Original article

Setting conservation priorities: the case study of *Carabus solieri* (Col. Carabidae)

Jean-Yves RASPLUS^{*}, Stéphane GARNIER, Serge MEUSNIER, Silvain PIRY, Guénaëlle MONDOR, Philippe AUDIOT, Jean-Marie CORNUET

Institut national de la Recherche agronomique, Centre de gestion et de biologie des populations, Campus International de Baillarguet, CS 30 016, 34988 Montferrier-sur-Lez Cedex, France

Abstract – C. solieri is an endangered species of Carabidae which is mostly associated with humid forests of the Alps, in France and in Liguria (Italy). We reanalysed morphological data published by Bonadona and compared the results to the molecular data set presented here. We used partial sequences of the mitochondrial cytochrome bgene and seven microsatellite loci to evaluate genetic diversity among and between populations and to propose a phylogeographic scenario. We recognised two basic entities, considered as subspecies, which probably colonised the present distribution range from two main refugia (in France and in Italy). There is no strict agreement between morphological and molecular data and we propose that hybridisation and introgression between the two subspecies have led to the observed patterns of distribution of the characters. Our results show that sampled populations differ significantly in microsatellite allele frequencies even though some populations are < 15 km apart. Gene flow estimates between the 19 sampled populations indicated very restricted exchange. This is in agreement with the low vagility observed for most species of Carabus. Consequently, the Solier's Carab is genetically structured on an extremely fine scale, and local population within a definite forest should be considered as management units. In the light of our data on C. solieri we discuss the usefulness, when hybridisation occurs, of the two main criteria usually quoted for identifying candidate populations for conservation management (uniqueness and diversity) and give some conservation recommendations for C. solieri.

insect / conservation / population genetic / phylogeography / hybridisation

^{*} Correspondence and reprints

E-mail: rasplus@ensam.inra.fr

Résumé – Choix des priorités de conservation : le cas de Carabus solieri (Col. Carabidae). C. solieri est une espèce de Carabidae en danger d'extinction. Cette espèce est principalement associée aux forêts humides des Alpes françaises et liguriennes (Italie). Nous réanalysons les données morphologiques publiées par Bonadona et comparons les résultats à ceux obtenus à partir des données génétiques présentées ici. Nous utilisons des séquences partielles du gène du cytochrome b et sept loci microsatellites pour mesurer la diversité génétique au sein et entre les 19 populations échantillonnées et pour proposer un scénario phylogéographique. Nous reconnaissons deux entités de base, considérées comme sous-espèces, qui ont probablement colonisé l'actuelle aire de distribution à partir de deux refuges glaciaires (en France et en Italie). Il n'existe pas de congruence stricte entre les données morphologiques et moléculaires, et nous proposons l'hybridation et l'introgression entre les sous-espèces comme facteurs expliquant le patron de distribution des caractères observé. Nos résultats montrent que les populations étudiées diffèrent significativement par leurs fréquences alléliques, même pour des populations séparées par moins de 15 kilomètres. Les estimations de flux génique entre les populations indiquent un faible niveau d'échange. Ceci est en accord avec la faible vagilité observée chez la plupart des espèces de Carabus. En conséquence le Carabe de Solier est génétiquement structuré à une très fine échelle, en conséquence toute population associée à un bloc forestier peut être considérée comme une unité de gestion. Nos résultats sur C. solieri, et en particulier la mise en évidence de l'introgression mitochondriale, nous amènent à discuter les deux principales méthodes (originalité et diversité) utilisées couramment pour identifier les populations susceptibles d'être protégées. Enfin nous donnons quelques considérations générales sur les mesures de protection pouvant être prises.

insectes / conservation / génétique des populations / phylogéographie / hybridation

1. INTRODUCTION

One of the main objectives of conservation biology is the preservation of unique ecological adaptations and the maintenance of evolutionary potential. The major problem faced by conservation biologists is the allocation of scarce resources to an overwhelmingly large number of species or populations in need of preservation efforts. As it is not possible to protect everything everywhere, priorities must be identified and decided upon. At the species level such an assumption means that we have to identify populations that must be protected because their loss will greatly reduce the overall evolutionary potential of the species.

Developing a practical approach to define natural biological units for conservation has been problematic and sometimes contentious. There is no general agreement on the methods and criteria needed to identify which populations should be conserved. Some researchers have questioned the importance of genetic information, stating that ecological or demographic issues may be more

S142

pressing. However, there is a growing body of evidence that both stochastic and deterministic demographic, environmental and genetic factors influence population viability.

Recent advances in molecular techniques have greatly enhanced the importance of genetic information in population management and wildlife conservation. In the field of conservation genetics, molecular markers are currently used, (1) to better define species and subspecies, (2) to detect introgressive hybridisation among closely related taxa, (3) to describe the partitioning of genetic diversity within and among populations, (4) to identify and define natural biological units which must be preserved [36].

Here, we would focus on how genetic studies can contribute to identifying conservation priorities. Two criteria are usually quoted for identifying candidate populations for conservation management: (1) the phylogenetic or genetic uniqueness, (2) the potential for maintaining the evolutionary process [81].

1.1. The phylogenetic or genetic uniqueness and the ESU concept

This criterion is founded on the underlying assumption that populations that are distinct in their morphological traits, ecological requirements and in their DNA markers (mitochondrial and nuclear DNA) should have high conservation status. The concept of Evolutionary Significant Units (ESUs) was developed to provide a rational basis for prioritising taxa for conservation effort [53]. This concept is somehow vague and its merits and limitations have recently been debated [56]. Since its first definition it has not been applied consistently. Ryder [64] introduced the concept to help guide conservation efforts for captive breeding programmes. For Ryder, an ESU is a group of organisms that has been isolated from other conspecific groups for a sufficient period of time to have undergone meaningful genetic divergence from those other groups. Waples [83]. subsequently extended this concept to management of wildlife conservation. In an effort to better define subunits of species for conservation purposes, Waples defined ESUs as population or a group of populations that are reproductively isolated and constitute an important component in the evolutionary legacy of the species. Dizon et al. [26] suggested that populations should be considered as ESUs if they show significant differences in allele frequencies. Recently, Moritz [53] argued that ESUs could be identified genetically as historically isolated sets of populations which show reciprocal monophyly for mitochondrial alleles and significant divergence of allele frequencies at nuclear loci. Finally, ESUs were likened to species using the phylogenetic species concept [21] by several authors [4, 10, 82]. According to this definition, ESUs are "irreducible clusters of organisms, diagnosably distinct from other such clusters, and within which there is a parental pattern of ancestry and descent" [20]. From a practical point of view, such populations comprise individuals which exhibit attributes not found in other populations. There is no general agreement about the criteria to be used in defining ESUs. Operational definitions rely mostly

on molecular data (mtDNA, allozyme and microsatellite data), but some authors also include ecological, behavioural, biogeographical and morphological data [9,48,53,71,82].

1.2. The potential for maintaining the evolutionary process

This criterion is used to select, for conservation purposes, populations because they exhibit high levels of genetic variability and could preserve the evolutionary potential of the species. The single most significant cause of population decline amongst native fauna is the loss of suitable habitats, resulting in fragmentation, often isolation and the loss of genetic diversity. Frequently, genetic diversity within populations living in remnants is reduced as it becomes increasingly difficult for individuals to disperse between fragments. There is a loss of variability within small populations leading to an inability to evolve through natural selection. From this result, conservationists have concluded that there is a need to maintain genetic diversity in order to increase the shortterm viability of fragmented declining populations and to maintain long-term evolutionary potential of individuals, populations and species. Consequently and from a purely genetic perspective, the main goal is to conserve as much as allelic diversity and heterozygosity as possible [19].

Two main components of genetic variability (heterozygosity and allelic richness) have been used to identify natural units which merit conservation effort. Heterozygosity (H) is a measure of allelic diversity which incorporates both number and frequency of alleles. Heterozygosity is thought to have effects on both individual fitness and the potential of a population to change genetically [3]. The use of heterozygosity in conservation management is based on the underlying assumption that a higher level of variation detected at neutral loci enhances individual fitness and consequently the probability of a population's survival over ecological or evolutionary time [8]. Whether or not reduction in genetic diversity compromises long-term fitness is still strongly debated. There are theoretical and empirical reasons to doubt a direct connection between variation at marker loci and those determining fitness [45]. Furthermore, it is likely that most important life history traits associated with fitness are polygenic, quantitative traits [72]. Consequently reservations about the validity of H as a measure of the genetic viability of a population has been expressed by several workers and there are documented cases where extremely high levels of heterozygosity are associated with low allelic richness [39]. However, observed cases of increased susceptibility to pathogens or parasitoids in natural populations that have low levels of heterozygosity indicate the importance of genetic variation (*i.e.* heterozygosity) [65]. There is also some empirical evidence that individual heterozygosity is positively associated with components of fitness in outbreeding species.

Measurement of allelic richness (R) has been proposed to be of obvious interest in conservation genetics and should be given high priority [57]. Allelic richness is more strongly dependent on effective population size than heterozygosity [47]. Furthermore, allelic richness declines more quickly than heterozygosity following a sharp reduction in the population size [2,32] and is considered to be a better indicator than heterozygosity for assessing past demographic changes.

Very few studies have undertaken a "comparative analysis" of the two methods reviewed here, their respective advantages, major flaws and inconsistencies. Furthermore, in most published studies, only one molecular criterion has been thoroughly analysed. Results obtained from one data set have rarely been compared and contrasted with results from other data sets. Our preliminary results on *Carabus solieri*, and those published by Bonadona, provide us with three different types of data (morphological, mitochondrial and nuclear) to compare the two methods.

The aims of the present study were to (1) characterise genetic and morphological variation, within a series of *C. solieri* populations throughout its current distribution. We used two types of molecular markers – mtDNA sequences and microsatellites – and we reanalysed morphological data published by Bonadona [14]; (2) obtain information on the phylogeography of *C. solieri*, and possibly to reveal glacial refuges and postglacial recolonisation routes; (3) identify and give priority to populations which contribute most to the overall diversity; and (4) evaluate the two main methods (based on genetic distinctiveness and genetic variability) used to identify any priority populations for the conservation of genetic diversity within the species.

2. MATERIAL AND METHODS

2.1. Biological material and study area

Carabus (Chrysocarabus) solieri Dejean is an endangered species which is restricted to the southern and Ligurian Alps. The species is distributed from Estérel and Tanneron massifs to the north of Briançon, and from the Alpes de Haute Provence (France) to Liguria (Italy) in the east. The outline of the range of *C. solieri*, shown in Figure 1, follows the maps published by Bonadona [14] and Casale and Cavazzuti [17], with some modifications suggested by information published subsequently. The life history of the species is relatively poorly known. *C. solieri* reproduces in spring, mostly laying eggs from March to July, depending on the elevation. Larval development occurs in late spring and summer. Tenerals emerge in late summer and autumn, and overwinter in the soil. Unlike most other species of *Chrysocarabus*, *C. solieri* cannot be collected during winter from their hibernating quarters, probably because the species overwinters deep in the ground. The species is eurytopic, mostly associated with humid, deciduous or coniferous forests. *C. solieri* can

Figure 1. Range of the different subspecies of *C. solieri* and location of the populations sampled for mitochondrial and microsatellite analysis.

also inhabit Mediterranean dry forests and alpine grasslands. In Italy, Casale and Cavazutti [17] found the species associated with forests receiving about 1250-1500 mm of rain/year.

The infraspecific classification of C. solieri is unclear. Some authors recognise up to six subspecies, others only three [14, 17, 25, 28, 59, 77, 79]. Here we follow Bonadona [14] who made a thorough morphological study and recognised only the following subspecies: C. s. solieri, C. s. bonnetianus and C. s. clairi. Our choice was only determined by the relative objectivity and simplicity of the hypothesis advocated in Bonadona's study.

C. s. bonnetianus, occurs in the most southern part of the distribution area of the species in the Estérel and Tanneron massifs (Fig. 1). It differs morphologically from the subspecies C. solieri s. by different attributes of coloration, pronotum and elytral sculpture: (1) the proportion of the pronotum (pronotum length/pronotal width < 0.78 versus > 0.80), (2) the shape and the sculpture of the elytral striation (secondary interstries larger than the tertiary and smooth versus secondary and tertiary interstries with the same width and granulation), (3) the colour of the body (deep metallic blue versus metallic green).

C. s. solieri has the largest distribution area and has sometimes been subdivided into three subspecies (vesubiensis, liguranus and solieri) based on unreliable morphological characters and distribution. C. s. clairi has a disjunct distribution range and exhibits morphological characteristics intermediate between C. s. bonnetianus and C. s. solieri. The southern populations of clairi, as defined by Bonadona, have often been considered to belong to C. s. bonnetianus, while the northern populations restricted to high mountain forests are sometimes considered as the only true C. s. clairi populations. In the contact zone between southern populations of C. s. clairi and C. s. solieri (green hatching in Fig. 1), populations showing intermediate morphology have often been upgraded to subspecies rank (C. s. curtii). It has been suggested that C. s. clairi could result from northern postglacial colonisation of C. s. bonnetianus which subsequently introgressed by C. s. solieri [59].

2.2. Sample collection

During spring and summer 1997 and 1998, adults were collected using rows of 20 to 60 unbaited pitfall traps (without fluids). Pitfall traps were visited weekly during the activity period of the adults. The sampling sites and the taxonomic status of the specimens collected are given in Table I and located in Figure 1. A total of 352 individuals were collected from 19 localities. Some specimens were killed and stored in 100% ethanol at -22 °C until analysis. For other specimens we cut one median leg and stored it under the same conditions.

2.3. Morphology

2.3.1. Data set

We partly used the morphological data published by Bonadona [13,14] and reanalysed them. To enable comparisons between our data and Bonadona's, we used a sample of the populations he analysed. This sample includes all populations common to both studies (ADR, CAS, CAU, SER, ROQ, VES, TUR, LAN, BRI, MAD, BRA). For six of our populations not present in the Bonadona's data set, we included instead the geographically closest populations he sampled. While these populations could be genetically different, we suppose that the morphological differences they exhibit are not sufficiently divergent to mislead their classification in well supported groups. Consequently, Osiglia, Vauplane, La Mure, Isola, and Barles were respectively replaced by San Giorgio (GIO), Collongues (COL), La Rochette (ROC), St Martin-Colmiane (CLM) and Les Dourbes (DOU), populations which are only a few kilometres distant. Two populations, Courmettes and Péone (COU & PEO), have no equivalent in the data set of Bonadona.

We used all the morphological characters analysed by Bonadona, except for coloration which we consider to be too subjective. Individuals of both sexes $(n = 455, \mathbf{0}' = 265, \mathbf{9} = 190)$ from 16 populations were measured. Numbers of males, females and total number of individuals analysed per population are given in Table III. Five characters were inferred from direct measurements: the

individuals codes

N sampled

Population

C. olympiae	Italy – Valsessera - Elevage J.C. Malausa (8.V.1997)	_		-
C. solieri bonnetianus	France (83) – Tanneron – Saint-Cassien des Bois, 150 m (V.1997)	CAS	20	
"	France (83) - Les Adrets-de-l'Estérel - Auberge des Adrets, 250 m (7.V.1998)	ADR	19	
C. solieri clairi	France (83) - Séranon – Route Forestière des Buissières, 1080 m (VI.1998)	SER	20	
٤٢	France (06) - Courmes (V.1998)	COU	20	
"	France (06) – Forêt de Caussols (V.1998)	CAU	20	÷
"	France (06) - Toudon - Vescou, Rau. de Ronson, 400 m (V.1997)	VES	20	÷
"	France (06) – Roquestéron-Grasse, bord de l'Estéron, 325 m (V.1997)	\mathbf{ROQ}	13	Ra
"	France (06) – Péone, 1430 m (VI.1998)	PEO	18	spl
"	France (06) - Isola – Pont St Honoré, 850 m (V.1998)	ISO	20	us
"	France (06) - Saint-Martin-Vésubie – Route de la Madone de Fenestre, 1400 m (VI.1998)	MAD	20	et (
C. solieri solieri	France (04) – Soleilhas - station de Vauplane, 1560 m (V.1998)	VAU	20	ul.
"	France (04) - Barles - Clues de Verdaches, 1150m (VI.1997)	BAR	13	
"	France (04) - La Mure-Argens – Clot Mouret, 1380 m (VI.1998)	MUR	18	
"	Italy – Savona – Osiglia, 860 m (V.1997)	OSI	20	

Table I. Sampling sites for the different subspecies of C. solieri, with department, altitude, date of collection and population codes.

Locality

Taxa

"	France (06) - Isola – Pont St Honoré, 850 m (V.1998)	ISO	20
"	France (06) - Saint-Martin-Vésubie – Route de la Madone de Fenestre, 1400 m (VI.1998)	MAD	20
C. solieri solieri	France (04) – Soleilhas - station de Vauplane, 1560 m (V.1998)	VAU	20
"	France (04) - Barles - Clues de Verdaches, 1150m (VI.1997)	BAR	13
"	France (04) - La Mure-Argens – Clot Mouret, 1380 m (VI.1998)	MUR	18
"	Italy – Savona – Osiglia, 860 m (V.1997)	OSI	20
"	France (06) – Sospel - près Col de Braus, 900 m (VI.1998)	BRA	20
"	France (06) - La Brigue - Notre Dame des Fontaines, 950 m (VI.1998)	BRI	20
"	France (06) - Lantosque - Forêt de Sauma-Longa, parcelle B & C, 550 m (V.1997)	LAB & LAC	20 & 20
"	France (06) - La Bollène-Vésubie, Forêt de Turini, ravin des Issarts, 1200 m (VII.1997)	TUR	11

total length of individuals (Lto *in* [14]), the shape of the pronotum calculated as the ratio length/width (LP/lP), the position of the largest width of the pronotum compared to the length of the pronotum (HP/LP), the shape of the elytrae calculated as the ratio length/width (LE/lE), the position of the largest width of the elytrae compared to the length of the elytrae (HE/LE). Two other morphological characters were used as the proportion of individuals possessing the character within the sampled population: (1) the compared width of the secondary and the tertiary striation (larger *versus* identical), and (2) the sculpture of the tertiary striation (smooth *versus* granulate).

2.3.2. Data analysis

Morphological distances between pairs of populations were calculated using Euclidean distances computed by distance $(x, y) = [\sum_i (x_i - y_i)^2]^{1/2}$. All characters were separately analysed for males and females. Between-population morphological divergence was used to construct a population UPGMA dendrogram [69] in Statistica 6.0. We scaled the tree to a standardised scale, representing the percentage of the range from the maximum to the minimum distance in the data.

2.4. mtDNA sequencing

2.4.1. Sequence production

Total DNA was prepared from the muscles of one leg using standard phenolchloroform extraction [67]. We amplified ca. 640 bp of the mitochondrial cytochrome b (cyt. b) gene using PCR. The primers used were CP1: 5'GATGATGAAATTGGATC^{3'} [37] and CB2: 5'CTAATGCAATAACTCCTCC^{3'} [41]. Using the Promega Taq package, 30 cycles of amplification were performed as follows in 50 μ l reaction volumes: denaturation step at 92 °C for 1 min, annealing at 48 °C for 1 min and 30 sec, and extension at 72 °C for 1 min. PCR products were then purified using the QIAquick PCR purification kit (QIAgen), and directly sequenced on an ABI 373 automated sequencer using TaqFS and dye-labelled terminators (Perkin-Elmer). CP1 and CB2 were both used as sequencing primers.

2.4.2. Data analyses

Sequence alignment was performed using ClustalW software [78]. Analyses were conducted using the distance-matrix method with the Neighbour-Joining (NJ) algorithm [66] with both MEGA (Molecular Evolutionary Genetics Analysis, version 1.01) [44] and PHYLIP 3.57c [31]. Distances were computed by Kimura's two-parameter method [43]. A bootstrap procedure of 1000 iterations was completed. We also performed a maximum likelihood analysis (quartet puzzling tree search) with PUZZLE 4 [73].

2.5. Microsatellite loci

2.5.1. Isolation and screening

Total DNA was extracted from single individuals following standard phenolchloroform extractions [67]. Microsatellite screening was performed following Estoup *et al.* [30]. DNA was isolated from one individual of *C. solieri bonnetianus* collected in Saint Cassien des Bois (Var). Two micrograms of total DNA was digested to completion with *Bsp 1431* (Eurogentec). Fragments of 300-800 bp were isolated on a 1.5% agarose gel, ligated to *Bam*HI-digested pUC18 (Pharmacia) and cloned in *Escherichia coli* XL-1 Blue Cells (Stratagene).

We transferred 2621 recombinant clones onto nylon membranes (Amersham). Colonies were screened with six probes (TG_{10} , TC_{10} , $ATCT_6$, CAC_5 , $TGTA_6$, CCT_5) linked with digoxygenin. We detected 89 positive clones and 38 were partially sequenced with an automatic sequencer (Perkin Elmer) using the dideoxy chain-termination method on alkaline denatured plasmids. Primer sequences were determined for ten microsatellite loci using the software PRIMER3. All were found to be polymorphic but seven were used in the following study (Tab. II).

PCR amplifications were performed in a total volume of 10 μ l using a DNA thermal cycler (MJ research). The reaction mix contained 2 μ l diluted genomic DNA (2 ng/ μ l), 5.46 μ l dH₂O, 1 μ l 10X *Taq* buffer (50 mM Tris-Hcl pH 8.0, 100 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 50% Glycerol, 1% Triton), 0.3 μ l 10 mM dNTP mix, 0.48 μ l MgCl₂ (final concentration = 1.2 mM), 0.4 μ l of cold primer 1 (10 μ M), 0.064 μ l of cold primer 2 (2 μ M), 0.046 μ l of hot primer 2 (2 μ M), 0.2 μ l BSA (10 mg/ml), 0.05 μ l *Taq* polymerase (5 units/ μ l) and was amplified in cycleplates (Robbins Scientific Corp). After an initial denaturation at 92 °C for 5 min, we carried out 30 cycles consisting of 30 s denaturation at 92 °C, 30 s at annealing temperature (Tab. II) and 30 s extension at 72 °C, followed by a final extension step for 10 min at 72 °C. PCR products were resolved on urea-polyacrylamide (6%) sequencing gels. Gels were dried and exposed to Kodak BIOMAX MR diagnostic film for one to four days.

2.5.2. Statistical methods

For each locus and each population sample, the genetic diversity was estimated by the number of alleles per locus (A), the observed heterozygosity (H_O) and the unbiased heterozygosity (H_E) [55]. Deviation from Hardy-Weinberg equilibrium, genotypic linkage disequilibrium and differences in allele frequencies were analysed using GENEPOP version 3.1a [62]. Population structure

Locus	Primer sequences $(5' \rightarrow 3')$	Annealing temp (°C)	MgCl ₂ (mM)	Repeat array	Size range (bp)
1122	GAATCCAAAGGTACTCCG CCCGAGTTGTAATTGCG	48	1.2	(AC) ₁₆	142
5175	CAGGTTTTGTAGACTCGTGC TTACACGACCACCATACTGC	52	1.2	$(TG)_{10}$	248
828A	CAGCAGTTCAAGTAGCATCGG CACCCGTGCCAAACAGG	56	1.6	$(\mathrm{TG})_7(\mathrm{AG})_4$	182
6103	GAATGTTTCCGCTCTCG GGTCGTACCAGAAGGTGC	52	1	$(GA)_7(GT)_2$	239
9170	TATCGGAGTGCCTGTAACC GTGCCAAGTCTGAACACATC	50	1.5	$(CA)_7$	239
1259	CGTGGGATAGAGAAGCAAAG GTATCAGTAAGGGGCGAGAG	56	0.8	$(AC)_{12}$	173
13F	CCACACTGATACGGTTTCG GAACTTGGTATATCCGTAGTAGG	56	1	(AC) ₈	168

Table II. Characteristics of seven polymorphic loci in Carabus solieri.

Population structure of Carabus solieri

was assessed using the F_{ST} estimator $\hat{\theta}$ of Weir and Cockerman [84]. This estimator performs better when sample size is moderate $(n_s < 50)$ and few loci scored $(n_l < 20)$ [33]. Permutation procedures (N = 1000) were used to test whether values were significantly greater than zero by permuting multilocus genotypes among samples.

Allelic richness was standardised between samples using the rarefaction technique [29, 40]. The contribution of the different populations to total diversity and allelic richness was calculated using CONTRIB, a software written by R. Petit and available at http://www.pierroton.inra.fr/genetics/labo/Software/. The contributions of the k-th population to the total diversity $[C_T(k)]$ and to the total allelic richness $[C_T^r(k)]$ are partitioned in two components, one due to its own diversity $[C_S(k) \& C_S^r(k)]$, the other due to its divergence diversity $[C_D(k) \& C_D^r(k)]$, see Petit *et al.* [57] for further details.

Neighbour-joining (NJ) [66] trees were constructed using Cavalli-Sforza and Edwards' chord distance (D_{CE}) [18] which shows a higher probability of obtaining the correct topology than other distance measures [76]. Bootstrap values were computed by resampling individuals and loci and are given as percent values for 2000 replications. Trees were reconstructed using a program written by J.M. Cornuet.

3. RESULTS

3.1. Morphology

Morphologically the populations studied by Bonadona [14] cluster into three major groupings, which correspond to the subspecies he defined (Fig. 2). Males and females from the same locality always belong to the same cluster, with the exception of males from La Madonne which cluster within the subspecies *solieri* while the females cluster within *clairi*. We also analysed the whole data set of Bonadona (including 1236 individuals belonging to 38 populations) and found similar groupings (not shown).

C. s. bonnetianus populations are, morphologically, the most distant populations, clearly differing from other populations in the shape of the pronotum, that of elytrae, and the sculpture and size of the tertiary elytral striation. C. s. clairi and C. s. solieri are morphologically more closely related. Nevertheless they are distinct and, with the exception of MAD (m), these two groups also match, with differences in body colour (blue for C. s. clairi and green for C. s. solieri), a character not included in the analysis.

Some populations of C. s. clairi (e.g. CAU, SER, MAD) exhibit polymorphism in the sculpture and size of the tertiary striation. In this respect there are intermediate between C. s. bonnetianus and C. s. solieri, which show contrasting patterns of elytral sculpture.

Figure 2. UPGMA phenogram based on Euclidian distance calculated from seven morphological characters. Codes refer to populations identified in Table I, San Giorgio (GIO), Collongues (COL), La Rochette (ROC), St Martin-Colmiane (CLM) and Les Dourbes (DOU) [substitutive populations used for this analysis]. Males (m) and females (f) are analysed separately. The horizontal axis is scaled in percentages as dlink/dmax \times 100.

3.2. mtDNA

Nucleotide sequences 642 bp in length were obtained from the mitochondrial DNA cyt. b gene for 45 C. solieri specimens representing 15 distinct populations. C. olympiae, another endangered species, lives in a restricted habitat in the Italian Piedmont, and was used as outgroup. Morphology [51], cross-breeding experiments [1] and mitochondrial sequences (Rasplus *et al.*, in preparation) clearly showed that C. olympiae is the sister species of C. solieri. The sequences of the three individuals sequenced per population were identical except in Barles where we found slight differences for one individual (Fig. 3). However, the differences are not ambiguous enough to suspect that a nuclear

		111	2222233333	3334444445	5555566
		1366679066	1346700002	2460025662	2789902
		2337900867	6731903675	7532439562	8911461
solu5000	(VES)	TTATATCTCC	TCATCTAAAG	ATCCCCAAAC	CCATTAG
solv7000	(TUR)				
solc2300	(ISO)				
solc3200	(PEO)				• • • • • • •
sols1600	(VAU)				• • • • • • •
soll1200	(BRA)				
solc4002	(MAD)			G	
sol16510	(OSI)	C			
sols2005	(MUR)	G	GA	.C	
sols3500	(BAR)	G	G	.CGG.	
sols3505	(BAR)	G	G	.C	
solbo100	(ADR)	G	.TG	.C	
solbo147	(CAS)	G	.TG	.C	
solb3700	(SER)				
solb4300	(CAU)				
solb4400	(COU)				
olymp149		GC.CTCTA	CT.ATCGCC.	GCATTTCA	AT.CATA

Figure 3. Sequence variation within the partial cytochrome b for the seven haplotypes detected among 45 *C. solieri* sampled in 15 populations. Only variable positions are shown.

homologue was being-coamplified with the mtDNA cyt. *b*. Only one individual per population was used for the tree reconstruction, with the exception of Barles where the two haplotypes found were used.

Attempts to reconstruct the phylogeny of the haplotypes were limited by the low level of variation. However, genealogies estimated by either the maximum likelihood or the neighbour-joining method yielded similar topologies. For this reason only the NJ reconstruction with bootstrap values above 50% was presented (Fig. 4). When analysed, the sequence divergence estimates among the seven haplotypes fell into two groups. The distribution of C. solieri mtDNA haplotypes was relatively highly structured geographically but did not correspond to the infraspecific subdivision suggested by the morphology. Group 1 haplotypes were found (1) in the western part of the distribution range of the subspecies solieri (Alpes de Haute Provence), and (2) in the two sampled populations of C. s. bonnetianus. By contrast, group 2 haplotypes were wide-spread (Fig. 5B) and encountered in all other sampled populations belonging to subspecies clairi and solieri.

Analysis of sequence variation revealed 29 variable sites between C. solieri and the outgroup. Among the fifteen sampling locations for C. solieri, only nine were variable, of which four were phylogenetically informative (Fig. 3). The averaged Kimura two-parameter distance between the two groups of haplotypes was 0.6%, while the averaged distance between C. solieri and C. olympiae was mtDNA (Cytochrome b) • bonnetianus • clairi • solieri

Figure 4. Phenogram reconstructed from the sequences of cytochrome b gene using neighbor-joining analysis. Numbers along the branches indicate the percentage of bootstrap replications (out of 1000) in which a node is supported. Only nodes with bootstrap values above 50% are presented. Codes refer to populations identified in Table I.

4.7%. Averaged pairwise sequence divergence within groups of haplotypes was clearly higher in group 1 (0.7% vs. 0.06%).

A molecular clock with a rate of approximately 2% per myr per pair lineages [15, 42] then implies divergence ca. 600000 years ago. Recently, Prüser and Mossakowski [60] calibrated mtDNA (ND1) in west Mediterranean *Carabus* using the disintegration of the Gibraltar bridge at the end of the Messinian event (5.3 myr). If we applied the low rates they found (0.6%), then the two *C. solieri* lineages are estimated to have diverged ca. 2 million years ago.

3.3. Microsatellite loci

3.3.1. Genetic variability

Genetic diversity was measured by allelic diversity and heterozygosity. The total number of alleles per microsatellite locus ranged from five (L13F) to 26 (L5175) with an average of 12.6. Three loci (L5175, L1122, L1259) are highly variable with respectively 18, 18 and 26 alleles, while the four other loci exhibit relatively low allelic variability (ranging from 5 to 8 alleles). The three more

Figure 5. A) Map showing the sampling sites and the altitudinal range of the species. B) Geographical location of the limits between the two main groups of C. solieri based on morphological differences, mtDNA haplotypes and microsatellite frequencies.

variable loci showed disjunct distributions as allele length classes were separated by more than one repeat unit.

Allelic diversity (see Tab. IV) ranged from 2.00 (± 1.41) for St Cassien to 6.57 (± 3.51) for La Brigue with marginally higher values in the eastern part of the range. Three loci were monomorphic in the sample from St Cassien, where the lowest average number of alleles per locus was observed. When corrected for differences in sample size, allelic richness decreased from east to west and south-west (Fig. 6B). Allelic richness is positively correlated with observed heterozygosity (r = 0.87, see Fig. 7).

Expected mean heterozygosity within samples ranged from $0.253 (\pm 0.298)$ for the St Cassien sample (Tanneron massif) to $0.710 (\pm 0.163)$ for the La Brigue sample (Italian border). Heterozygosity also shows a clear pattern of decreasing values from east to west of the distribution range (Fig. 6A). Allele frequencies for the seven loci across the 18 populations sampled are given in Table IV.

For each population, we calculate the contribution to the total diversity and to the total allelic richness (Tab. III). The population which contributes the most to the total diversity and to the total allelic richness is Osiglia $[C_T(OSI) = 4.20$ and $C_T(OSI) = 6.76]$. This is due to its relatively strong divergence and to its diversity. The other populations contribute much less than Osiglia to the total allelic richness. Among them, La Brigue and Turini are the two populations which contribute more. Nearly all the eastern populations of *C. s. solieri* contribute positively to the total allelic richness while all populations of *C. s. bonnetianus* and *C. s. clairi* populations, apart from PEO and ISO, have negative contributions (populations which exhibit lower allelic richness than the mean have a net contribution to allelic richness which is negative).

3.3.2. HW equilibrium and linkage disequilibrium

Exact test for genotypic linkage disequilibrium depicted 11 significant adjusted P values out of 311 (3.5%) comparisons, a proportion which is lower than expected by chance alone (15). No significant P value was observed for given pairwise comparison across populations, suggesting that there was no evidence of linkage between loci and therefore independent assortment was assumed.

One locus (L5175) showed significant deviations from the genotype expected according to the Hardy-Weinberg equilibrium for several populations (P < 0.01). Deficiency of heterozygotes was found in the following populations: Les Adrets, Barles, La Brigue and Osiglia. These heterozygote deficits could be due to: non-random mating, selection against heterozygotes, inbreeding, the Wahlund effect or the presence of a null allele.

Figure 6. Geographical distribution of A) the observed heterozygosity and B) the allelic richness. A surface was fitted to the XYZ co-ordinate data (Latitude/Longitude/ Heterozygosity or Allelic Richness), according to a distance-weighted least squares smoothing procedure and then projected onto a 2-dimensional plane. Codes refer to populations identified in Table I.

Table III. Number of individuals ($\mathfrak{O}, \mathfrak{P}$) measured in the morphological analysis and measures of the genetic diversity (heterozygosity, corrected allelic richness and contributions) for each *C. solieri* populations based on microsatellite data. Population names in brackets refer to substitutive populations studied in the morphology analysis. Ho = Mean heterozygote proportion, r(20) = Corrected allelic richness, C_T = Contribution to the total diversity, C_S = Contribution to total diversity due to diversity, C_D = Contribution to total allelic richness, C_T^r = Contribution to the total allelic richness, C_S^r = Contribution to total allelic richness due to diversity, C_D^r = Contribution to total allelic richness due to diversity, C_T^r = Contribution to total allelic richness due to diversity.

	Morpholo		gy			1.11.0000	Micros	atellites			
Populations	n	nď	nŶ	Ho	r (20)	C_T	C_S	C_D	C_T^r	C_S^r	C_D^r
ADR	6	4	2	0.381	1.82	0.21	0.22	-0.05	-0.50	-0.23	-0.27
BAR (DOU)	15	9	6	0.391	1.71	1.38	0.94	0.44	0.86	0.05	0.81
BRA	7	4	3	2.07	0.421	-0.06	-0.16	0.10	1.00	-0.30	1.30
BRI	42	27	15	0.618	4.34	1.10	1.95	-0.85	2.23	2.90	-0.67
CAS	21	15	6	0.250	0.97	0.08	-0.08	0.16	-0.52	-0.69	0.17
CAU	84	59	25	0.479	2.00	0.42	0.36	0.10	-1.02	-0.08	-0.94
COU				0.307	1.52	0.49	-0.10	0.59	-0.95	-0.11	-0.84
ISO	10	6	4	0.574	2.93	0.73	1.39	-0.66	1.11	1.44	-0.33
LAB				0.507	-	-	-	-	-	-	-
LAC (LAN)	51	30	21	0.521	2.54	0.07	0.83	-0.76	-0.04	0.62	-0.66
MAD	14	9	5	0.500	2.33	0.76	0.30	0.46	-0.36	0.39	-0.75
MUR (ROC)	16	8	8	0.255	1.41	-0.21	-0.28	0.07	-0.86	-0.70	-0.16
OSI (GIO)	16	8	8	0.514	3.80	4.20	2.49	1.71	6.76	3.16	3.60
PEO				0.542	3.65	0.34	1.21	-0.87	1.16	2.30	-1.14
ROQ	61	32	29	0.440	2.71	-0.60	0.35	-0.95	-1.33	0.88	-2.21
SER	16	13	3	0.429	1.94	-0.45	-0.08	-0.37	-0.94	0.29	-1.23
TUR	39	20	19	0.606	3.48	1.38	1.80	-0.42	2.63	2.11	0.52
VAU (COL)	29	13	16	0.493	2.00	-0.67	0.33	-1.00	-1.72	-0.11	-1.61
VES	28	8	20	0.236	1.17	0.12	-0.02	0.14	-2.05	-0.85	-1.20

Figure 7. Scatterplot of heterozygosity against corrected allelic richness.

3.3.3. Population differentiation and structure

Log-likelihood (G)-based exact tests for differentiation of all pairwise combinations of population at each locus (n = 1170 tests) were performed. Most of these comparisons (1023 out of 1170) yielded significant differences. 68.5 % of the non-significant results were at two of the least variable loci (L13F and L828A).

Geographical population structure was also estimated by multilocus F_{st} . We calculated $\hat{\theta}$ (F_{ST}) values to describe the overall differences between pairs of populations. The mean $\hat{\theta}$ averaged across all pairwise population comparisons were 0.312. All $\hat{\theta}$ values were significantly different from zero with the exception of the value between the populations sampled in the forest of Lantosque (LAC and LAB), which are separated by less than one kilometre. The estimates of $\hat{\theta}$ ranged from relatively low values (0.09–0.12) between geographically close populations (separated by less than 15 km of more or less continuous forests), to very high values (0.656) for the comparison between St Cassien and Mure populations. The observed values indicate a high overall level of differentiation for all the studied populations except the two populations sampled in the forest of Lantosque.

The average $\hat{\theta}$ value calculated between five populations from the southern part of the distribution range (SER, CAU, COU, CAS and ADR) is significantly higher (0.353), than the average value calculated between five populations (BRI, MAD, BRA, LAC and TUR) separated by equivalent distances and belonging to the *solieri* subspecies (0.183).

3.3.4. Genetic distance

Cavalli-Sforza and Edwards' distance was calculated for each pairwise comparison for the 19 sampled populations, and a phenogram was constructed from the distance matrix using the NJ algorithm. Genetically the populations cluster into two well-supported groups (Fig. 8), which fit neither with the main groups delimited by the morphological study nor with the two groups of haplotypes shown by the mtDNA analysis. Group 1 comprises all the populations belonging to the subspecies *solieri* (respectively BAR, MUR, VAU; OSI, BRI, BRA; LAC, LAB, TUR) plus northern isolated populations of *clairi* (PEO, ISO, MAD). Four subgroups are rather well supported and correspond mostly to the geographic location of the populations. The only exception is Barles, located on the western border of the distribution, which is fairly clustered with Osiglia and La Brigue, two populations located more than 110 km eastward. One of these subgroups, strongly supported, contains all the sampled populations within the northern range of the subspecies *clairi*. Group 2 clusters all the populations belonging to the subspecies *bonnetianus* (namely ADR, CAS) and the southern populations of *clairi* (CAU, COU, SER and ROQ, VES) (Fig. 5B). The southern populations of C. s. clairi are positioned as sister taxa to C. s. bonnetianus.

4. DISCUSSION

4.1. Phylogeography

The mitochondrial variants fell into two basic lineages (bonnetianus and solieri lineages) that do not exactly fit either the subspecies classification based on morphological characters or the genetic partition observed using microsatellite markers. However, despite some discrepancies, it seems more likely that C. solieri is subdivided into two distinctive entities which can be considered as subspecies: C. s. bonnetianus and C. s. solieri [61]. The maximum extent of the Alpine ice sheet and its periglacial influence may have influenced the present-day break in the distribution of between-population variability between the two subspecies of C. solieri. The estimated age of the two main subspecific genomes of C. solieri is roughly the same as the time of effective separation between the subspecies of the grasshopper Chorthippus parallelus [74]. This would indicate that C. solieri last entered its southern refugia no more than five ice ages ago. However, estimates of divergence time between the two subspecies are strongly speculative and give different results according to whether the estimation is calculated from microsatellite data (12000 years) [61] or from mitochondrial DNA (0.6-2 Mya). The two refugia of C. solieri could have been located in Italy, as suggested by high heterozygosity and allelic richness of microsatellite loci, and in France, probably in the Estérel or Maures massifs, as suggested by morphology and mtDNA. Retreat of the ice sheet enabled

Figure 8. Cavalli-Sforza and Edwards' (1967) genetic distance phenogram calculated from microsatellite data. Codes refer to populations identified in Table I. Percentages of replication of the observed topology based on 2000 bootstraps on loci (above the branch) and individuals (under) are given. Tree is rooted at mid distance.

northward recolonisation from these refuges. $C.\ s.\ solieri$ probably recolonised from its north-central Italian refuge while $C.\ s.\ bonnetianus$ recolonised from its French refuge close to the Mediterranean sea. The paraphyly of mtDNA between the two main groups of $C.\ solieri$ with monophyletic nuclear alleles and distinct morphology, strongly suggests that one or more episodes of historical hybridisation between them have occurred. Here, we use the term hybridisation in its broader sense, referring to mating by individuals belonging to different populations, subspecies or species [63].

Sampled populations of the southern part of the range of *clairi* all have a fixed mtDNA that belongs to the *solieri* lineage, while they exhibit characteristics intermediate between $C.\ s.\ solieri$ and $C.\ s.\ bonnetianus$ on the basis of morphology (Fig. 1) and nuclear markers. These characteristics strongly suggest that the most likely explanation for this discordant pattern is mtDNA introgression from $C.\ s.\ solieri$ into $C.\ s.\ bonnetianus$, following contact and hybridisation between the two subspecies. mtDNA could have flowed persistently across the contact zone between the subspecies and largely in one direction. mtDNA for the *solieri* lineage therefore replaced the mtDNA of *bonnetianus*

in its northern distribution range (SER, CAU, COU, VES, ROQ). Typical $C.\ s.\ bonnetianus\ mtDNA$ only maintains in the most southern populations of $C.\ s.\ bonnetianus$ (Tanneron and Estérel massifs) which are geographically isolated by non forested habitats (grasslands) from northern populations. This asymmetric mtDNA introgression is also supported by experimental crosses showing that it is difficult to obtain descent in crossing female bonnetianus with male solieri [49]. It is also likely that northern populations of $C.\ s.\ clairi$ are the result of a range expansion of $C.\ s.\ bonnetianus$ that occurred subsequent to the Alpine glacier retreat and prior to the range expansion of $C.\ s.\ solieri$. However, more results are needed to confirm this assumption as traces of hybridisation have disappeared in most data sets except in the morphology.

Interestingly, an mtDNA variant, belonging to the *bonnetianus* lineage, seems to have been fixed in the western populations (BAR and MUR) which by microsatellites and morphology clearly belong to $C.\ s.\ solieri$. Since this sample represents the extreme western edge of $C.\ s.\ solieri$ and are adjacent (MUR) or relatively close (BAR) to non-sampled locations occupied by $C.\ s.\ clairi$ (e.g. Grand Margès Forest in Var), they may reflect the effects of past introgression events from $C.\ s.\ bonnetianus$. The current distributional patterns may be the result of the history of postglacial colonisation, selection in habitat or resource mosaic or a combination of these factors. BAR and MUR populations, which share the presence of *bonnetianus*-like mitotypes and essentially *solieri*-like morphologies, may constitute proof of northward colonisation of $C.\ s.\ bonnetianus$ followed by extensive introgression by $C.\ s.\ solieri$. However, more results are needed to confirm this scenario.

4.2. Population structure of C. solieri

Our results lead us to conclude that all C. solieri populations, surveyed in this study, were highly divergent relative to the extent of genetic differentiation observed. They are genetically distinct, each comprising reproductively isolated groups. Genetic diversity analysis indicated that a high component of genetic diversity was attributable to differences among populations as opposed to within them. The sampling design employed in this study was geared toward a broad-scale survey and it is possible that on a finer geographic scale populations would cease to differ significantly in allele frequencies at the most variable loci. However, even geographically close populations exhibited significant differences in allelic frequencies. This is particularly true in the distribution range of the subspecies *bonnetianus* and in the southern part of the range of the subspecies clairi where some populations show low levels of genetic diversity and fixation of alleles. Fst calculated among the "bonnetianus – southern clairi" populations was consequently much greater than among *solieri* populations, suggesting that there is some subdivision among the southern populations, probably because of their small population size and isolation. Although generalisations are difficult, there appears to be agreement with the general expectation and patterns

observed in most vertebrates and the few invertebrates, that genetic differentiation among populations increases following fragmentation whereas genetic diversity within populations decreases. This is consistent with the assertion that human activities (forest clearing for agriculture, urban development, fire) have resulted in fragmentation and loss of habitats such that southern *C. solieri* populations are small and isolated, leaving them vulnerable to further random perturbations. Consequently, populations inhabiting one continuous forest area should be considered as the fundamental component in the genetic structuring of *C. solieri* and as the basis for the identification of management units. Thus Solier's Carab populations separated by a non-forested area of more than a few kilometres (5-10) should be treated as separate management units.

4.3. Setting priorities for conservation

4.3.1. Applying the high level of genetic variability method

From our analysis we can conclude that few populations exhibit high levels of genetic variability at microsatellite loci. More precisely, only eastern and northern populations belonging to the subspecies $C.\ s.\ solieri$ make large contributions to the total diversity and to the total allelic richness. As a consequence, protection of only two populations (BRI and OSI) will enable conservation of 58 (65.9%) of the known alleles of the species (n = 88). However, these two populations only maintain two close haplotypes belonging to the solieri group and one morphotype. Furthermore, they are both associated with humid mountain forests and represent only part of the ecological adaptative ability of the species.

This example shows that strict application of the method developed by Petit $et \ al. \ [57]$ will not enable optimal preservation of the overall variability of the species. It also emphasises the fact that methods based on allele frequency data and allelic richness can mislead conservation programme [34].

For the microsatellite loci analysed in our study, C. s. bonnetianus showed very few private alleles. Some of the populations supposed to be of hybrid origin (ISO or PEO) cumulate alleles that are mostly encountered, on one side, in C. s. bonnetianus and in southern C. s. clairi populations and, on the other side, in Italian C. s. solieri (see L1122 in Tab. IV). Hybridisation of bonnetianus and solieri have probably led to an increasing allelic diversity of some populations.

The low level of genetic variability in the subspecies *bonnetianus* could result from the relative isolation and small size of the studied populations due to habitat fragmentation. However, in the light of our results, it cannot be ruled out that this low level of genetic variability has an historical origin. During the last glaciations, *C. solieri* populations which were restricted to the French refuge, bordered on the south by the Mediterranean sea, may have suffered greater reduction in population size than the Italian populations which could retreat in the forests of the central Italian peninsula.

7 APPENDIX (TABLE I	7
---------------------	---

Locus 1122	Allele	Adrets	Cassien	Caussols	Courmes	Séranon	Roquest \	/escous	Barles	Mure	Vauplane	LantosoB L	antosqC	Turini	Braus	Brigue	Osiglia	Péone	Isola	Madone	Means
Gene Number		32	40	40	40	40	26	40	24	34	40	40	40	20	40	40	40	36	40	40	
Allele Number		5	5	6	4	6	8	1	4	4	7	4	5	7	5	8	5	10	10	5	5.737
	118	0.625	0.225	0.250	0.450	0,150	0.038	-	-	-	-	- '		- '	-	0.175		-	-	-	
	120	-	-	-	-		0.577	1.000	0.167	0.765	0.550	0.450	0.400	0.100	0.275	0.150	0.125	0.083	0.075	0.100	
	121	•	-	-	-	-	-	-	-	-	-	-	-	-	-	0.050	-	-	-	-	
	122	-	-	-	-	0.050	0.115	-	-	-	-	0.075	0.125	0.400	0.275	0.225	0.200	-	-	-	
	124	-	-	-	-	-	-	-	0.458		0.075	-	-	-	-	0.250	0.600	-	0.075	-	
	126	-	-	-	-		0.038	-	0.125	; -	-	-	-	-	-	0.075	-	0.056	0.050	-	
	128	0.094	0.225	0.325	0.375	0.100	0.077	-	-	0.088	0.050	0.300	0.275	0.050	-	0.025	-	0.056	0.100	0.075	
	130	-	-	0.225	-	0.600	0.077	-	-	-	0.075	0.175	0.175	0.250	0.125	-	0.025	0.250	0.050	0.725	
	132	-	-	-	0.075	0.025	-	-	-	0.029	0 150	-	-	0.050	0.300	-	0.050	-	-	-	
	134	-	-	-	0 100	-		-	-	-	0.025	-	-	0 100	0.025	0.050	-	-	-	-	
	136		-	0.075	-	0.075		-	-	-	-	-	0.025	-	-	-	-	0 167	0.300	0.075	
	138	0 094	0 150	0.0.0	-		0.038		-	-	-	-		0.050			-		0.025	0.025	
	140	0.004	0.300	0 100	-	-	-		0 250	<u>َ</u> ۱	_	_		0.000	-		-	0.028	0.075	0.020	
	142	0.004	0.000	0.100	_	-	0.038	_	0.200	, <u> </u>	_	_	_	_	_	_	-	0.020	0.070	_	
	144	0.004	0.100		-		0.000	-	-	-	0.075	-	-	-	-			0 093	0 225	-	
	146	-		0.025						-	0.075			-			-	0.000	0.225	-	
	149	-	-	0.025	-	-	-	-	-	0 1 1 0	-	-	-	-	-	-	-	0.111	0.025	-	
	140	-	-	-	-	•	•	•	•	0.110	-	-	-	-	-	-	•	0.020	0.025	-	
Hatasania Decention	130	0 562	0.000		0.550	0 700	0.045		0 500		0.750	0.000			0 750	0.000	0.050	0.139	0.000		0.050
Reterozygote Proportion		0.503	0.000	0.900	0.550	0.700	0.015	0	0.563	0.294	0.750	0.800	0.000	0.700	0.750	0.800	0.650	0.776	0.800	0.500	0.000
Locus 1259	Allele	Adrets	Cassien	Caussols	Courmes	Séranon	Roquest	/escous	Barles	Mure	Vauplane	LantosqB I	antosqC	Turini	Braus	Brigue	Osiglia	Péone	Isola	Madone	Means
Locus 1259 Gene Number	Allele	Adrets 38	Cassien 40	Caussols 40	Courmes 40	Séranon 40	Roquest 1	Vescous 40	Barles 22	Mure 2 34	Vauplane 40	LantosqB I 40	antosqC 40	Turini 22	Braus 40	Brigue 38	Osiglia 40	Péone 36	isola 40	Madone 40	Means
Locus 1259 Gene Number Allele Number	Allele	Adrets 38 5	Cassien 40 2	Caussols 40 3	Courmes 40 2	Séranon 40 5	Roquest V 26 5	Vescous 40 4	Barles 22 6	Mure 2 34 3 5	Vauplane 40 4	LantosqB I 40 7	LantosqC 40 8	Turini 22 6	Braus 40 5	Brigue 38 11	Osiglia 40 9	Péone 36 5	isola 40 4	Madone 40 5	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161	Adrets 38 5	Cassien 40 2	Caussols 40 3 0.400	Courmes 40 2	Séranon 40 5	Roquest V 26 5	/escous 40 4	Barles 22 6	Mure 2 34 3 5	Vauplane 40 4	LantosqB I 40 7	LantosqC 40 8	Turini 22 6 -	Braus 40 5	Brigue 38 11	Osiglia 40 9 -	Péone 36 5	isola 40 4	Madone 40 5	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163	Adrets 38 5 0.026	Cassien 40 2 -	Caussols 40 3 0.400 0.225	<u>Courmes</u> 40 2 -	Séranon 40 5 0.025	Roquest 1 26 5	Vescous 40 4 0.025	Barles 22 6 -	Mure 2 34 3 5 0.176	Vauplane 40 4 - 0.500	LantosqB I 40 7 0.100	LantosqC 40 8	Turini 22 6 -	Braus 40 5 -	Brigue 38 11 -	Osiglia 40 9 -	Péone 36 5	isola 40 4 0.250	Madone 40 5 -	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165	Adrets 38 5 0.026 0.132	Cassien 40 2 - -	Caussols 40 3 0.400 0.225	Courmes 40 2 - 0.025	Séranon 40 5 0.025	Roquest \ 26 5 - 0.192	/escous 40 4 0.025	Barles 22 6 - -	Mure 2 34 3 5 0.176	Vauplane 40 4 - 0.500	LantosqB I 40 7 0.100 0.075	LantosqC 40 8 - - 0.175	Turini 22 6 - - 5 0.091	Braus 40 5 - - 0.500	Brigue 38 11 - - 0.053	Osiglia 40 9 - - 0.050	Péone 36 5 - 0.556 -	lsola 40 4 0.250	Madone 40 5 - 0.700 0.050	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167	Adrets 38 5 0.026 0.132 0.421	Cassien 40 2 - - 0.250	Caussols 40 3 0.400 0.225 - 0.375	Courmes 40 2 - 0.025 0.975	Séranon 40 5 0.025 0.800	Roquest V 26 5 - 0.192 0.654	Vescous 40 4 0.025 0.225	Barles 22 6 - - - -	Mure 2 34 5 5 0.176 0.206	Vauplane 40 4 0.500 - 0.250	LantosqB I 40 7 0.100 0.075	LantosqC 40 8 - 0.175 0.075	Turini 22 6 - 5 0.091 5 0.182	Braus 40 5 - 0.500 0.300	Brigue 38 11 - 0.053 0.079	Osiglia 40 9 - 0.050 0.475	Péone 36 5 0.556 0.167	isola 40 4 0.250 0.200	Madone 40 5 - 0.700 0.050 0.125	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169	Adrets 38 5 0.026 0.132 0.421 0.395	Cassien 40 2 - - 0.250	Caussols 40 3 0.400 0.225 - 0.375 -	Courmes 40 2 - 0.025 0.975 -	Séranon 40 5 0.025 - 0.800 0.100	Roquest \ 26 5 - 0.192 0.654 -	Vescous 40 4 0.025 0.225	Barles 22 6 - - - - 0.227	Mure 2 34 3 5 0.176 0.206	Vauplane 40 4 0.500 - 0.250 -	LantosqB I 40 7 0.100 0.075 - -	LantosqC 40 8 - 0.175 0.075 -	Turini 22 6 - - - - - - - - - - - - - - - - -	Braus 40 5 - 0.500 0.300 0.075	Brigue 38 11 - - 0.053 0.079 -	Osiglia 40 9 - 0.050 0.475 0.075	Péone 36 5 0.556 - 0.167 0.167	isola 40 4 0.250 0.200 0.425	Madone 40 5 0.700 0.050 0.125	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171	Adrets 38 5 0.026 0.132 0.421 0.395	Cassien 40 2 - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - 0.375 -	Courmes 40 2 - 0.025 0.975 - -	Séranon 40 5 0.025 - 0.800 0.100	Roquest \ 26 5 - 0.192 0.654 -	Vescous 40 4 0.025 0.225	Barles 22 6 - - - 0.227	Mure 2 34 3 5 0.176 0.206	Vauplane 40 4 - 0.500 - 0.250 -	LantosqB I 40 7 0.100 0.075 - -	LantosqC 40 - - 0.175 0.075 -	Turini 22 6 5 0.091 5 0.182 0.136	Braus 40 5 - 0.500 0.300 0.075 -	Brigue 38 11 - 0.053 0.079 - 0.026	Osiglia 40 9 - 0.050 0.475 0.075 0.025	Péone 36 5 0.556 0.167 0.167	lsola 40 4 0.250 0.200 0.425	Madone 40 5 0.700 0.050 0.125	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173	Adrets 38 5 0.026 0.132 0.421 0.395 - 0.026	Cassien 40 2 - 0.250 - 0.750	Caussols 40 3 0.400 0.225 - 0.375 - - -	Courmes 40 2 - 0.025 0.975 - -	Séranon 40 5 0.025 0.800 0.100 0.050	Roquest \ 26 5 - - 0.192 0.654 - - -	Vescous 40 4 0.025 0.225 - - 0.025	Barles 22 6 - - - 0.227 - 0.091	Mure 2 34 3 5 0.176 0.206 7 - -	Vauplane 40 4 0.500 - 0.250 - -	LantosqB I 40 7 0.100 0.075 0.050	LantosqC 40 5 - - 0.175 - - - - -	Turini 22 6 5 0.091 5 0.182 0.136	Braus 40 5 - 0.500 0.300 0.075 -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026	Osiglia 40 9 - 0.050 0.475 0.075 0.025 0.150	Péone 36 5 0.556 0.167 0.167 0.083	isola 40 4 0.250 0.200 0.425 0.125	Madone 40 5 0.700 0.050 0.125	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175	Adrets 38 5 0.026 0.132 0.421 0.395 - 0.026	Cassien 40 2 - - 0.250 - - 0.750	Caussols 40 3 0.400 0.225 - 0.375 - - - - -	Courmes 40 2 - - 0.025 0.975 - - - -	Séranon 40 5 0.025 0.800 0.100 - 0.050 0.025	Roquest V 26 5 - 0.192 0.654 - - - 0.038	Vescous 40 4 0.025 0.225 - - 0.025 0.725	Barles 22 6 - - - 0.227 - 0.091 0.091	Mure 2 34 3 5 0.176 0.206 - - 0.412	Vauplane 40 4 - 0.500 - 0.250 - - - 0.200	LantosqB I 40 7 - 0.100 0.075 - - - - 0.050 0.075	LantosqC 40 8 - - 0.175 0.075 - - - 0.125	Turini 22 6 5 0.091 5 0.182 0.136	Braus 40 5 - 0.500 0.300 0.075 - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.105	Osiglia 40 9 - 0.050 0.475 0.075 0.025 0.150 0.075	Péone 36 5 0.556 0.167 0.167 0.083	Isola 40 4 0.250 0.200 0.425 0.125	Madone 40 5 	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177	Adrets 38 5 0.026 0.132 0.421 0.395 - 0.026	Cassien 40 2 - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - 0.375 - - - - -	Courmes 40 2 - 0.025 0.975 - - - - -	Séranon 40 5 0.025 0.800 0.100 0.050 0.025	Roquest V 26 5 - 0.192 0.654 - - 0.038 0.077	Vescous 40 4 0.025 - 0.225 - 0.025 0.725	Barles 22 6 - - 0.227 - 0.091 0.091 -	Mure 2 34 3 5 0.176 0.206 7 - - 0.412 0.176	Vauplane 40 4 0.500 - - - - - - - - - - - - - - - - - -	LantosqB I 40 7 0.100 0.075 - - - 0.050 0.075 -	LantosqC 40 8 - 0.175 - - - - - - - - - - - - - - - - - - -	Turini 22 6 0.091 0.182 0.136	Braus 40 5 - 0.500 0.300 0.075 - - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.105 0.237	Osiglia 40 9 - 0.050 0.475 0.075 0.025 0.150 0.075	Péone 36 5 0.556 - 0.167 0.167 - 0.083 -	Isola 40 4 0.250 0.200 0.425 0.125	Madone 40 5 - 0.700 0.050 0.125 - - - -	<u>Means</u> 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179	Adrets 38 5 0.026 0.132 0.421 0.395 - 0.026 -	Cassien 40 2 - 0.250 - - 0.750 - - -	Caussols 40 3 0.400 0.225 - - - - - - - - - - - - -	Courmes 40 2 - - - - - - - - - - - - - - - - - -	Séranon 40 5 0.025 0.800 0.100 - 0.050 0.050 0.025 -	Roquest 1 26 5 0.192 0.654 0.038 0.077	Vescous 40 4 0.025 0.225 - 0.025 0.025 0.725 -	Barles 22 6 - - 0.227 0.091 0.091 - -	Mure 2 34 3 5 0.176 - 0.206 - - 0.412 0.176 -	Vauplane 40 4 0.500 - 0.250 - - - 0.200 -	LantosqB I 40 7 0.100 0.075 - - - 0.050 0.075 - -	LantosqC 40 8 - 0.175 - - - 0.125 - - - - - - - - - - - - - - - - - - -	Turini 22 6 0.091 0.182 0.136 	Braus 40 5 - 0.500 0.300 0.075 - - - -	Brigue 38 11 - 0.053 0.053 0.053 0.026 0.026 0.026 0.105 0.237 0.053	Osiglia 40 9 - 0.050 0.475 0.025 0.150 0.075 - 0.075	Péone 36 5 0.556 - 0.167 0.167 - 0.083 - -	Isola 40 4 0.250 0.425 0.425 0.125	Madone 40 5 	<u>Means</u> 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179 181	Adrets 38 5 0.026 0.132 0.421 0.395 - - - - - - -	Cassien 40 2 - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - 0.375 - - - - - - - - - - - - -	Courmes 40 2 - - 0.025 0.975 - - - - - - - - - -	Séranon 40 5 0.025 0.800 0.800 0.800 0.025 - - - -	Roquest 1 26 5 - 0.192 0.654 - - 0.038 0.077 -	Vescous 40 4 0.025 - 0.225 - 0.025 0.725 - -	Barles 22 6 - - 0.227 0.091 - - 0.091 - 0.182	Mure 2 34 3 5 0.176 0.206 7 - - 0.412 0.176 2 -	Vauplane 40 4 0.500 - 0.250 - - 0.200 - - - -	LantosqB I 40 7 - 0.100 0.075 - - - 0.050 0.075 - - 0.0350	LantosqC 40 - - - 0.175 - - - - 0.125 - - - 0.225	Turini 223 6 5 0.091 5 0.182 0.136 - 5 0.136 - -	Braus 40 5 - 0.500 0.300 0.075 - - - - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.026 0.105 0.237 0.053 0.158	Osiglia 40 9 - 0.050 0.475 0.025 0.150 0.075 - 0.075 0.050	Péone 36 5 0.556 0.167 0.167 - 0.083 - -	Isola 40 4 0.250 0.200 0.425 - - - - -	Madone 40 5 	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179 181 183	Adrets 38 5 0.026 0.132 0.421 0.026 - - - - - -	Cassien 40 2 - 0.250 - - 0.750 - - - - - -	Caussols 40 3 0.400 0.225 - 0.375 - - - - - - - - - - - - - - -	Cournes 40 2 - - - - - - - - - - - - - - - - - -	Séranon 400 5 - 0.025 - 0.800 0.100 - 0.050 0.025 - - - - -	Roquest V 26 5 0.192 0.654 - - 0.038 0.077 - -	Vescous 40 4 0.025 - 0.225 - 0.025 0.725 - - - - -	Barles 22 6 - - 0.227 - 0.091 0.091 - 0.091 - 0.182 0.182	Mure 2 34 3 5 0.176 - 0.206 7 - - 0.412 0.176 - 2	Vauplane 40 4 0.500 - - - - - - - - - - - - - - - - - -	LantosqB I 40 7 0.100 0.075 - 0.050 0.075 - 0.350 0.225	LantosqC 40 8 - - 0.175 0.075 - - - 0.125 - - 0.225 0.220	Turini 223 6 5 0.091 5 0.182 0.136 - 5 0.136 - - 5 -	Braus 40 5 - 0.500 0.300 0.075 - - - - 0.100	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.026 0.026 0.237 0.053 0.158 0.158 0.105	Csiglia 40 9 - 0.050 0.475 0.025 0.150 0.075 0.075 0.075	Péone 36 5 0.556 - 0.167 0.083 - - - 0.083 - - - 0.028	Isola 40 4 0.250 0.200 0.425 - - - - - -	Madone 40 5 - 0.700 0.050 0.125 - - - - - - - - - - - - - - - - - - -	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179 181 183 185	Adrets 3 0.026 0.132 0.421 0.395 - 0.026 - - - - - -	Cassien 40 2 - 0.250 - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - - - - - - - - - - - - - - - - - -	Cournes 40 2 - 0.025 0.975 - - - - - - - - - - - - - - - - - - -	Séranon 400 5 0.025 0.800 0.100 0.050 0.050 0.050 - - - - - - -	Roquest V 26 5 - 0.192 0.654 - - 0.038 0.077 - - - - -	Vescous 4 0.025 - - 0.025 - - 0.025 0.025 - - - - - - - - - - - - - - - - - - -	Barles 22 6 - - 0.227 - 0.091 0.091 - 0.182 0.182 0.182 0.227	Mure 2 34 3 5 0.176 0.206 - 0.206 - 0.206 - 0.206 - 0.206 - 0.206 - - 0.206 - - 0.206 - - - 0.206 - - - - - - - - - - - - -	Vauplane 40 4 0.250 - - 0.200 - - - - 0.200 - 0.200 - 0.200 - - - 0.200 - - - - - - - - - - - - - - - - - -	LantosqB 1 40 7 - 0.100 0.075 - - 0.050 0.075 - - - 0.350 0.225 0.125	LantosqC 40 7 0.175 0.075 - - - - 0.125 0.205 0.205 0.205	Turini 223 6 5 0.091 5 0.182 0.136 - - - - - 0.136 - - - - - - - - - - - - -	Braus 40 5 - 0.500 0.300 0.075 - - - - - - - - - - - - - - - - - - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.026 0.105 0.237 0.053 0.158 0.105 0.105	Osiglia 40 9 - 0.050 0.475 0.025 0.150 0.075 0.075 0.075 - - -	Péone 36 5 0.556 - 0.167 0.083 - - 0.083 - - 0.028	Isola 40 4 0.250 0.200 0.425 - - - - - - -	Madone 40 5 - 0.700 0.050 0.125 - - - - - - - - - - - - - - - - - - -	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179 181 183 185 187	Adrets 38 5 - 0.026 - - - - - - - - - - - - -	Cassien 40 2 - 0.250 - - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - - - - - - - - - - - - - - - - - -	Cournes 40 2 - - 0.025 0.975 - - - - - - - - - - - - - - - - - - -	Séranon 40 5 0.025 0.800 0.100 - 0.050 0.025 - - - - - - - -	Roquest 1 26 5 0.192 0.654	Vescous 40 4 0.025 - 0.225 - 0.025 0.725 - - - - - - - - -	Barles 22 6 - - 0.227 0.227 0.227 0.091 0.091 - - 0.182 0.182 0.227 -	Mure 2 34 3 5 0.176 0.206 7 - - 0.412 0.176 2 .0.029 7 - - - - - - - - - - - - - -	Vauplane 40 4 0.500 - 0.250 - - 0.200 - - - - - - - - 0.500 -	LantosqB I 40 7 0.100 0.075 - - - 0.050 0.075 - 0.350 0.225 0.125 -	LantosqC 40 8 - 0.175 0.175 - - 0.125 - 0.225 0.200 0.150 -	Turini 22 6 0.091 0.182 0.136 - - - - - - - - - - - - - - - - - - -	Braus 40 5 - 0.500 0.300 0.075 - - - - - - - - - - - - - - - - - - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.026 0.026 0.105 0.237 0.053 0.158 0.105 0.105 0.053	Csiglia 40 9 - 0.050 0.475 0.075 0.025 0.150 0.075 0.075 0.050 - - -	Péone 36 5 0.556 - 0.167 0.167 - - - - - - - - - - - - - - - - - - -	lsola 40 4 0.250 0.200 0.425 - - - - - - - - -	Madone 40 5 	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179 181 183 185 187 191	Adrets 38 5 0.026 0.132 0.421 0.395 - - - - - - - - - - - - - - - - -	Cassien 40 2 - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - - - - - - - - - - - - - - - - - -	Cournes 40 2	Séranon 40 5 0.025 0.800 0.050 0.050 0.050 - - - - - - -	Roquest 1 26 5 - 0.192 0.654 - - 0.038 0.077 - - - - - - - - - - - - - - - - - -	Vescous 4 - 0.025 - 0.225 - 0.025 0.725 - - - - - - - - - - - - -	Barles 22 6 - - 0.227 - 0.091 - 0.182 0.182 0.182 0.227 -	Mure 2 34 3 5 0.176 0.206 7 - 1 0.412 0.176 2 - 2 0.029 7 - - - - - - - - - - - - - -	Vauplane 40 4 0.500 - 0.250 - - 0.200 - - - - 0.050 - -	LantosqB 1 40 7 - 0.100 0.075 - - 0.050 0.075 - - 0.350 0.225 0.125 - -	LantosqC 40 8 - 0.175 0.075 - 0.125 - 0.225 0.200 0.150 - 0.025	Turini 22 6 0.091 0.182 0.136 - 5 0.136 - - 0.364 5 0.091	Braus 40 5 - 0.500 0.300 0.075 - - - - - - - - - - - - - - - - - - -	Brigue 38 11 - 0.053 0.053 0.026 0.026 0.026 0.0253 0.105 0.233 0.158 0.105 0.105 0.053 0.053 0.053	Csiglia 40 9 - 0.050 0.075 0.075 0.075 0.075 0.075 0.050 - - -	Péone 36 5 0.556 0.167 0.083 - - - 0.028 - - - - - - - - - - - - - - - - - - -	Isola 40 4 0.250 0.425 - - - - - - - - -	Madone 400 5 - 0.700 0.050 0.125 - - - - - - 0.025 0.1025 -	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179 181 183 185 187 191 193	Adrets 38 5 0.026 0.132 0.421 0.395 - - - - - - - - - - - - -	Cassien 40 2 - 0.250 - - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - - - - - - - - - - - - - - - - - -	Cournes 40 2 - - - - - - - - - - - - - - - - - -	Séranon 40 5 0.025 0.800 0.050 0.050 0.025 - - - - - - - - - - - -	Roquest V 26 5 - 0.192 0.654 - - - - - - - - - - - - - - - - - - -	Vescous 40 4 0.025 0.225 - 0.025 0.025 0.025 - - - - - - - - - - - - - - -	Barles 22 6 - - 0.227 - 0.091 0.091 - - 0.182 0.182 0.182 0.227 - -	Mure 2 34 3 5 0.176 0.206 - - 0.412 0.176 - 2 0.029 - - - - - - - - - - - - -	Vauplane 40 4 0.500 - 0.250 - - - - 0.250 - - - - - - - - - - - - - - - - - - -	LantosqB I 40 7 - 0.100 0.075 - - 0.050 0.075 - - 0.350 0.225 0.125 - - - - - - - - - - - - - - - - - - -	LantosqC 40 8 - 0.175 0.075 - - - 0.125 0.205 0.200 0.150 - 0.025 0.025	Turini 223 6 0.091 0.182 0.136 - - 0.136 - - 0.136 - - 0.364 - 0.091 - - - - - - - - - - - - -	Braus 40 5 - - 0.500 0.300 0.075 - - - - - - - - - - - - - - - - - - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.026 0.105 0.237 0.053 0.158 0.105 0.105 0.105 0.105 0.265 0.105 0.053 0.158 0.105 0.053 0.056 0.057 0.055 0.057 0.055 0.055 0.057 0.055 0.055 0.055 0.055 0.055 0.155 0	Csiglia 40 9 - 0.050 0.475 0.075 0.150 0.075 0.075 0.075 - - - - - - 0.075	Péone 36 5 0.556 0.167 0.083 - - 0.083 - - - - - - - - - - - - - - - - - - -	Isola 40 4 0.250 0.425 0.125 - - - - - -	Madone 400 5 - 0.700 0.050 0.125 - - - - - - - - - - - - -	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 175 177 179 181 183 185 187 191 193 195	Adrets 38 5 0.026 0.132 0.421 0.395 - - - - - - - - - - - - -	Cassien 40 2 - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - - 0.375 - - - - - - - - - - - - - - - - - - -	Cournes 40 2 - - - - - - - - - - - - - - - - - -	Séranon 40 5 - 0.025 - 0.800 0.100 - 0.050 0.025 - - - - - - - - - - - - - - -	Roquest 1 26 5 - 0.192 0.654 - - 0.038 0.077 - - - - - - - - - - - - - - - - - -	Vescous 40 4 0.025 - 0.225 - 0.025 0.725 - - - - - - - - - - - - - - - - - - -	Barles 22 6 - - 0.091 0.091 - 0.182 0.182 0.182 0.182 0.182 0.182 - -	Mure 2 34 3 5 0.176 0.206 7 - 1 0.412 0.176 0.176 2 .0029 7 - - - - - - - - - - - - - -	Vauplane 40 4 0.500 - - - - - - - - - - - - - - - - - -	LantosqB 1 40 7 - 0.100 0.075 - - 0.050 0.075 - - - 0.350 0.225 0.125 - - - - - - - - - - - - - - - - - - -	LantosqC 40 8 - - 0.175 0.075 - - - 0.125 0.205 0.205 0.205 0.025 - 0.025	Turini 22 6 0.091 0.136 0.136 - 0.136 - 0.136 - 0.364 - 0.091 - -	Braus 40 5 	Brigue 38 11 - 0.053 0.079 - 0.026 0.105 0.237 0.053 0.105 0.105 0.105 0.105 0.105 0.053 - -	Osiglia 40 9 - 0.050 0.475 0.025 0.025 0.050 - - 0.050 - - - 0.050 0.075 0.050 - - - - - - - - - - - - -	Péone 5 0.556 0.167 0.167 0.083 - - - - - - - - - - - - - - - - - - -	Isola 40 4 0.250 0.425 0.125 - - - - - -	Madone 40 5 - 0.700 0.050 0.125 - - - - - - - - - - - - - - - - - - -	Means 5.316
Locus 1259 Gene Number Allele Number	Allele 161 163 165 167 169 171 173 175 177 179 181 183 185 187 191 193 195	Adrets 38 5 0.026 0.132 0.421 0.395 - - - - - - - - - - - - - - - - - - -	Cassien 40 2 - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - - - - - - - - - - - - - - - - - -	Cournes 40 2 - - - 0.025 0.975 - - - - - - - - - - - - - - - - - - -	Séranon 40 5 0.025 0.800 0.100 0.050 0.025 - - - - - - - - - - - -	Roquest V 26 5 - 0.092 0.654 - - - - - - - - - - - - - - - - - - -	Vescous 40 4 0.025 - - 0.025 - - - - - - - - - - - - - - - - - - -	Barles 22 6 - - 0.227 - 0.091 0.091 - - 0.182 0.182 0.182 0.182 - - - - - - - - - - - - - - - - - - -	Mure 2 34 3 5 0.176 0.206 - 0.206 - 0.412 0.176 - 0.412 0.176 - - - - - - - - - - - - -	Vauplane 40 4 0.500 - 0.250 - - 0.200 - - - - - - - - - - - - - - - - - -	LantosqB 1 40 7 - 0.100 0.075 - - 0.050 0.075 - - 0.350 0.225 0.125 - - - - - - - - - - - - - - - - - - -	LantosqC 40 8 - 0.175 0.075 - - 0.125 - - 0.225 0.220 0.150 - 0.025 0.025 - -	Turini 22 6 0.091 0.136 - - 0.136 - - 0.364 - 0.364 - - 0.364 - - - - - - - - - - - - -	Braus 40 5 - 0.500 0.300 0.075 - - - - - - - - - - - - - - - - - - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.105 0.105 0.105 0.105 0.105 0.053 - - -	Osiglia 40 9 - 0.050 0.475 0.075 0.075 0.075 0.075 0.075 - 0.075 0.050 - 0.025 - -	Péone 5 0.556 0.167 0.167 - 0.083 - - - - - - - - - - - - - - - - - - -	Isola 40 4 0.250 0.200 0.425 0.125 - - - - - - - -	Madone 40 5 0.700 0.050 0.125 - - - - - - - - - - - - - - - - - - -	Means 5.316
Locus 1259 Gene Number Allele Number Heterozygote Proportion	Allele 161 163 165 167 169 171 173 175 177 179 181 183 185 187 191 193 195 197	Adrets 38 5 0.026 0.132 0.4395 - 0.026 - - - - - - - - - - - - -	Cassien 40 2 - - 0.250 - - - - - - - - - - - - - - - - - - -	Caussols 40 3 0.400 0.225 - 0.375 - - - - - - - - - - - - - - - - - - -	Cournes 40 2 	Séranon 40 5 0.025 0.800 0.100 0.050 0.050 - - - - - - - - - - - - - - - - - -	Roquest V 26 5 - 0.192 0.654 - - 0.038 0.077 - - - - - - - - 0.038 0.615	Vescous 40 4 0.025 - - 0.025 0.725 - - - - - - - - - - - - - - - - - - -	Barles 22 6 - - 0.091 0.091 0.091 0.182 0.182 0.2827 - - - - - - - - - - - - - - - - - - -	Mure 2 34 3 5 0.176 0.206 7 - 0.412 0.176 - 0.206 7 - - 0.206 7 - - - - - - - - - - - - - -	Vauplane 40 4 0.500 - 0.250 - - - 0.250 - - - - - - - - - - - - - - - - - - -	LantosqB 1 40 7 0.100 0.075 - - 0.050 0.075 - 0.350 0.225 0.125 - - - - - - - - - - 0.700	LantosqC 40 8 - 0.175 0.075 - 0.125 0.225 0.200 0.150 0.255 - 0.025 - 0 0.025 - 0 0.025 - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0	Turini 22 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Braus 40 5 - 0.500 0.300 0.075 - - - 0.100 - - - 0.100 - - - 0.100 - - - - - - - - - - - - -	Brigue 38 11 - 0.053 0.079 - 0.026 0.026 0.026 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.053 - - - - - - - - - - - - -	Osiglia 40 9 - 0.050 0.475 0.075 0.075 0.075 0.075 0.075 - - - - 0.075 0.050	Péone 5 0.556 0.167 0.083 - - - - - - - - - - - - - - - - - - -	Isola 40 4 0.250 0.200 0.425 - - - - - - - - - - - - - - - - - - -	Madone 40 5 	Means 5.316

Population structure of Carabus solieri

S165

Locus 13F	Allele	Adrets	Cassien	Caussols	Courmes	Séranon	Roquest	Vescous	Barles	Mure	Vauplane	LantosqB	LantosqC	Turini	Braus	Brigue	Osiglia	Péone	isola	Madone	Means
Gene Number		38	40	40	40	40	26	40	26	34	40	40	40) 22	38	40	40	36	40	40	
Allele Number		2	2	2	2	3	1	2	1	1	1	2	2	2 4	2	5	3	2	2	2	2.158
	164	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.050			-		
	166	0.184	0.100	0.525	0.950	0.025	-	0.425	-	-	-	0.225	0.150	0.364	0.105	0.300	0.050	0.056	0.150	0.850	
	168	0.816	0.900	0.475	0.050	0.825	1.000	0.575	1.000	1.000	1.000	0.775	0.850	0.273	0.895	0.550	0.675	0.944	0.850	0.150	
	170	-	-		-	-	-	-	-	-		-	-	0.273	- 1	0.075	-	-	-		
	172	-	-	•	-	0.150	I -	-	-	-	-	-	-	0.091	-	0.025	0.275	-	-	-	
Heterozygote Proportion		0.263	0.200	0.550	0.100	0.250	0	0.550	0	0	0	0.250	0.100	0.636	0	0.600	0.250	0	0.300	0.200	0.223
Gene Diversity		0.309	0.185	0.512	0.097	0.304	0	0.501	0	0	0	0.358	0.262	0 745	0 193	0.614	0 478	0 108	0 262	0 262	0 273

Locus 5175	Allele	Adrets	Cassien	Caussols	Courmes	Séranon	Roquest	Vescous	Barles	Mure	Vauplane	LantosqB	LantosqC	Turini	Braus	Brique	Osiglia	Péone	Isola	Madone	Means
Gene Number		38	40	40	40	40	26	40	22	36	40	40	40	22	40	40	40	36	38	40	
Allele Number		5	2	7	3	3	8	4	3	3	5	5	6	5	6	11	11	12	9	4	5.895
	236	-	-	-	-	-			-		-	0.050	0.025	-	-	-	-	-	-		
	240	-	-	0.050	0.275	-	0.192	-	-	•	-		-	-	0.025	0.025	-	0.139	0.132	0.500	
	242	0.395	-	-	-	-	0.115	-	-	•	-	-	-	0.136	-	-	-	-	-	-	
	244	0.132	0.275	0.075	-	0.775	0.462	0.100	0.818	0.694	0.450	0.675	0.650	0.636	0.725	0.050	0.025	0.028	-	0.125	
	246	0.105	-	-	•	•	-	-	-		-	-	•	0.045	0.150	0.050	0.025	0.056	-	-	
	248	0.158	0.725	0.650	0.550	-	0.038	-	•	-	-	-	-	-	-	0.200	0.050	-	-	•	
	250	0.211	-	0.050	•	0.025	-	-	-	-	-	-	-	-	-	0.075	0.050	0.139	0.316	0.300	
	252	-	-	0.075	0.175	0.200	0.038	0.225	-	•	0.175	-	-	-	-	0.100	0.300	0.139	0.132	0.075	
	254	-	-	-	-	•	-	-	-	•	-	-	-	-	-	0.375	0.400	0.083	-	-	
	256	-	-	0.075	-	-	-	-	-	-	-	•	-	-	-	0.050	0.050	0.083	0.079	•	
	258	-	-	-	•	•	-	•	-	-	-	-	-	0.136	-	0.025	0.025	-	0.026	-	
	260	-	-	-	-	-	-	0.050	-	-	•	0.100	0.025	-	-	-	-	0.083	-	-	
	262	-	-	0.025	-	•	0.077	0.625	-	0.194	0.300	0.025	0.150	-	-	-	0.025	0.056	0.158	•	
	264	-	-	-	-	-	0.038	-	-	0.111	0.050	0.150	0.125	-	-	-	-	0.083	0.026	-	
	266	-	-	-	-	•	0.038	-	-	•	0.025	•	0.025	-	-	-	•	0.083	-		
	268	-	-	-	•	-	-	-	-	-	-	-	-	-	0.025	-	-	-	•	-	
	270	•	-	-	-	•	-	•	•	-	•	-	-	0.045	-	-	-	-	-	-	
	272	-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	0.025	-	-	-	
	276	-	-	-	-	-	-	-	-	-	•	-	-	-	-	0.025	-	-	-	-	
	280	-	-	-	•	•	-	-	-		-	-	•	-	0.050	-	-	-	-	-	
	282	-	-	-	•	-	•	-	-	•	•	-	-	-	0.025	-	-	-	-	•	
	284	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	•	0.079	-	
	290	-	-	-	•	-	-	-	0.091	•	•	-	-	-	-	-	-	-	-	•	
	294	-	-	-	-	-	-	•	-	-	•	-		-	-	-	0.025	0.028	-		
	296	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-	-	0.053	-	
	298	-	-	-	-	•	-	-	0.091	-	-	-	-	•	•	0.025	-	-	-	-	
Heterozygote Proportion		0.737	0.450	0.550	0.700	0.400	0.538	0.450	0.182	0.444	0.800	0.450	0.500	0.727	0.500	0.600	0.350	1.000	0.895	0.700	0.576
Gene Diversity		0.767	0.409	0.569	0.606	0.368	0.754	0.560	0.329	0.481	0.691	0.522	0.551	0.580	0.459	0.814	0.758	0.925	0.846	0.655	0.612

S166

J.-Y. Rasplus et al.

Gene Number 38 40 40 40 22 30 40 40 22 40 40 36 36 40 Able Number 2 1 2 3 2 3 2 2 1 2 2 3 2 4 4 3 4 3 2 2 4 4 3 4 2 2 4	Locus 6103	Alleie	Adrets	Cassien	Caussols	Cournes	Séranon	Roquest	Vescous	Barles	Mure	Vauplane	LantosqB	LantosqC	Turini	Braus	Brigue	Osiglia	Péone	Isola	Madone	Means
Allele Number 2 1 2 3 2 3 2 1 2 2 3 2 4 3 2 2 3 2 4 3 2 2 3 2 4 3 2 2 3 2 2 3 2 4 3 2 2 3 2 4 3 2 2 3 2 4 3 2 2 3 2 2 3 2 2 3 2 4 3 4 3 2 2 3 2 1 <th1< th=""> 1 1 <th1< th=""> <th< td=""><td>Gene Number</td><td></td><td>38</td><td>40</td><td>40</td><td>40</td><td>40</td><td>26</td><td>40</td><td>26</td><td>36</td><td>40</td><td>40</td><td>40</td><td>22</td><td>40</td><td>40</td><td>40</td><td>36</td><td>36</td><td>40</td><td></td></th<></th1<></th1<>	Gene Number		38	40	40	40	40	26	40	26	36	40	40	40	22	40	40	40	36	36	40	
231 - - - - - - - - - 0.025 - - - 0.425 235 - - - 0.075 0.881 0.00 0.755 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.775 0.750 0.550 0.750 0.550 0.750 0.550 0.750 0.550 0.333 0.222 0.450 0.357 0.750 0.550 0.333 0.222 0.450 0.450 0.500 0.500 0.250 0.384 0.400 0.500 0.500 0.250 0.384 0.400 0.400 0.40 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.775 0.100 0.100 0.50	Allele Number		2	1	2	3	2	3	2	2	1	2	2	2	3	2	4	4	3	4	3	2.474
233 - - - 0.231 - - 0.300 0.275 0.142 0.225 0.275 0.149 0.722 0.425 237 0.684 - - 0.075 0.308 0.569 - - 0.025 0.773 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.500 0.2550 0.750 0.500 0.335 0.420 0.0350 0.430 0.500 <		231	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.025	-	-	-	-	
235 - - - - 0.075 0.086 0.000 0.726 0.773 0.756 0.722 0.085 0.000 0.725 0.736 0.025 0.020 0.025 0.025 0.026 0.225 0.026 0.025 0.026 0.025 0.026 0.735 0.730		233	-	-	-	-	-	0.231	-	-	-	-	0.300	0.275	0.182	0.250	0.225	0.275	0.194	0.722	0.425	
237 0.664 - - 0.100 0.750 0.550 0.925 - - - 0.450 - 0.450 - 0.450 - 0.450 - 0.450 - 0.450 - 0.450 - 0.450 0.450 0.250 0.026 0.026 0.385 0.460 0.350 0.400 0.350 0.400 0.385 0.411 0.550 0.400 0.500 0.520 0.385 0.622 0.520 0.450 0.385 0.450 0.385 0.421 0.450 0.385 0.422 0.440 0.450 0.385 0.422 0.450 0.385 0.422 0.440 0.444 0 0.385 0.412 0.423 0.050 0.385 0.422 0.40 40 40 40 40 22 2 2 7 2 3		235	-	-	-	-	-	-	0.075	0.308	1.000	0.550	0.700	0.725	0.773	0.750	0.550	0.575	0.722	0.083	0.500	
239 0.316 1.000 0.775 0.150 0.700 0.654 0.925 - - - - - - 0.025 0.700 0.550 0.333 0.222 0.756 0.335 0.400 0.800 0.336 0.415 0.336 0.415 0.336 0.415 0.336 0.413 0.306 0.700 0.500 0.286 0.346 0.400 0.550 0.333 0.222 0.446 0.455 0.578 0.385 Gene Number 38 40 40 42 52 40 40 40 42 2 2 40		237	0.684	-	-	0.100	0.300	0.115	-	0.692	-	0.450	-	-	0.045	-	0.200	0.125	0.083	0.167	0.075	
241 - 0.225 0.750 - <th< td=""><td></td><td>239</td><td>0.316</td><td>1.000</td><td>0.775</td><td>0.150</td><td>0.700</td><td>0.654</td><td>0.925</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.025</td><td>-</td><td>0.028</td><td>-</td><td></td></th<>		239	0.316	1.000	0.775	0.150	0.700	0.654	0.925	-	-	-	-	-	-	-	-	0.025	-	0.028	-	
Heterozygote Proportion 0.316 0 0.356 0.444 0 0.356 0.441 0 0.356 0.415 0.431 0.526 0.142 0.443 0 0.506 0.431 0.409 0.385 0.835 <		241	-	-	0.225	0.750	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Gene Diversity 0.444 0 0.358 0.415 0.431 0.526 0.431 0.409 0.385 0.682 0.592 0.446 0.456 0.378 0.398 Locus 828A Allele Adrets Cassels Cassels Courses Stand Viscolar Data Allele Adde 0.456 0.478 0.398 Locus 828A Allele Adrets Cassels Causeols Stand Viscolar Barles Mure Vauplane LancedB La	Heterozygote Proportion		0.316	0	0.350	0.400	0.600	0.385	0.150	0.308	0	0.700	0.500	0.250	0.364	0.400	0.700	0.550	0.333	0.222	0.450	0.367
Locus 828A Allele Adrets Casselo Seria on Roquest Vescous Barles Mure Vauplane LantosqC Turini Braus Brigue Osiglia Péone Isola Madone Means Gene Number 38 40	Gene Diversity		0.444	ŏ	0.358	0.415	0.431	0.526	0.142	0.443	0	0.508	0.431	0.409	0.385	0.385	0.622	0.592	0.446	0.456	0.578	0.398
Locus 828A Allele Adrets Cassien Cournes Séranon Roquest Vescous Barles Mure Vauplane LantosqB																						
Gene Number 38 40 40 40 40 26 32 40	Locus 828A	Ailele	Adrets	Cassien	Caussols	Courmes	Séranon	Roquest	Vescous	Barles	Mure	Vauplane	LantosqB	LantosqC	Turini	Braus	Brigue	Osiglia	Péone	Isola	Madone	Means
Allele Number 1 1 1 1 1 1 2 1 2 1 2 3 3 2 180 - - - - - - - - - 0.000 0.423 1.000 0.900 0.850 0.750 0.536 0.950 0.100 0.000	Gene Number		38	40	40	40	40	26	40	26	32	40	40	40	22	40	40	40	34	40	40	
178 - 0.025 - - - - - 0.075 0.880 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.950 0.750 0.636 0.750 0.636 0.750 0.636 0.750 0.636 0.750 0.50 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	Allele Number		1	1	1	1	1	2	: 1	2	1	2	2	2	2 2	2	2	7	2	3	3	2
180 - - - - - - - - - - - 0.350 - 0.000 0.000 1.000 1.000 1.000 0.000 0.850 0.750 0.850 0.400 0.233 </td <td></td> <td>178</td> <td>-</td> <td>0.025</td> <td>-</td> <td>-</td> <td>•</td> <td></td>		178	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.025	-	-	•	
182 1.000 1.000 1.000 1.000 0.846 1.000 0.423 1.000 0.850 0.750 0.850 0.700 0.750 0.882 0.750 0.882 0.750 0.882 0.750 0.882 0.750 0.882 0.750 0.882 0.750 0.882 0.750 0.882 0.750 0.882 0.950 0.700 0.750 0.882 0.950 0.750 0.882 0.950 0.750 0.882 0.950 0.750 0.882 0.950 0.750 0.826 0.800 0.750 0.882 0.950 0.750 0.826 0.500 0.750 0.882 0.950 0.750 0.826 0.950 0.750 0.826 0.950 0.750 0.826 0.950 0.750 0.826 0.950 0.750 0.826 0.950 0.750 0.826 0.950 0.750 0.826 0.950 0.750 0.826 0.800 0.235 0.800 0.235 0.400 0.235 0.400 0.235 0.400 0.235 0.400 0.235 0.400 0.235 0.400 0.235 0		180	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.350	-	0.075	0.100	
184 - - - 0.154 - 0.577 - 0.100 0.150 0.250 0.364 0.050 0.277 0.118 0.175 0.100 192 - - - - - - - - - 0.050 - - - - 0.050 - - - - - 0.050 - - - - 0.050 - - - - - 0.050 - - - - - - - - 0.050 - 0.00 0.00 0.237 0.0300 0.345 0.000 0.400 0.349 0.231 0.364 0.402 0.412 0.349 0.231 0.355 0.400 0.364 40 </td <td></td> <td>182</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>0.846</td> <td>i 1.000</td> <td>0.423</td> <td>1.000</td> <td>0.900</td> <td>0.850</td> <td>0.750</td> <td>0.636</td> <td>0.950</td> <td>0.700</td> <td>0.075</td> <td>0.882</td> <td>0.750</td> <td>0.800</td> <td></td>		182	1.000	1.000	1.000	1.000	1.000	0.846	i 1.000	0.423	1.000	0.900	0.850	0.750	0.636	0.950	0.700	0.075	0.882	0.750	0.800	
186 -		184	-	-	-	-	-	0.154	-	0.577	-	0.100	0.150	0.250	0.364	0.050	0.300	0.275	0.118	0.175	0.100	
192 - 0.075 - - - - 0.075 - - - 0.075 - - - 0.075 0.075 - - - 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.00 0.00 0.000 0.233 0.00 0.233 0.00 0.233 0.00 0.233 0.00 0.030 0.305 0.485 0.097 0.431 0.765 0.214 0.412 0.349 0.233 Locus 9170 Allele Advests Cassien Cassies Cassies Series Mure Vauplane LantosqE		186	-		-	-	-	-	-	-	-	-	-	-	-	-	•	0.050	•	-	•	
194 -		192	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.150	-	-	-	
Heterozygote Proportion 0 0 0 0 0 0 0 0.154 0 0.692 0 0.300 0.300 0.545 0.100 0.700 0.235 0.400 0.235 Gene Diversity 0 0 0 0 0.271 0 0.568 0 0.185 0.262 0.385 0.485 0.070 0.235 0.400 0.233 Locus 9170 Allele Adrets Cassien Caussols Courmes Séranon Roquest Vescous Barles Mure Vauplane LantosqE LantosqE LantosqE LantosqE LantosqE Madone Madone Means Gene Number 38 40 40 40 26 36 40 40 40 40 40 40 40 40 36 40 40 Allele Number 38 40 40 40 26 36 40 40 40 40 40 40		194	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	0.075	-	-	-	
Gene Diversity 0	Heterozygote Proportion		0	0	0	0	0	0.154	0	0.692	0	0.200	0.300	0.300	0.545	0.100	0.400	0.700	0.235	0.400	0.400	0.233
Locus 9170 Allele Adrets Caussols Courmes Séranon Roquest Vescous Barles Mue Vauplane LantosqB LantosqC Turini Braus Brigue Osiglia Péone Isola Madone Meane Gene Number 38 40 40 40 26 36 40 40 22 40 40 23 5 3 3 3 4 2.892 235 - - - 0.100 - - - - - 0.025 0.375 0.400 0.273 0.150 0.200 0.425 0.472 0.450 0.550	Gene Diversity		Ō	Ó	0	Ó	0	0.271	0	0.508	0	0.185	0.262	0.385	0.485	0.097	0.431	0.785	0.214	0.412	0.349	0.231
Local strice Allele Allele Allele Allele Caussen <	1	Allala	Adapte	Casaiaa	Coursele	Courses	Cáronon	Doguos	Vacatio	Parles	Muro	Vauolana	LentoegR	LantoenC	Turini	Broue	Brique	Osialia	Péone	Isola	Madone	Means
Gene Number 38 40 40 40 40 26 36 40 40 40 40 28 36 40 40 40 40 40 28 36 40 40 40 40 28 36 40 40 40 40 40 28 36 40 40 40 40 40 40 40 40 28 36 40	Locus 9170	Allele	Adrets	Cassien	Caussois	Cournes	Seranon	NUQUESI	Vescous	Danes	141016	Vaupiane	Lantosqu	Laintoaqu	22	40	1011900	40	36	40	40	incano
Alleie Number 1 1 2 3 4 2 2 2 2 4 4 5 6 5 6 10 0 225 0.375 0.400 0.280 0.400 0.200 0.425 0.472 0.450 0.550 0.225 0.350 0.400 0.200 0.425 0.472 0.450 0.550 0.226 0.350 0.400 0.200 0.425 0.472 0.450 0.225 0.350 0.400 0.200 0.224 0.125	Gene Number		38	40	40	40	40	20) 40) 1	20	30	40	40								40	2 895
235 - - - 0.100 - - - - - - - 0.025 238 - - - - - - - - - 0.025 238 - - 0.500 0.175 0.400 0.385 0.900 0.077 0.683 0.225 0.375 0.400 0.230 0.400 0.200 0.425 0.472 0.450 0.550 241 - - 0.500 0.725 0.325 0.615 0.100 0.923 0.917 0.775 0.300 0.200 0.182 - - - - - 0.001 0.500 0.175 0.200 0.182 - - - - 0.001 0.200 0.182 0.300 0.175 0.202 0.125 0.150 0.300 0.175 0.202 0.125 0.150 0.000 0.225 0.125 0.125 0.100 0.225 - - 0.075 0.300 0.202 0.226 0.226 0.226 0.226 0.	Allele Number		1	1	2	3	4	4	. 2		2		4	-	•) i	, J	3		-	2.095
238 - - - - - - - - - - - - - - - 0.500 0.175 0.400 0.275 0.375 0.400 0.273 0.150 0.200 0.425 0.472 0.450 0.550 241 - 0.500 0.725 0.325 0.615 0.100 0.923 0.917 0.775 0.300 0.200 0.425 0.472 0.450 0.550 0.125 243 - - 0.100 - - - 0.175 - 0.901 0.775 0.300 0.200 0.182 - 0.300 0.175 0.125 0.125 - 0.021 0.100 0.225 0.150 0.200 0.175 0.125 - 0.175 0.125 - 0.028 - - 0.125 0.300 0.273 0.150 0.200 0.175 0.208 - - 0.021 0.400 0.225 0.150 0.400 0.225 0.250 0.250 0.250 0.250 0.250 0.2		235	-	-	-	-	0.100	-	-	-	-	-	-	-	-	-	-	-	-	-	0.026	
239 1.000 1.000 0.500 0.175 0.400 0.385 0.900 0.077 0.885 0.225 0.375 0.400 0.275 0.125 0.420 0.425 0		238	-						-			-			-		-	-	0 472	-	0.020	
241 - 0.500 0.725 0.525 0.515 0.100 0.23 0.917 0.775 0.200 0.162 - - - - 0.091 - 0.300 0.755 0.202 0.755 0.202 0.755 0.202 0.162 - - - - - 0.091 - 0.300 0.755 0.202 0.755 0.300 - - - - 0.105 0.225 0.175 0.202 0.250 0.450 0.550 0.300 0.225 0.125 - 0.025 - - - 0.001 - 0.025 0.250 0.		239	1.000	1.000	0.500	0.1/5	0.400	0.385	0.900	0.077	0.083	0.225	0.375	0.400	0.273	0.150	0.200	0.420	0.472	0.430	0.000	
243 - - 0.100 - - - 0.109 - 0.100 - 0.100 - - 0.100 - 0.100 - 0.100 - 0.100 - 0.100 - 0.100 - 0.100 0.175 0.200 0.175 0.150 0.175 0.200 0.175 0.150 <t< td=""><td></td><td>241</td><td>-</td><td>-</td><td>0.500</td><td>0.725</td><td>0.325</td><td>0.615</td><td>0.100</td><td>0.923</td><td>0.917</td><td>0.775</td><td>0.300</td><td>0.200</td><td>0.104</td><td>-</td><td>0.350</td><td>0.400</td><td>0.500</td><td>0.4/5</td><td>0.125</td><td></td></t<>		241	-	-	0.500	0.725	0.325	0.615	0.100	0.923	0.917	0.775	0.300	0.200	0.104	-	0.350	0.400	0.500	0.4/5	0.125	
245 - - 0.175 - - 0.125 0.150 0.409 0.225 0.125 - - 0.005 247 - - - - 0.200 0.250 0.0409 0.225 - - 0.005 249 - - - - 0.200 0.250 0.045 0.625 - - - 0.025 - - - - - - 0.025 - - - - - - 0.025 - - - - - - - 0.025 - - - - - - 0.025 - <td< td=""><td></td><td>243</td><td>-</td><td>-</td><td>-</td><td>0.100</td><td></td><td>•</td><td>-</td><td>-</td><td>-</td><td>-</td><td>- 405</td><td></td><td>0.091</td><td>-</td><td>0.300</td><td>0.1/5</td><td>0.028</td><td>0.076</td><td>- 200</td><td></td></td<>		243	-	-	-	0.100		•	-	-	-	-	- 405		0.091	-	0.300	0.1/5	0.028	0.076	- 200	
247 - - - - 0.200 0.250 0.045 -		245	-	•	-	•	0.175	-	-	-	-	-	0.125	0.150	0.40	0.225	0.125	, -	-	0.075	0.300	
249 0.020 0.040 0.350 0.700 0.769 0.200 0.154 0.67 0.450 0.700 0.750 0.660 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.720 0.600 0.722 0.600 0.722 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.		247	-	-	-	-	-	-	-	-	-	-	0.200	0.250	0.04	0.625	, .		-	-	•	
Heterozygote Proportion 0 0.400 0.350 0.700 0.769 0.200 0.154 0.167 0.250 0.550 0.800 0.727 0.450 0.700 0.600 0.720 0.460 0.722 0.800 0.800 0.723 <td></td> <td>249</td> <td>•</td> <td>-</td> <td>•</td> <td>-</td> <td>-</td> <td>•</td> <td>•</td> <td>-</td> <td>•</td> <td>•</td> <td>-</td> <td>•</td> <td>-</td> <td>-</td> <td>0.025</td> <td></td> <td></td> <td></td> <td>•</td> <td>0.465</td>		249	•	-	•	-	-	•	•	-	•	•	-	•	-	-	0.025				•	0.465
Gene Diversity 0 0 0.513 0.445 0.712 0.492 0.185 0.148 0.157 0.358 0.732 0.733 0.749 0.550 0.750 0.645 0.541 0.581 0.606 0.466	Heterozygote Proportion		0	0	0.400	0.350	0.700	0.769	0.200	0.154	0.167	0.250	0.550	0.800	0.727	0.450	0.700	0.600	0.722	0.600	0.750	0.468
	Gene Diversity		0	0	0.513	0.445	<u>i 0.712</u>	0.492	2 0.185	0.148	0.157	0.358	0.732	0.733	3 0.749	0.550	0.750	0.645	0.541	0.581	0.606	0.468

Adrets	Cassien	Caussols	Courmes	Séranon	Roquest	Vescous	Barles	Mure	Vauplane	LantosqB	LantosqC	Turini	Braus	Brigue	Osiglia	Péone	isola	Madone	
3.000	2.000	3.286	2.571	3.429	4.143	2.286	2.857	2.429	3.286	3.714	4.143	4.571	3.571	6.571	6.000	5.286	5.000	3.714	
1.915	1.414	2.289	0.976	1.718	2.911	1.254	1.676	1.618	2.138	1.890	2.340	1.718	1.718	3.505	3.109	4.071	3.162	1.113	
0.381	0.250	0.479	0.307	0.429	0.440	0.236	0.391	0.255	0.493	0.507	0.521	0.606	0.421	0.618	0.514	0.542	0.574	0.500	
0.325	0.299	0.275	0.267	0.258	0.276	0.212	0.308	0.325	0.331	0.199	0.316	0.132	0.290	0.131	0.163	0.356	0.269	0.185	
0.397	0.253	0.486	0.325	0.398	0.465	0.260	0.428	0.256	0.439	0.543	0.562	0.650	0.444	0.710	0.657	0.537	0.589	0.487	
0.309	0.298	0.252	0.272	0.230	0.254	0.236	0.300	0.294	0.270	0.206	0.220	0.168	0.240	0.163	0.112	0.310	0.226	0.142	
	Adrets 3.000 1.915 0.381 0.325 0.397 0.309	Adrets Cassien 3.000 2.000 1.915 1.414 0.381 0.250 0.325 0.299 0.397 0.253 0.309 0.298	Adrets Cassien Caussols 3.000 2.000 3.286 1.915 1.414 2.289 0.381 0.250 0.479 0.325 0.299 0.275 0.397 0.253 0.486 0.309 0.295 0.298	Adrets Cassien Caussols Courmes 3.000 2.000 3.286 2.571 1.915 1.414 2.289 0.976 0.381 0.250 0.479 0.307 0.325 0.299 0.275 0.267 0.397 0.253 0.486 0.325 0.309 0.298 0.252 0.272	Adrets Cassien Caussols Courmes Séranon 3.000 2.000 3.286 2.571 3.429 1.915 1.414 2.289 0.976 1.718 0.381 0.250 0.479 0.307 0.429 0.325 0.299 0.275 0.267 0.258 0.397 0.253 0.486 0.325 0.398 0.309 0.258 0.252 0.272 0.230	Adrets Cassien Caussole Cournes Séranon Roquest 3.000 2.000 3.286 2.571 3.429 4.143 1.915 1.414 2.289 0.976 1.718 2.911 0.381 0.250 0.479 0.307 0.429 0.440 0.325 0.299 0.275 0.267 0.258 0.276 0.397 0.253 0.486 0.325 0.398 0.465 0.309 0.252 0.272 0.230 0.254	Adrets Cassien Caussols Courmes Séranon Roquest Vescous 3.000 2.000 3.286 2.571 3.429 4.143 2.286 1.915 1.414 2.289 0.976 1.718 2.911 1.254 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.325 0.299 0.275 0.267 0.258 0.276 0.212 0.397 0.253 0.486 0.325 0.398 0.465 0.260 0.309 0.252 0.272 0.230 0.254 0.254 0.236	Adrets Cassien Caussols Courmes Séranon Roquest Vescous Barles 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 1.915 1.414 2.289 0.976 1.718 2.911 1.254 1.576 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.325 0.299 0.275 0.267 0.258 0.276 0.212 0.308 0.307 0.253 0.486 0.325 0.398 0.465 0.260 0.428 0.309 0.252 0.272 0.230 0.254 0.262 0.329	Adrets Cassien Caussole Courmes Séranon Roquest Vescous Barles Mure 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.877 2.429 1.915 1.414 2.286 0.976 1.718 2.911 1.254 1.676 1.618 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.255 0.325 0.299 0.275 0.267 0.258 0.276 0.212 0.308 0.325 0.397 0.253 0.486 0.325 0.398 0.465 0.260 0.428 0.256 0.309 0.254 0.272 0.230 0.254 0.300 0.284	Adrets Cassien Caussols Courmes Séranon Roquest Vescous Barles Mure Vauplane 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 2.429 3.286 1.915 1.414 2.289 0.976 1.718 2.911 1.254 1.676 1.618 2.138 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.255 0.493 0.325 0.299 0.275 0.267 0.258 0.276 0.212 0.308 0.325 0.391 0.325 0.331 0.397 0.253 0.486 0.325 0.398 0.465 0.268 0.428 0.256 0.439 0.309 0.258 0.272 0.234 0.254 0.308 0.265 0.439	Adrets Cassion Courses Séranon Roquest Vescous Bartes Mure Vauplane LantosgB 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 2.429 3.286 3.714 1.915 1.414 2.289 0.976 1.718 2.911 1.254 1.676 1.618 2.138 1.890 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.255 0.493 0.507 0.325 0.299 0.275 0.267 0.258 0.276 0.212 0.308 0.325 0.331 0.199 0.397 0.253 0.486 0.325 0.236 0.260 0.428 0.256 0.439 0.511 0.309 0.254 0.256 0.272 0.230 0.254 0.266 0.428 0.254 0.270 0.206	Adrets Cassien Caussols Courmes Séranon Roguest Vescous Barles Mure Vauplane LantosqB LantosqC 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 2.429 3.286 3.714 4.143 1.915 1.414 2.289 0.976 1.718 2.911 1.254 1.676 1.618 2.138 1.890 2.340 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.255 0.493 0.507 0.521 0.325 0.299 0.275 0.267 0.258 0.276 0.212 0.306 0.325 0.331 0.199 0.316 0.397 0.253 0.486 0.325 0.298 0.252 0.272 0.236 0.264 0.256 0.439 0.543 0.552 0.309 0.258 0.272 0.236 0.254 0.254 0.236 0.439 0.543	Adrets Cassion Courses Séranon Roquest Vescous Barles Mure Vauplane LantosqB LantosqB	Adrets Cassien Caussols Courmes Séranon Roquest Vescous Barles Mure Vauplane LantosqC Turini Braus 3.000 2.000 3.266 2.571 3.429 4.143 2.266 2.857 2.429 3.216 3.714 4.143 4.571 3.571 1.915 1.414 2.289 0.976 1.718 2.124 1.676 1.618 2.138 1.890 2.340 1.718 1.718 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.255 0.493 0.507 0.521 0.606 0.421 0.325 0.299 0.275 0.286 0.276 0.212 0.308 0.325 0.331 0.199 0.316 0.322 0.208 0.397 0.253 0.486 0.325 0.294 0.256 0.433 0.542 0.562 0.562 0.560 0.444 0.309 0.254 0.276 0.	Adrets Caussols Courmes Séranon Roquest Vescous Barles Mure Vauplane Lantosq2 Lantosq2 Turini Braus Brigue 3.000 2.000 3.266 2.571 3.429 4.143 2.266 2.857 2.429 3.266 3.714 4.143 4.571 3.571 6.571 5.72 5.71 5.72	Adrets Caussols Courmes Séranon Roquest Vescous Barles Mure Vauplane Lantosq2 Lantosq2 Tunti Braus Brigue Osiglia 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 2.429 3.286 3.714 4.143 4.571 3.571 6.571 6.000 1.915 1.414 2.289 0.976 1.718 2.124 1.676 1.618 2.138 1.890 2.340 1.718 1.718 5.055 3.109 0.381 1.950 0.479 0.307 0.429 0.440 0.236 0.391 0.255 0.493 0.507 0.521 0.606 0.421 0.618 0.514 0.325 0.299 0.275 0.268 0.276 0.226 0.326 0.331 0.199 0.316 0.132 0.290 0.131 0.163 0.397 0.253 0.486 0.325 0.296 0.244 0.236 0.306	Adrets Caussols Courmes Séranon Roquest Vescous Barles Mure Vauplane LantosqD LantosqD Timi Braus Brigue Osiglia Péone 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 2.429 3.286 3.714 4.143 4.571 3.571 6.571 6.000 5.286 1.915 1.414 2.289 0.976 1.718 2.911 1.254 1.676 1.618 2.138 1.890 2.340 1.718 1.718 5.055 3.109 4.071 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.557 0.521 0.606 0.421 0.618 0.542 0.325 0.299 0.275 0.268 0.276 0.212 0.308 0.325 0.331 0.199 0.316 0.132 0.290 0.131 0.163 0.152 0.397 0.253 0.486 0.325	Adrets Cassion Courses Séranon Roquest Vescous Barles Mure Vauplane LantosqB LantosqC Turini Braus Brigue Osiglia Péone Isola 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 2.429 3.286 3.714 4.143 4.571 5.571 6.001 5.286 5.000 1.915 1.414 2.289 0.976 1.718 2.911 1.254 1.676 1.618 2.138 1.800 2.340 1.718 1.718 3.505 3.109 4.071 3.652 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.255 0.493 0.507 0.521 0.606 0.421 0.818 0.514 0.542 0.574 0.325 0.299 0.275 0.268 0.276 0.312 0.301 0.199 0.316 0.132 0.290 0.131 0.165 0.562	Adrets Cassien Caussols Courmes Séranon Roquest Vescous Barles Mure Vauplane LantosqC Turini Braus Brigue Osiglia Péone Isola Madone 3.000 2.000 3.286 2.571 3.429 4.143 2.286 2.857 2.429 3.286 3.714 4.143 4.571 6.571 6.000 5.286 5.000 3.714 0.141 2.289 0.976 1.718 2.121 1.251 1.676 1.618 2.138 1.890 2.340 1.718 1.718 3.555 3.109 4.071 3.162 1.113 0.381 0.250 0.479 0.307 0.429 0.440 0.236 0.391 0.555 0.493 0.507 0.521 0.606 0.421 0.618 0.514 0.542 0.574 0.500 0.325 0.299 0.275 0.286 0.276 0.230 0.321 0.500 0.421 0.618 0.356

Population structure of Carabus solieri

S167

Despite its low level of genetic variability, C. s. bonnetianus exhibits distinctive morphology, private mitochondrial haplotypes (close to but different from those found in the two western populations of C. s. solieri) and original ecological particularities (mostly associated with relatively dry forested habitats). All these characters, our hypothesis on the phylogeography of the subspecies, and the existing examples of apparently viable small populations with a high degree of inbreeding strongly, are strong arguments in favour of protection of habitats where C. s. bonnetianus occurs.

4.3.2. Applying the ESU concept

As pointed out by Moritz [53], the ESU concept must be applied with common sense. One of the failures of the concept is its inability to recognise separate entities when natural hybridisation occurs, whatever the taxonomic level of the hybridising entities. In the case of C. solieri, mtDNA alleles cannot be sorted between taxa that can be easily separated on the basis of other characters (morphology, biology, ecology). DNA characters offer a wealth of discrete character information for identification of conservation units. However, mtDNA cannot always be reliable when interspecific or infraspecific mitochondrial introgression or complete transfer occurs, accompanied or not by traces of nuclear introgression, which is likely to be the rule in several insect groups. Mitochondrial DNA can be a source of valuable characters that may be useful for the characterisation and conservation of entities. Combination of both morphological and mtDNA character analysis may prevent misinterpretation due to flow of mtDNA through species or subspecies boundaries. The prerequisite condition of monophyletic mtDNA for designation of ESU, could be ruled out when hybridisation occurred between taxa. There is growing evidence of frequent hybridisation between animal species, and possible secondary contact between infraspecific entities which reached some level of mtDNA differentiation during the last ice ages. This limits the usefulness of mtDNA in selecting populations that must be protected (but also in recognising taxa on the basis of phylogenetic species concept). These results also argue for the need to include other sets of characters in the recognition of the most important population components for the optimal conservation of endangered species.

Nevertheless, natural hybridisation may lead to adaptative evolution and evolutionary diversification and therefore, far from being detrimental, may be an important part of the evolutionary process. Hybridisation may result in genetic enrichment of endangered forms or of populations that would otherwise lose their diversity through genetic drift [5,6]. This addition of genetic variability could produce new recombinant genotypes with fitness as high as or higher than both of their parents [35,68]. Hybrid genotypes that possess increased fitness in certain environments can enable the species to colonise new habitats by widening the range of environmental parameters that a single phenotype can tolerate. Furthermore, hybridisation can act as the starting point

S168

for further evolutionary diversification in animals [23, 27] and particularly in insects [7, 16, 54, 70].

Consequently, hybrid zones formed when differentiated genomes meet each other could be of great significance for conservation purposes. As many as 37% of the known hybrid zones in Europe and North America have developed as a result of Pleistocene disjunction, range expansion following the retreat of the glaciers and subsequent secondary contact [11]. In Europe, the southern peninsulas of Iberia, Italy, the Balkans and Greece are considered to be distinct major refugia in the last ice age [38] and contact areas are mostly localised in the Pyrenees and the Alps [38,75]. The Maritime and Ligurian Alps are both considered as a contact area between taxa differentiated in different refuge zones [12, 46, 58, 75] and an area with high species richness and endemism for plants [52, 80] and insects [22].

None of the two main methods supposed to be useful for recognition of populations to be protected seem appropriate in recognising populations of C. solieri that contribute more to the overall diversity of the species. This is probably due to secondary contact between the two constitutive subspecies of C. solieri. Furthermore, the two subspecies have experienced different histories which have resulted in markedly different levels of genetic diversity within each subspecies. C. s. bonnetianus shows lower levels of genetic variability and fewer diagnostic alleles than any other populations belonging to C. s. solieri. Our study clearly showed that genetic data in isolation cannot always give straightforward answers to conservation managers. However, its careful use in conjunction with other parameters such us morphological, demographic, and economic information may help in optimising management decisions.

Nevertheless, our study of C. solieri enables us to propose some conservation rules which could help to preserve the species, especially in its southern range, where the species seems greatly endangered. The strong genetic structure found at the population level corroborates field studies which indicate that, following local extinction due to fire or habitat destruction/transformation etc., *Carabus* are not likely to recolonise forest patches separated by inhospitable habitats of more than a few kilometres [24]. As for most other endangered species of insects, habitat degradation or destruction is the single most important and widely recognised agent of beetle decline. Conservation efforts, therefore, should focus on maintaining as many populations as possible across as many geographical regions as possible within both *C. solieri* lineages because it is at this level that the majority of molecular (nuclear and mitochondrial) and morphological variation resides.

Management practices such as translocation may have profound consequences for the maintenance of genetic diversity in *C. solieri*. Translocations have become a prominent strategy in efforts to conserve threatened and endangered species, but the strong genetic partitioning in the Solier's Carab indicates that translocations could compromise the integrity of genetic differences that have accumulated over thousands of years. Consequently, translocation, which is considered by entomologists as a promising conservation practice [50], must be avoided in *C. solieri*. Habitat change that can generate contact and, consequently, can lead to the mixing of distinct genomes must be also avoided. For example, construction of a permanent corridor (*e.g.* forested area) allowing movement of the northern populations of *C. s. bonnetianus* (mtDNA *solieri*like) into the range of the southern populations of *C. s. bonnetianus* (characterised by original mtDNA haplotype) may endanger their genetic uniqueness.

To preserve C. solieri populations successfully, management practices must concentrate on reserve selection, especially in the part of the distribution range where C. solieri is greatly endangered (low level of genetic diversity, fixed alleles). Habitat preservation and restoration could have a greater impact than the legislative protection of the species. Some of the surveyed habitats are located in protected areas (e.g. Mercantour National Park, Haut Verdon Regional Park, Courmettes Natural Reserve). However, very few of the southern habitats are protected. In Tanneron and Estérel, the loss of the few suitable habitats for C. solieri bonnetianus probably signals the loss of one of the most distinctive entities (ecology, morphology, mtDNA). Most of these habitats are disappearing under an ongoing wave of urban expansion, forest fire and habitat fragmentation. Our study emphasised the need for legal protection of some of the forested habitats that still maintain populations of C. s. bonnetianus.

ACKNOWLEDGEMENTS

We thank all those who assisted in sample collection, particularly Lilian Micas, Emmanuel Barrau, Jean-Claude Malausa; and two anonymous referees for valuable suggestions for improving this manuscript. This work was supported by a grant from the BRG *Bureau des ressources génétiques*.

REFERENCES

- Allemand R., Malausa J.C., Compatibilité génétique et distances phylétiques entre les espèces du genre *Chrysocarabus* Thomson (Col., Carabidae), Ann. Soc. Entomologique de France 20 (1984) 247–263.
- [2] Allendorf F.W., Genetic drift and the loss of alleles versus heterozygosity, Zoo Biology 5 (1986) 181-190.
- [3] Allendorf F.W., Leary R.F., Heterozygosity and fitness in natural populations of animals, in: Soulé M.E. (Ed.), Conservation biology. The Science of scarcity and diversity, Sinauer Associates, Sunderland, 1986, pp. 57–75.
- [4] Amato G., Gatesy J., Brazaitis P., PCR assays of variable nucleotide sites for identification of conservation units: an example from *Caiman*, in: De-Salle R., Schierwater B. (Eds.), Molecular approaches to ecology and evolution, Birkhaüser Verlag, Basel, 1998, pp. 177-190.

- [5] Arnold M.L., Bulger M.R., Burke J.M., Hempel A.L., Willimas J.H., Natural hybridization: How low can you go and still be important?, Ecology 80 (1999) 371–381.
- [6] Arnold M.L., Emms S.K., Paradigm lost. Natural hybridization and evolutionary innovations, in: Howard D.J., Berlocher S.H. (Eds.), Endless Forms, Oxford University Press, Oxford, 1998, pp. 379–389.
- [7] Aubert J., Barascud B., Descimon H., Michel F., Ecology and genetics of interspecific hybridization in the swallowtails, *Papilio hospiton* Géné and *P. machaon* L., in Corsica (Lepidoptera: Papilionidae), Biological Journal of the Linnean Society 60 (1997) 467–492.
- [8] Avise J.C., Molecular markers, natural history, and evolution, Chapman and Hall, New York, 1994.
- [9] Barlow G.W., The relevance of behavior and natural history to evolutionarily significant units, in: Nielsen J.L. (Ed.), Evolution and the aquatic ecosystem: Defining units in population conservation, American Fisheries Society Symposium 17, Bethesda, 1995, pp. 169–175.
- [10] Barrowclough G.F., Flesness N.R., Species, subpecies, and races: the problem of units of management in conservation, in: Kleinman G.G., Allen L., Harris H. (Eds.), Wild Animal in Captivity, University of Chicago Press, Chicago, 1996, pp. 247-254.
- [11] Barton N.H., Hewitt G.M., Analysis of hybrid zones, Ann. Rev. Ecol. Syst. (1985) 113–148.
- [12] Barton N.H., Hewitt G.M., A chromosomal cline in the grasshopper Podisma terrestris, Evolution 35 (1981) 1008-1018.
- [13] Bonadona P., Caractères distinctifs des races françaises de C. solieri Dejean, Entomops 7 (1967) 202–223.
- [14] Bonadona P., Nouvelle contribution à la connaissance des races françaises de Chrysocarabus solieri (Col. Carabidae), Annales de la Société Entomologique de France (N.S) 9 (1973) 759-812.
- [15] Brower A.V.Z., Rapid morphological radiation and convergence among races of the butterfly *Heliconius erato* inferred from patterns of mitochondrial DNA evolution, Proc. Nat. Acad. Sci. USA 76 (1994) 1967–1971.
- [16] Bullini L., Origin and evolution of animal hybrid species, Trends Ecol. Evolut. 9 (1994) 422–426.
- [17] Casale A., Cavazzuti P.F., Sul Carabus (Chrysocarabus) solieri Dejean in Italia (Col. Carabidae): Sistematics, corologia, ecologia, Boll. Ist. Entomologia della Università di Bologna 32 (1975) 231–255.
- [18] Cavalli-Sforza L.L., Edwards A.W.F., Phylogenetics analysis: Models and estimation procedures, Am. J. Hum. Genet. 19 (1967) 233-257.
- [19] Clarke G.M., O'Dwyer C., Genetic variability and population structure of the endangered golden sun moth, Synemon plana, Biol. Conservation 92 (2000) 371-381.
- [20] Cracraft J., Speciation and ontology: The empirical consequences of alternative species concepts for understanding patterns and processes of differentiation, in: Otte D., Endler J.A. (Eds.), Speciation and its consequences, Sinauer Associates, Sunderland, 1989, pp. 28–57.
- [21] Cracraft J., Species concepts in systematics and conservation biology an ornithology viewpoint, in: Claridge M.F., Dawah H.A., Wilson M.R. (Eds.),

Species: The units of biodiversity, Chapman and Hall, New York, 1997, pp. 325–340.

- [22] De Jong H., In search of historical biogeographic patterns in the western Mediterranean terrestrial fauna, Biol. J. Linnean Soc. 65 (1998) 99–164.
- [23] DeMarais B.D., Dowling T.E., Douglas M.E., Minckley W.L., Marsh P.C., Origin of *Gila seminuda* (Teleostei: Cyprinidae) through introgressive hybridization: Implications for evolution and conservation, Proc. Nat. Acad. Sci. USA 89 (1992) 2747–2751.
- [24] den Boer P.J., On the dispersal power of carabid beetles and its possible significance, Landbouwhogeschool Miscellenous Papers 8 (1971) 119–137.
- [25] Deuve T., Une classification du genre Carabus, Bibliotheque Entomologique, Venette 5 (1994) 1–296.
- [26] Dizon A.E., Lockyer C., Perrin W.F., Demaster D.P., Sisson J., Rethinking the stock concept: A phylogenetic approach, Conserv. Biol. 6 (1992) 24–36.
- [27] Dowling T.E., Secor C.L., The role of hybridization and introgression in the diversification of animals, Annu. Rev. Ecol. Syst. 28 (1997) 593-619.
- [28] Dujardin F., Bellon J., Mise au point concernant la nomenclature de certains taxa de D. solieri Dejean, Entomops 22 (1971) 195-198.
- [29] El Mousadik A., Petit R.J., High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.), Skeels] endemic to Morocco, Theor. Applied Genetics 92 (1996) 832–839.
- [30] Estoup A., Solignac M., Harry M., Cornuet J.M., Characterization of (GT)n and (CT)n microsatellites in two insect species: *Apis mellifera* and *Bombus terrestris*, Nucleic Acids Res. 21 (1993) 1427–1431.
- [31] Felsenstein J., PHYLIP (Phylogenetic Inference Package), version 3.5c, ed., Departement of Genetics, University of Washington, Seattle, 1993.
- [32] Fuerst P.A., Maruyama T., Considerations on the conservation of alleles and of genic heterozygosity in small managed populations, Zoo Biology 5 (1986) 171–179.
- [33] Gaggiotti O.E., Lange O., Rassmann K., Gliddons C., A comparison of two indirect methods for a estimating average levels of gene flow using microsatellite data, Mol. Ecol. 8 (1999) 1513-1520.
- [34] Goldstein P.Z., DeSalle R., Amato G., Vogler A.P., Conservation genetics at the species boundary, Conserv. Biol. 14 (2000) 120–131.
- [35] Grant B.R., Grant P.R., High survival of Darwin's finch hybrids: Effect of beak morphology and diets, Ecology 77 (1996) 500-509.
- [36] Haig S.M., Molecular contributions to conservation, Ecology 79 (1998) 413-425.
- [37] Harry M., Solignac M., Lachaise D., Molecular evidence for multiple homoplasies of complex adaptative syndromes in fig-breeding *Lissocephala* (Drosophilidae), Mol. Phylogenet. Evol. 9 (1998) 542–551.
- [38] Hewitt G.M., Post-glacial re-colonization of European biota, Biol. J. Linnean Soc. 68 (1999) 86-112.
- [39] Hoole J.C., Joyce D.A., Pullin A.S., Estimate of gene flow between populations of the swallowtail butterfly, *Papilio* in Broadland, UK and implications for conservation, Biological Conservation 89 (1999) 293-299.
- [40] Hurlbert S.H., The nonconcept of species diversity: A critique and alternative parameters, Ecology 52 (1971) 577–586.

- [41] Jermiin L.S., Crozier R.H., The cytochrome b region in the mitochondrial DNA of the ant *Tetraponera rufonige*, sequence divergence in Hymenoptera may be associated with nucleotide contents, J. Mol. Evol. 38 (1994) 282–294.
- [42] Juan C., Oromi P., Hewitt G.M., Mitochondrial DNA phylogeny and sequential colonization of Canary islands by darkling beetles of the genus *Pimelia* (Tenebrionidae), Proc. R. Soc. Lond. [Biol.] 261 (1995) 173–180.
- [43] Kimura M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16 (1980) 111-120.
- [44] Kumar S., Tamura K., Nei M., MEGA: Molecular evolutionary genetic analysis., 1.01 ed., Pensylvania State University, University Park, 1993.
- [45] Lande R., Genetics and demography in biological conservation, Science 41 (1988) 1455–1460.
- [46] Largiadèr C.R., Klingenberg C.P., Zimmermann M., Morphometric variation in a hybrid zone of two subspecies of *Gerris costae* (Heteroptera: Gerridae) in the Maritime Alps, J. Evolutionary Biology 7 (1994) 697–712.
- [47] Leberg P.L., Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis, Evolution 46 (1992) 477–494.
- [48] Legge J.T., Roush R., DeSalle R., Vogler A.P., May B., Genetic criteria for establishing evolutionarily significant units in Cryan's buckmoth, Conservation Biology 7 (1996) 856-865.
- [49] Malausa J.C., État actuel des connaissances sur l'hybridation des espèces du genre Chrysocarabus Thomson (Coleoptera, Carabidae), Bull. mensuel de la Société Linnéenne de Lyon 51 (1982) 41–47.
- [50] Malausa J.C., Drescher J., Elevage et acclimatation de Carabes ; un exemple d'action pour la protection d'un groupe très collectionné, Cahiers de liaison de l'OPIE 21 (1987) 67–79.
- [51] Malausa J.C., Raviglione M., Boggio F., Il Carabus olympiae Sella dell'Alta Valle Sessera, ed., Pro Natura Biellese, 1983.
- [52] Médail F., Verlaque R., Ecological characteristics and rarity of endemic plants of southeast France and Corsica: Implications for biodiversity conservation, Biol. Conservation 80 (1997) 269–271.
- [53] Moritz C., Defining "Evolutionarily Significant Units" for conservation, Trends Ecol. Evolut. 9 (1994) 373-375.
- [54] Mossakowski D., Braun S., Roschen A., Hybridization in natural populations of ground beetles (Coleoptera, Carabidae), Can. J. Zool. 68 (1990) 1783–1789.
- [55] Nei M., Molecular Evolutionary Genetics, ed., Columbia University Press, New York, 1987.
- [56] Paetkau D., Using genetics to identify intraspecific conservation units: A critique of current methods, Conserv. Biol. 13 (1999) 1507–1509.
- [57] Petit R.J., El Mousadik A., Pons O., Identifying populations for conservation on the basis of genetic markers, Conserv. Biol. 12 (1998) 844–855.
- [58] Porter A.H., Wenger R., Geiger H., Scholl A., Shapiro A.M., The Pontia daplidice-edusa hybrid zone in northwestern Italy, Evolution 51 (1997) 1561–1573.
- [59] Prunier D., Marcilhac J., Réflexions sur Chrysocarabus solieri Dejean 1.- Étude du secteur situé au Sud du fleuve Var (Coleoptera Carabidae), L'Entomologiste 45 (1989) 15-22.

J.-Y. Rasplus et al.

- [60] Prüser F., Mossakowski F., Low substitution rates in mitochondrial DNA in Mediterranean carib beetles, Insect Mol. Biol. 7 (1998) 121–128.
- [61] Rasplus J.Y., Meusnier S., Mondor G., Pyri S., Cornuet J.M., Microsatellite analysis of genetic population structure in the endangered Carabid: *Carabus solieri* (Carabidae), in: Brandmayr P., Casale A., Lövei G., Taglianti V. (Eds.), Natural History and Applied Ecology of Carabid Beetles. Proceedings of the IX European Carabidologists Meeting, Universita di Calabria, Coscenza (2001) (in press).
- [62] Raymond M., Rousset F., GENEPOP (version 1.2): Population genetics software for exact tests and ecumenism, J. Hered. 86 (1995) 248-249.
- [63] Rhymer J.M., Simberloff D., Extinction by hybridization and introgression, Ann. Rev. Ecol. Syst. 27 (1996) 83–109.
- [64] Ryder O., Species conservation and systematics: The dilemma of subspecies, Trends Ecol. Evolut. 1 (1986) 9–10.
- [65] Saccheri I., Kuussaari M., Kankare M., Vikman P., Forteliust W., Hanski I., Inbreeding and extinction in a butterfly metapopulation, Nature 392 (1998) 491–494.
- [66] Saitou N., Nei M., The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4 (1987) 406–425.
- [67] Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: A laboratory manual, 2nd edition, ed., Cold Spring Harbor Laboratory Press, New York, 1989.
- [68] Scribner K.T., Hybrid zone dynamics are influenced by genotypic-specific variation in life-history traits: Experimental evidence from hybridizing *Gambusia* species, Evolution 47 (1993) 632-646.
- [69] Sneath P.H.A., Sokal R.R., Numerical Taxonomy, ed., Freeman and Co., San Francisco, 1973.
- [70] Sperling F.A.H., Harrison R.G., Mitochondrial DNA variation within and between species of the *Papilio machaon* group of swallowtail butterflies, Evolution 48 (1994) 408-422.
- [71] Stauffer J.R.J., Bowers N.J., McKaye K.R., Kocher T.D., Evolutionarily significant units among cichlid fishes: the role of behavioral studies, in: Nielsen J.L. (Ed.), Evolution and the aquatic ecosystem: Defining units in population conservation, American Fisheries Society Symposium 17, Bethesda, 1995, pp. 227–244.
- [72] Storfer A., Quantitative genetics: A promising approach for the assessment of genetic diversity in endangered species, Trends Ecol. Evolut. 11 (1996) 343–348.
- [73] Strimmer K., Von Haeseler A., Puzzle 4.0: Maximum likelihood analysis for nucleotide and amino acid alignments, 4.0 ed., Zoologisches Institut, Universitaet Muenchen, Muenchen, Germany, 1997.
- [74] Syzmura J.M., Lunt D.H., Hewitt G.M., The sequence and structure of the meadow grasshopper (*Chorthippus parallelus*) mitochondrial 12s TRNA, ND2, COI, COII, ATPase8 and tRNA genes, Insect Mol. Biol. 5 (1996) 127–139.
- [75] Taberlet P., Fumagali L., Wust-Saucy A.G., Cosson J.F., Comparative phylogeography and post-glacial colonization routes in Europe, Mol. Ecol. 7 (1998) 453-464.
- [76] Takezaki N., Nei M., Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA, Genetics 144 (1996) 389–399.

- [77] Tarrier M., Essai d'une hiérarchie objective et raisonnée de Carabus (Dysmictocarabus) solieri Dejean. Contribution à la connaissance de Carabus (Dysmictocarabus) solieri Dej., VIII, Carabologia 2 (1975) 65–75.
- [78] Thompson J.D., Higgins D.G., Gibson T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673-4680.
- [79] Turin H., Casale A., Kryzhanouskij O.L., Makarov K.V., Penev L.D., Checklist and atlas of the genus *Carabus* Linnaeus in Europe (Coleoptera, Carabidae), ed., Backhuys, Universal Book Service, Leiden, 1993.
- [80] Vogel J.C., Rumsey F.J., Schneller J.J., Barrett J.A., Gibby M., Where are the glacial refugia in Europe? Evidence from pterydophytes, Biol. J. Linnean Soc. 66 (1999) 23-37.
- [81] Vogler A.P., Extinction and the evolutionary process in endangered species: What to conserve?, in: DeSalle R., Schierwater B. (Eds.), Molecular approaches to ecology and evolution, Birkhaüser Verlag, Basel, 1998, pp. 191–210.
- [82] Vogler A.P., DeSalle R., Diagnosing units of conservation management, Conserv. Biol. (1994) 354–363.
- [83] Waples R.S., Pacific salmon, Onchorhynchus spp., and the definition of species under the Endangered Species Act, Marine Fisheries Reviews 53 (1991) 11-22.
- [84] Weir B.S., Cockerham C.C., Estimating F-statistic for the analysis of population structure, Evolution 38 (1984) 1358–1370.