in accuracy with decreasing h2,
which is consistent with our results. The population of
Pszczola et al. [28] was simulated to resemble a dairy
cattle population with a considerably high level of LD
(average r2 of 0.41 between adjacent markers, which
were on average 0.13 cM apart). This level of LD is
higher than that observed in our scenario with the
highest LD (HighLD_Sel), in which the increase in
accuracy of genomic predictions was overall the lowest in
our study. This agrees with our indication that the impact
of enlarging a reference population with imputed indivi-
duals in terms of accuracy of genomic prediction depends
on the population structure under consideration.
Generally, the larger the accuracy already obtained

with TS, the lower is the increase in accuracy achieved
with TSA. Regression analyses of the percentage increase
in accuracy obtained with TSA against the accuracy
already obtained with TS across all h2 and numbers of
offspring for the four scenarios were performed. Results
fitted a negative linear relationship well, with coefficients
of determination of 0.80, 0.88, 0.68 and 0.85 for sce-
narios LowLD_NoSel, LowLD_Sel, HighLD_NoSel and
HighLD_Sel (Additional file 2: Figure S4). This pattern
was not only observed when moving from TS to TSA,
but also when moving from a smaller to a larger TS.
This can also be seen in the shapes of the surfaces
presented in Figure 3, in which the increase in accuracy
resulting from an increase in either h2 or the number of
offspring tends to reach a plateau.

Conclusions
Genotypes of a dam’s sire, one offspring and this
offspring’s sire, as well as estimates of marker allele
frequencies were used to impute genotypes of dams with
an accuracy, i.e. the correlation between observed and
imputed genotypes, ranging from 0.81 to 0.93. Accuracy
of imputation was higher in populations with higher
levels of LD and with distributions of allele frequencies
containing a larger proportion of markers with more
extreme allele frequencies.
Overall, inclusion of imputed dams in the training set

increased genomic predictions, up to 37%. The impact
of enlarging the training set with imputed dams on the
accuracy of genomic predictions depends on the herita-
bility of the trait, on the number of animals in the
already available training set, and on the population
structure.
Besides being useful for reducing costs of genotyping

by imputing high-density panels on animals genotyped
with low-density panels, imputation can also be used to
achieve an extra increase in accuracy of genomic pre-
dictions by enlarging the training set with completely
un-genotyped dams. This strategy is particularly useful
for populations with low levels of LD, for genomic selec-
tion on traits with low h2, and for species or breeds for
which the reference population size is limited.
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