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Abstract

Background: Currently, genome-wide evaluation of cattle populations is based on SNP-genotyping using ~ 54 000
SNP. Increasing the number of markers might improve genomic predictions and power of genome-wide
association studies. Imputation of genotypes makes it possible to extrapolate genotypes from lower to higher
density arrays based on a representative reference sample for which genotypes are obtained at higher density.

Methods: Genotypes using 639 214 SNP were available for 797 bulls of the Fleckvieh cattle breed. The data set was
divided into a reference and a validation population. Genotypes for all SNP except those included in the
BovineSNP50 Bead chip were masked and subsequently imputed for animals of the validation population.
Imputation of genotypes was performed with Beagle, findhap.f90, MaCH and Minimac. The accuracy of the imputed
genotypes was assessed for four different scenarios including 50, 100, 200 and 400 animals as reference population.
The reference animals were selected to account for 78.03%, 89.21%, 97.47% and > 99% of the gene pool of the
genotyped population, respectively.

Results: Imputation accuracy increased as the number of animals and relatives in the reference population
increased. Population-based algorithms provided highly reliable imputation of genotypes, even for scenarios with
50 and 100 reference animals only. Using MaCH and Minimac, the correlation between true and imputed
genotypes was > 0.975 with 100 reference animals only. Pre-phasing the genotypes of both the reference and
validation populations not only provided highly accurate imputed genotypes but was also computationally efficient.
Genome-wide analysis of imputation accuracy led to the identification of many misplaced SNP.

Conclusions: Genotyping key animals at high density and subsequent population-based genotype imputation yield
high imputation accuracy. Pre-phasing the genotypes of the reference and validation populations is
computationally efficient and results in high imputation accuracy, even when the reference population is small.
Background
With the availability of dense marker panels, assessing
the genetic value of individuals without relying on
phenotypic information is possible [1]. Current routine
genomic evaluation of cattle populations is performed
using the genotypes of ~54 000 SNP. However, the most
recent high-density genotyping arrays facilitate the high-
throughput interrogation of 648 874 and 777 962 SNP,
respectively [2]. Using densely spaced marker maps
increases the probability of co-segregation of SNP and
quantitative trait nucleotides (QTN) [3]. Since both gen-
omic predictions and genome-wide association studies
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exploit linkage disequilibrium (LD) between anonymous
markers and QTN, increasing the density of SNP maps
is likely to improve the capacities of genome-wide popu-
lation analyses [4-9]. However, the relationship between
validation and calibration populations is crucial to obtain
accurate genomic predictions [10].
Genotype imputation is invaluable to combine different

marker panels and to infer missing genotypes [11]. Imput-
ation of genotypes makes it possible to extrapolate geno-
types from lower to higher density arrays based on a
representative sample of individuals genotyped at high-
density. Different approaches for imputation of genotypes
exploit pedigree information [12], population-wide LD
(e.g. [13,14]) or both sources of information (e.g. [15]).
The accuracy of genotype imputation depends on the

proportion of missing genotypes [16] and the number of
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individuals and relatives genotyped at high-density [17,18].
However, the number of reference genotypes required to
ensure high imputation quality varies across populations
and depends mainly on the effective population size [19].
Careful selection of animals for high-density genotyping
facilitates population-wide imputation of high-quality gen-
otypes while minimizing genotyping costs [20,21].
Here, we report the evaluation of four tools for imput-

ation of genotypes in 797 Fleckvieh (FV) bulls genotyped
with 639 214 SNP. We show that imputation based on
pre-phasing results in high accuracy and is computation-
ally efficient. As few as 100 informative reference ani-
mals were sufficient to genotype the entire population
with high accuracy.

Methods
Animals
A total of 814 bulls of the FV bovine breed were geno-
typed with the Illumina BovineHD Bead chip including
genotypes of 777 962 SNP. The animals were born be-
tween 1970 and 2007 with 90.2% born between 1997
and 2004 (see Additional file 1). The bulls descended
from 209 sires and 223 maternal grand-sires. The pater-
nal half-sib and maternal grand-sire families comprised
up to 27 and 46 members with an average of 3.9 and 3.2
members, respectively.

Genotypes and quality control
Genotype calling was performed using the default para-
meters of Illumina's BeadStudio. The chromosomal pos-
ition of the SNP was determined based on the UMD3.1
assembly of the bovine genome [22]. We excluded 1224
Y-chromosome, 343 mitochondrial and 1735 SNP with
an unknown chromosomal position from further ana-
lysis. One SNP out of 55 pairs of SNP with identical
chromosomal positions but different SNP-ids (dupli-
cates) was omitted. Eight bulls were excluded because
genotyping failed for more than 5% of the SNP. We
omitted 10 751 SNP because genotyping failed in more
than 5% of the individuals, 124 652 SNP that had a
minor allele frequency (MAF) < 1% and 4024 SNP with a
significant (P < 10-6) deviation from the Hardy-Weinberg
equilibrium. Pedigree-based relationships among the
animals were obtained using PyPedal [23], tracing pedi-
gree information back to 1920. Comparing the pedigree
and the realized genomic relationships [24] led to the
exclusion of nine animals showing major discrepancies
(see Additional file 2). Genotypes of 228 sire-offspring
pairs were inspected for mendelian errors (e.g. genotype
AA and BB in sire and offspring, respectively). The
number of mendelian errors ranged from 24 to 132,
with an average of 63 errors per pair. Genotypes of
both sire and offspring were set to missing for SNP
with mendelian errors. The final data set comprised
797 animals and 639 214 SNP, with an average call-rate
of 99.48% per individual.

Evaluation of imputation accuracy
The high-density data set was divided into a reference
and a validation population. Complete genotype infor-
mation was retained for animals in the reference popula-
tion, whereas genotypes were set to missing for animals
in the validation population for all SNP except those
included in the BovineSNP50 Bead chip (version 2). SNP
that are present in the BovineSNP50 Bead chip but not
in the BovineHD Bead chip were not considered. Subse-
quently, genotype imputation was performed to infer the
masked genotypes in silico. Imputation accuracy was
assessed by comparing the imputed genotypes/alleles
with the true genotypes/alleles and by calculating the
correlation between true and imputed genotypes (rTG,IG)
[25]. The SNP-specific imputation accuracy was assessed
as a function of allele frequencies. Allele frequencies and
the corresponding proportion of correctly imputed
alleles were fitted with a local regression model (LOESS),
with a smoothing factor of 0.1. The individual-specific
imputation accuracy was calculated as a function of the
number of relatives in the reference population. The re-
lationship was obtained from the pedigree-based numer-
ator relationship matrix (see above).

Selection of reference animals
Imputation accuracy was evaluated for four scenarios
with an increasing number of reference animals. Ani-
mals for the reference population were selected based
on pm =Am

− 1 cm [20], where Am is a subset of the nu-
merator relationship matrix, c is a vector representing
the average relationship of m selected animals with the
entire population and p is a vector of the proportion of
the gene pool captured by the m animals. Out of 797
animals with high-density genotypes, the most inform-
ative 50, 100, 200 and 400 animals were iteratively

chosen to maximise
Xm

i¼1

pi , i.e. the most informative 50

animals were a subset of the most informative 100 ani-
mals etc. Such subsets of animals capture the greatest
proportion of the gene pool of the entire dataset and
should provide the most accurate genotype imputation.
Animals identified in this way were considered as refer-
ence individuals. The remaining 747, 697, 597 and 397
animals were used as validation individuals. Imputation
accuracy was also assessed using randomly selected
reference animals. Fifty animals were randomly selected
as reference individuals and the remaining 747 animals
were used as validation individuals. The random selec-
tion of reference animals and subsequent genotype im-
putation and validation were repeated ten times.
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Imputation algorithms
The performance of four imputation tools was evaluated.
Three population-based imputation algorithms (Beagle
(version 3.2.1) [13], MaCH (version 1.0.16.a) [14], Mini-
mac [26]) exploiting LD were applied without consider-
ing pedigree information. Additionally, the performance
of an algorithm based on long-range phasing implemen-
ted in findhap.f90 (version 2) [6], combining both family
and population-based imputation, was evaluated. Beagle
and MaCH were applied since these algorithms provide
high imputation accuracy in both livestock and human
populations [27,28]. Beagle and MaCH are imputation
algorithms based on a hidden Markov model (HMM).
Beagle performs a local clustering of haplotypes at each
marker position to define the hidden states whereas
MaCH samples pairs of known haplotypes for each indi-
vidual based on the observed genotypes in each round of
the HMM. A detailed review of the implemented algo-
rithms is given in [29]. MaCH is time consuming, espe-
cially for large reference populations [30]. Thus, we also
evaluated Minimac, a computationally efficient “pre-
phasing”-based implementation of the MaCH algorithm,
taking haplotypes as input for both the reference and
the validation populations. Therefore, haplotypes for the
reference and validation populations were inferred using
Beagle and subsequent haplotype-based imputation of
missing genotypes was performed with Minimac. While
Beagle, MaCH and Minimac provide allele dosage data
(i.e. continuously distributed values ranging from 0 to 2),
findhap.f90 provides discrete genotypes only (i.e. 0,1,2).
For the present study, discrete genotypes were analysed
and missing alleles resulting from imputation with find-
hap.f90 were subsequently imputed based on allele fre-
quencies. All programs were run on an Intel Xeon 2.13
Ghz processor using recommended parameters. A
detailed overview of the parameters applied with the dif-
ferent tools is given in Additional file 3.

Identification of misplaced SNP
Genome-wide analysis of imputation accuracy detected
regions of poor imputation quality, most likely because of
misplacement of SNP. The chromosomes were partitioned
into segments of 0.5 Mb. The segments were inspected
for SNP with more than 10% incorrectly imputed geno-
types. If more than ten SNP with more than 10% of incor-
rectly imputed genotypes were located within a segment,
all the SNP within this segment were considered as mis-
placed. If less than ten SNP per segment had more than
10% incorrectly imputed genotypes, only the erroneously
imputed SNP were considered as misplaced.

Results
Genotypes for animals of the validation population were
imputed based on an increasing number of highly
informative reference animals with high-density geno-
types. 78.03% of the genes/haplotypes of the 797 studied
animals could be traced back to the subset of the 50
most informative reference animals. This fraction
increased to 89.21%, 97.47% and > 99% for the scenarios
including 100, 200 and 400 reference animals. Most of
the 797 animals (90.2%) were born between 1997 and
2004 (see Additional file 1) and the number of sire-
offspring pairs was low (n = 228). Within the subset of
the 50 most informative animals, the majority (56%) was
born before 1997. These animals can be considered as
the ancestors of the studied population. Most validation
animals had no first-degree relatives in the reference
population (Table 1). The fraction of validation animals
without relatives with a pedigree relationship greater
than 0.25 was 18.07% (135 of 747) and 3.78% (15 of 397)
in the scenarios including 50 and 400 reference animals,
respectively. However, the average number of related
reference animals was very small for the validation ani-
mals across all scenarios (Table 2). Imputation of geno-
types was performed separately for six chromosomes
(Table 3). The number of masked and subsequently
imputed high-density genotypes ranged from 93.44%
(BTA1) to 94.41% (BTA5). The validation populations
contained no missing genotypes after imputation with
Beagle, MaCH and Minimac. However, 6.49%, 1.46%,
0.26% and 0.11% of the masked genotypes remained
missing after imputation with findhap.f90 for the scenar-
ios including 50, 100, 200 and 400 reference animals, re-
spectively. Those genotypes were subsequently imputed
based on allele frequencies.

Genotypic imputation accuracy
The imputation accuracy increased as the size of the
reference population increased (Figure 1). However, the
correlation between true and imputed genotypes (rTG,IG)
varied considerably across chromosomes, especially for
the scenario including 50 reference animals. With Bea-
gle, the correlation ranged from 0.825 (BTA25) to 0.896
(BTA1) and with findhap.f90 it ranged from 0.793
(BTA25) to 0.899 (BTA2). MaCH and Minimac provided
nearly identical imputation quality, although compu-
tational time was considerably lower with Minimac
(Table 4). Phasing both the reference and validation
populations with Beagle and subsequent haplotype-
based genotype imputation with Minimac outperformed
all other approaches, especially when the number of
reference animals was small. Imputation with Minimac
yielded an rTG,IG value of 0.953 with 50 reference ani-
mals, while with MaCH, Beagle and findhap.f90 rTG,IG
was only 0.945, 0.858 and 0.865, respectively (Table 5).
Increasing the number of reference animals to 100, 200
and 400 yielded an rTG,IG value of 0.977, 0.989 and 0.993
with Minimac.



Table 1 Number of validation animals without close relatives in the reference population

Scenario (number of reference animals / number of validation animals)

50 / 747 100 / 697 200 / 597 400 / 397

no relatives with r ≥ 0.50 621 562 453 316

no relatives with r ≥ 0.25 135 62 30 15

no relatives with r ≥ 0.125 16 4 - -

no relatives with r ≥ 0.0625 5 2 - -

The number of validation animals without close relatives in the reference population is presented for four different classes of relationship (r) and four scenarios
with an increasing number of reference animals. Since most animals in our study were born between 1997 and 2004, the number of validation animals without
close relatives in the reference population was very high across all scenarios.
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The approach based on pre-phasing implemented in
Minimac not only provided highly accurate imputed
genotypes but was also computationally efficient
(Table 4). However, findhap.f90 was the most efficient
computationally, especially for a large number of refer-
ence genotypes.

Allelic imputation accuracy
The proportion of correctly imputed alleles was ~98.5%
forMaCH andMinimac, for the scenario with 100 reference
animals (Table 5). The corresponding rTG,IG was > 0.975.
MaCH and Minimac clearly outperformed Beagle and
findhap.f90 in all scenarios and provided the most accur-
ate results for rare alleles. Imputation quality for rare
alleles was very poor with findhap.f90 (Figure 2). All algo-
rithms inferred frequent alleles with high quality even
when the number of reference animals was small.

Individual imputation accuracy
The quality of the imputed genotypes varied consider-
ably between animals (Figure 3A). The extent of geno-
type information from relatives in the reference
population was the major determinant of the individual
imputation accuracy. For the scenario with 50 reference
animals, most validation animals (n = 621) had no first-
degree relatives in the reference population (Table 1).
We considered that reference and validation animals are
close relatives if their relationship was above 0.12. While
rTG,IG was < 0.90 for all algorithms without including
high-density genotype information from closely related
animals, the imputation accuracy increased considerably
as the number of relatives in the reference population
Table 2 Average number of relatives in the reference populat

Scenario
(reference animals / validation animals)

Aver

r ≥ 0.50 0.2

50 / 747 0.18

100 / 697 0.21

200 / 597 0.27

400 / 397 0.27

The average number of relatives in the reference population is given for the anima
scenarios with an increasing number of reference animals. The average number of
the validation population.
increased (Figure 3B). MaCH and Minimac provided
highly accurate genotypes, even if the number of rela-
tives in the reference population was small. With MaCH
and Minimac, the average rTG,IG exceeded 0.94 for valid-
ation animals which had at least one related animal with
r ≥ 0.12 in the reference population. The accuracy of
findhap.f90 increased considerably as the number of
relatives in the reference population increased. With
Beagle, rTG,IG never exceeded 0.885 for the scenario with
50 reference animals.
The impact of genotype information from relatives

decreased as the size of the reference population
increased when applying the population-based imput-
ation tools Beagle, MaCH and Minimac. In contrast, the
quality of the imputed genotypes obtained with findhap.
f90 increased considerably as the number of relatives
increased, even for the scenario with 400 reference ani-
mals (see Additional file 4).

Imputation accuracy obtained based on randomly
selected reference animals
Ten subsets of 50 randomly selected animals that
explained between 68.9% and 71.9% of the gene pool of
the entire data set were used as reference populations to
impute genotypes for 747 validation animals on chromo-
some 20. The imputation accuracy obtained based on
these randomly selected reference animals was lower
compared with rTG,IG obtained using the most inform-
ative animals as reference individuals across all replica-
tions for the four imputation tools (Table 6). Using the
most informative instead of random animals as reference
population increased rTG,IG especially for findhap.f90
ion

age number of relatives in the reference population

5 ≥ r < 0.50 0.125 ≥ r < 0.25 0.0625 ≥ r < 0.125

1.15 1.86 4.57

1.61 2.43 8.64

2.51 4.16 20.89

4.82 9.60 54.58

ls in the validation population for four classes of relationships (r) and four
close relatives in the reference population was very small for most animals in



Table 3 Number of SNP used for the evaluation of imputation accuracy on six chromosomes

Chr Chromosome-length
[Mb]

Number of high-density
SNP in the reference

population

Average distance
between two high-density

SNP [bp]

Number of medium-density
SNP in the validation

population

Average distance between
two medium-density

SNP [bp]

1 158.32 39 167 4042 2568 61 587

5 121.18 29 050 4171 1621 74 740

10 104.30 26 695 3906 1646 62 724

15 85.27 21 425 3978 1280 65 850

20 71.98 19 111 3764 1183 60 530

25 42.85 11 725 3648 744 57 533

Number of high-density SNP passing stringent quality parameters for the six evaluated chromosomes. The medium-density SNP are a subset of the bovineHD
BeadChip collection that are interrogated with the BovineSNP50 BeadChip (version 2). SNP positions were determined based on the UMD3.1 assembly of the
bovine genome.
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(0.876 vs. 0.837). However, Minimac and MaCH pro-
vided high imputation accuracy even with randomly
selected reference populations.

Identification of misplaced SNP
Minimac was used for genome-wide imputation of high-
density genotypes. Of 639 214 SNP, 39 679 SNP were
retained for 397 validation animals, while genotypes for
the remaining 599 535 SNP were imputed using 400
reference animals. With this design rTG,IG was equal to
0.993 across six analysed chromosomes (Table 5). The
genome-wide distribution of the imputation accuracy
revealed genomic regions with poor imputation quality
(Figure 4). Analysis of these regions showed that mis-
placement of SNP increased the fraction of poorly
imputed genotypes. Poor imputation quality along entire
chromosomal segments results from intra-chromosomal
Figure 1 Imputation accuracy. Barplots indicate the correlation
between true and imputed genotypes (rTG,IG) averaged over six
chromosomes for an increasing reference population size. The black
lines represent the minimum and maximum imputation accuracy for
the six chromosomes.
misplacement of adjacent SNP. However, analysis of LD
also indicated inter-chromosomal misplacement of indi-
vidual SNP (see Additional file 5). A total of 5039 out of
599 535 SNP (0.84%) was identified as probably mis-
placed using this procedure.

Discussion
Four imputation tools were evaluated using a data set
consisting of 797 bulls of the German FV population
genotyped at 639 214 SNP. The reference animals were
selected to capture the greatest proportion of the gene
pool of the genotyped population. Using Minimac, up to
97.1% of the alleles were correctly imputed based on 50
pre-selected reference animals. Imputation accuracy
based on genotypes of randomly selected reference ani-
mals was slightly, albeit consistently lower (Table 6).
Brøndum et al. [31] used Beagle to impute high-density
genotypes in three cattle breeds based on ~200 reference
animals and obtained rTG,IG ranging from 0.925 to 0.973.
In our study, Beagle yielded an rTG,IG of 0.977 with 200
pre-selected reference animals. In the Holstein-Friesian
breed, Erbe et al. [32] obtained 97.7% of correctly
imputed genotypes with Beagle using ~400 randomly
selected reference animals. In our study, using Beagle
with 400 pre-selected animals as reference population
yielded 98.7% of correctly imputed genotypes. However,
MaCH and Minimac yielded the same imputation accur-
acy with 200 reference animals only. Selecting highly in-
formative reference animals (i.e. key animals) maximises
the proportion of genes/haplotypes in the validation
population that can be traced back to these key animals
and thus maximises imputation accuracy while minimiz-
ing genotyping costs [20,33,34]. Our findings demon-
strate that pre-selecting highly-informative reference
animals is slightly beneficial for subsequent genotype
imputation. The most influential animals have been
identified in various cattle populations [35,36] and such
'key animals' will be used for whole-genome re-sequencing.
Simulations have shown that imputation of sequence infor-
mation from a restricted number of highly informative



Table 4 Computing time for the imputation of high-density SNP on chromosomes 1, 15 and 25

Number of animals in reference
and validation population

Chr Beagle MaCHa findhap.f90b Minimacc

50 / 747 BTA1 2.67 h 1.30 h (0.03 h / 0.30 h / 0.97 h) 0.07 h 0.17 h (0.03 h / 0.07 h / 0.07 h)

BTA15 1.18 h 0.68 h (0.02 h / 0.14 h / 0.52 h) 0.04 h 0.09 h (0.02 h / 0.04 h / 0.03 h)

BTA25 0.67 h 0.37 h (0.01 h / 0.08 h / 0.28 h) 0.04 h 0.05 h (0.01 h / 0.02 h / 0.02 h)

100 / 697 BTA1 3.93 h 5.01 h (0.08 h / 1.11 h / 3.82 h) 0.07 h 0.27 h (0.08 h / 0.06 h / 0.13 h)

BTA15 2.48 h 2.72 h (0.05 h / 0.55 h / 2.12 h) 0.05 h 0.15 h (0.05 h / 0.03 h / 0.07 h)

BTA25 1.33 h 1.48 h (0.03 h / 0.32 h / 1.13 h) 0.04 h 0.09 h (0.03 h / 0.02 h / 0.04 h)

200 / 597 BTA1 4.49 h 18.92 h (0.20 h / 4.31 h / 14.41 h) 0.07 h 0.48 h (0.20 h / 0.05 h / 0.23 h)

BTA15 2.87 h 10.06 h (0.11 h / 2.22 h / 7.73 h) 0.05 h 0.27 h (0.11 h / 0.03 h / 0.13 h)

BTA25 1.38 h 5.76 h (0.06 h / 1.24 h / 4.45 h) 0.04 h 0.14 h (0.06 h / 0.01 h / 0.07 h)

400 / 397 BTA1 3.73 h 81.23 h (0.44 h / 21.97 h / 58.82 h) 0.07 h 1.1 h (0.44 h / 0.03 h / 0.63 h)

BTA15 2.45 h 40.16 h (0.21 h / 10.52 h / 29.43 h) 0.05 h 0.56 h (0.21 h / 0.02 h / 0.33 h)

BTA25 1.37 h 28.30 h (0.11 h / 5.98 h / 22.21 h) 0.04 h 0.30 h (0.11 h / 0.01 h / 0.18 h)

The number of imputed SNP was 36 599, 20 145 and 10 981 for chromosomes 1, 15 and 25, respectively. Computing was performed on an Intel Xeon 2.13
Ghz processor.
a The entire computing time for MaCH can be partitioned into three separate steps (in parentheses): pre-phasing of the reference population with Beagle,
inference of tuning parameters based on 200 randomly selected animals of the validation population and actual genotype imputation with MaCH.
b findhap.f90 was run exploiting the multi-threading option.
c The entire computing time for Minimac can be partitioned into three separate steps (in parentheses): pre-phasing of the reference population with Beagle, pre-
phasing of the validation population with Beagle and actual genotype imputation with Minimac.
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individuals is feasible [21]. Genotyping a large number of
animals at high-density and subsequently imputing the
whole-genome sequence information from a small number
of carefully selected 'key animals' might lead to even higher
accuracy, since imputation quality strongly depends on the
marker density in both reference and validation popula-
tions [34,37,38]. However, our findings also show that the
choice of a suitable imputation algorithm is more crucial
than the selection of 'key animals' to obtain high imput-
ation accuracy based on a small number of reference
animals.
Imputation accuracy increased as the size of the refer-

ence population increased, which agrees with [17,37,39].
However, the performance of imputation tools varied
considerably, especially when the number of animals and
relatives with high-density genotypes was limited. MaCH
and Minimac provided highly accurate imputed geno-
types, even with only 50 reference animals compared to
Beagle and findhap.f90. This advantage of MaCH and
Table 5 Evaluation of imputation accuracy

Number of
animals in reference

and validation population

Beagle MaC

Correct
alleles

Correct
genotypesa

rTG,IG Correct
alleles

Cor
geno

50 / 747 0.914 0.840 0.858 0.966 0.9

100 / 697 0.963 0.927 0.940 0.985 0.9

200 / 597 0.986 0.972 0.977 0.993 0.9

400 / 397 0.993 0.987 0.989 0.996 0.9

The mean allelic and genotypic accuracies over six chromosomes (BTA1, BTA5, BTA
an increasing size of the reference population. Additionally, the correlation between
a a genotype is correctly imputed if both alleles are correctly imputed.
Minimac for genotype imputation based on a small
reference population agrees with the reports of Brown-
ing and Browning [40] and Pei et al. [27]. If the size of
the reference population increases, the accuracies of the
imputation tools converge, which agrees with findings of
Browning and Browning [13]. For the scenarios with 50
and 100 reference animals, the approach based on pre-
phasing and implemented with Minimac provided the
most accurate genotypes. Minimac was run after phasing
both reference and validation populations with Beagle,
disregarding pedigree information. Accounting for pedi-
gree information might further improve the quality of
phasing and thus the accuracy of subsequent genotype
imputation [15,16,30]. In our study, the number of valid-
ation animals with close relatives in the reference popu-
lation was very small. Thus, we found no increase in
imputation accuracy with findhap.f90. However, if the
number of closely related reference animals is increased,
imputation algorithms using both pedigree and population
H findhap.f90 Minimac

rect
types

rTG,IG Correct
alleles

Correct
genotypes

rTG,IG Correct
alleles

Correct
genotypes

rTG,IG

33 0.945 0.925 0.858 0.865 0.971 0.942 0.953

70 0.976 0.959 0.921 0.933 0.986 0.972 0.977

87 0.989 0.978 0.956 0.965 0.993 0.986 0.989

93 0.994 0.986 0.973 0.978 0.996 0.992 0.993

10, BTA15, BTA20, BTA25) were assessed for the imputed genotypes based on
true and imputed genotypes (rTG,IG) was calculated.



Figure 2 Allelic imputation accuracy. The proportion of correctly
imputed alleles is displayed as a function of allele frequencies for
findhap.f90 (light grey), Beagle (dark grey), MaCH (blue) and Minimac
(light blue) for an increasing reference population size. The curves
were obtained by fitting a nonparametric local regression (LOESS).

Table 6 Imputation accuracy on chromosome 20 based
on varying reference populations

50 most
informative
animals

50 randomly selected animals

Mean Min Max

Beagle 0.866 0.854 0.841 0.864

MaCH 0.949 0.942 0.937 0.946

findhap.f90 0.876 0.837 0.812 0.856

Minimac 0.957 0.947 0.943 0.951

The correlation between true and imputed genotypes (rTG,IG) based on the 50
most informative animals as reference population is compared with rTG,IG
obtained with 50 randomly selected reference animals. The mean, minimum
and maximum rTG,IG obtained with randomly selected reference animals are
displayed across ten replications for the four imputation tools.
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information are likely to outperform tools using population
information only [41]. The pre-phasing approach applied in
the present study is preferable when the number of related
reference animals is small. Besides allowing for a high
imputation accuracy, imputation approaches based on pre-
phasing are computationally efficient. The reference geno-
types need to be phased only once and the phasing step can
be separated from the actual imputation step [26,42]. This
restricts the computational burden of genotype imputation
in routine implementations such as genomic prediction.
Previous studies have shown that long-range phasing and
haplotype library imputation provide accurately imputed
Figure 3 Individual imputation accuracy for the scenario with 50 refe
imputed genotypes (rTG,IG) for 747 animals based on 50 reference animals (
relatives increased (coefficient of relationship >0.12) in the reference popul
genotypes in livestock populations at a low computational
input when the reference population is large [6,43-45]. Our
results indicate that pre-phasing might slightly increase im-
putation accuracy, particularly when the number of refer-
ence genotypes is limited. The benefit of pre-phasing is
expected to result from capturing LD effects at a better reso-
lution [26]. Thus, pre-phasing based approaches might be-
come the method of choice to impute the entire sequence
information based on the re-sequencing of a limited number
of key genomes in livestock populations.
Two population-based approaches that exploit LD with-

out explicitly considering pedigree information (MaCH,
Minimac) outperformed findhap.f90 that takes rela-
tionships into account. findhap.f90 was specifically de-
signed to impute genotypes using large data sets and
exploiting comprehensive pedigree information [6]. In
contrast, our data set comprised 797 animals only,
mainly born between 1997 and 2004. Furthermore, the
number of genotyped relatives in the reference popula-
tion was very small for most of the animals in the valid-
ation population, resulting in comparably low overall
imputation accuracy when using findhap.f90. However,
imputation with findhap.f90 provided > 98% of correctly
rence animals. Barplots indicate the correlation between true and
A). The individual rTG,IG increased considerably as the number of close
ation (B).



Figure 4 Genome-wide distribution of the proportion of correctly imputed genotypes. Genotypes of 599 535 SNP were imputed for 397
animals based on haplotype information of 400 reference animals using Minimac. Blue dots represent 5039 SNP within regions of poor
imputation quality probably representing misplaced SNP.
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imputed genotypes when a substantial number of the
relatives with genotypes was present in the reference
population (see Additional file 4). This agrees with find-
ings for the American Holstein-Friesian population [6].
However, comparing imputation accuracy across studies
and breeds is difficult since data sets and population-
specific parameters (e.g. LD, effective population size
(Ne)) might differ substantially. While recent Ne esti-
mates for the Holstein-Friesian population range from
< 100 to 114 [35,46,47], Ne for the FV population is con-
siderably higher (see Additional file 6). Low LD, which
is typical for populations with large Ne [48], complicates
genotype imputation considerably [27]. However, in
populations with small Ne (e.g. Jersey cattle [35]), geno-
type imputation based on a small number of carefully
selected reference animals yields a reasonable accuracy
[32]. Our results demonstrate that genotyping at least
100 pre-selected animals at high density and subse-
quently applying population-based imputation yielded
highly reliable genotypes for the analysed subset of the
FV population, although Ne is comparatively large. How-
ever, the animals in our study are highly selected artifi-
cial insemination bulls and might not fully reflect the
haplotype diversity of the entire FV population.
Genome-wide analysis of imputation accuracy also

allowed misplaced SNP to be identified. Although mis-
placed SNP are particularly obstructive for haplotype-
based analyses (e.g. identification of selective sweeps)
[49], the position of significantly associated SNP in
genome-wide association studies should also be vali-
dated to avoid misinterpretations. Analysis of genomic
regions with poor imputation quality revealed 5039 SNP
that are most likely misplaced. Recently, Erbe et al. [32]
showed similar results. The total number of misplaced
SNP might be even higher, since SNP with very low
MAF (< 1%) were excluded for the evaluation of imput-
ation accuracy. Furthermore, our procedure is not suit-
able to reveal misplaced SNP within short distances.
However, the proportion of misplaced SNP in the high-
density array used here is slightly higher than in the
BovineSNP50 Bead chip [50], which is most likely due to
a better resolution of the high-density marker map. The
number of misplaced SNP detected here is considerably
higher than reported by Fadista and Bendixen [51], who
relied on a more precise assembly of the reference se-
quence. However, LD-based procedures make it possible
to realign SNP positions despite imperfectly assembled
reference genomes.

Conclusions
Genotype imputation allows different marker panels to
be combined and missing genotypes to be infered in
silico. The quality of the imputed genotypes strongly
depends on the amount of genotype information that is
available from relatives. However, population-based im-
putation tools provide highly-reliable genotypes even if
the number of reference animals is small. In addition,
imputation accuracy increases if the animals of the refer-
ence panel are chosen to maximally contribute to the
gene pool of the imputation population. Pre-phasing the
genotypes of both the reference and validation popula-
tions not only results in highly accurately imputed geno-
types but is also computationally efficient.

Additional files

Additional file 1: Birth years of 814 genotyped bulls of the
Fleckvieh breed. Birth years ranged from 1970 to 2007 with 90.2% of
the animals born between 1997 and 2004.

Additional file 2: Pairwise pedigree vs. genomic relationship.
Pairwise pedigree vs. genomic relationship for 806 Fleckvieh bulls passing
stringent quality before (A) and after (B) the exclusion of nine animals
with inconsistencies.

Additional file 3: Imputation pipelines for the four different
imputation tools.

Additional file 4: Individual imputation accuracy for the scenario
with 400 reference animals. The individual imputation accuracy (rTG,IG)
increased only slightly with an increasing number of second-degree
relatives in the reference population for Beagle, MaCH and Minimac.
However, a strong increase in accuracy was observed for findhap.f90.

Additional file 5: Identification of misplaced SNP on chromosome
26. The distribution of the proportion of imputation errors highlights the

http://www.biomedcentral.com/content/supplementary/1297-9686-45-3-S1.pdf
http://www.biomedcentral.com/content/supplementary/1297-9686-45-3-S2.pdf
http://www.biomedcentral.com/content/supplementary/1297-9686-45-3-S3.pdf
http://www.biomedcentral.com/content/supplementary/1297-9686-45-3-S4.pdf
http://www.biomedcentral.com/content/supplementary/1297-9686-45-3-S5.pdf


Pausch et al. Genetics Selection Evolution 2013, 45:3 Page 9 of 10
http://www.gsejournal.org/content/45/1/3
regions with poor imputation quality on chromosome 26 (A). Blue and
red symbols indicate 391 SNP that were considered as misplaced. The
red symbol indicates BovineHD2600003844, which is located on BTA26
(according to the UMD3 assembly). However, analysis of linkage
disequilibrium with all other SNP indicates that the proximal region of
BTA11 is the actual position (B). The pairwise linkage disequilibrium on
BTA26 is shown as a function of the pairwise distance before (C) and
after (D) the exclusion of 391 probably misplaced SNP (r2-values below
0.1 are omitted).

Additional file 6: Estimation of the effective population size for the
Fleckvieh population.
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