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Abstract

Background: Efficient methodologies based on animal models are widely used to estimate breeding values in farm
animals. These methods are not applicable in honey bees because of their mode of reproduction. Observations are
recorded on colonies, which consist of a single queen and thousands of workers that descended from the queen
mated to 10 to 20 drones. Drones are haploid and sperms are copies of a drone’s genotype. As a consequence,
Mendelian sampling terms of full-sibs are correlated, such that the covariance matrix of Mendelian sampling terms
is not diagonal.

Results: In this paper, we show how the numerator relationship matrix and its inverse can be obtained for
honey bee populations. We present algorithms to derive the covariance matrix of Mendelian sampling terms that
accounts for correlated terms. The resulting matrix is a block-diagonal matrix, with a small block for each full-sib
family, and is easy to invert numerically. The method allows incorporating the within-colony distribution of progeny
from drone-producing queens and drones, such that estimates of breeding values weigh information from relatives
appropriately. Simulation shows that the resulting estimated breeding values are unbiased predictors of true breeding
values. Benefits for response to selection, compared to an existing approximate method, appear to be limited (~5%).
Benefits may however be greater when estimating genetic parameters.

Conclusions: This work shows how the relationship matrix and its inverse can be developed for honey bee
populations, and used to estimate breeding values and variance components.
Background
Currently, honey bees (Apis mellifera) draw a lot of public
and scientific attention because of increased colony losses
[1,2], which are partly caused by infection with Varroa
mites [3]. Although selection is a promising way to im-
prove Varroa tolerance of honey bees, estimation of breed-
ing values is not common practice in this species [3,4].
One reason is that it requires an organised collection of
data on a relevant scale, which is rarely the case in honey
bees. Currently, estimation of breeding values in honey
bees is performed only in the German Beebreed program
(http://www.beebreed.eu), for which breeding values are
estimated from data that are collected annually on about
6000 colonies [4]. For specifics on the genetic evaluation
method used in the Beebreed program that we refer to as
BER for Bienefeld, Ehrhardt and Reinhardt, please see [5].
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Methodology for breeding value estimation in honey bees
has drawn the attention of animal breeders [6-8]. They dis-
cussed the calculation of additive genetic relationships that
account for the fact that the workers in a colony descend
from a single diploid queen and 10 to 20 haploid drones.
One approach that focused on the haplo-diploid nature of
honey bees [6,7] suggested that an allelic relationship
matrix that contains relationships between gametes instead
of between individuals, can be adapted to the specifics of
honey bee ancestry. Another approach focused on the un-
certainty about the father of an individual [8] and suggested
that methods developed for the use of mixed semen of sires
can be adapted to honey bees. To our knowledge, these ap-
proaches have not been developed for implementation.
Breeding value estimation with an animal model builds

on the work of Henderson [9], who derived the required
inverse of the numerator relationship matrix using a de-
composition of breeding values into Mendelian sampling
terms. Because Mendelian sampling terms are mutually
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Figure 1 The Beebreed breeding system. Rectangles indicate
fertilized queens with sperm cells in their spermatheca. The sperm
cells derive from drones (small circles) produced by drone-producing
queens (squares). The picture illustrates the pedigree of queen 1a in a
colony with workers that derive from the queen and the sperm cells in
the spermatheca. The numbers 1a-12a given to queens and 1b-4b
given to drone-producing queens are those used in the Beebreed
system.
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independent, the covariance matrix of these terms is di-
agonal, which facilitates inversion. However, it is not a
diagonal matrix in honey bees [5], because the paternal
contribution to the additive genetic relationship differs
between workers in the same colony and workers in dif-
ferent colonies. Bienefeld et al. [5] solved this problem
by using an approximation, in which both contributions
are averaged and breeding values are estimated with an
animal model. As a result, the matrix of Mendelian sam-
pling terms is diagonal again, but the weighting of infor-
mation of relatives is approximate.
The purpose of this paper was to develop a method,

referred to as BB (for Brascamp and Bijma), to calculate
the relationship matrix and its inverse for honey bee
populations, in order to estimate breeding values and
genetic parameters with an animal model. We used the
approach of Henderson [9] as a starting point to derive
the required procedures, taking in account the biology
of the reproduction in honey bees. We also summarize
the BER method and provide insight into the quantita-
tive differences between the BB and BER methods, using
Monte Carlo simulation in a simple example.

Reproduction of honey bees and colony observations
There are three types of individuals in honey bees:
queens, workers and drones. Queens and workers are
diploid, while drones are haploid. A colony of honey
bees consists of a single fertilized queen, around ten
thousand workers and several hundred drones. Workers
contribute, for example, to the collection of pollen and
nectar, the production of wax and nursing of the queen,
but have no role in reproduction. Drones, in contrast,
only serve for reproduction.
The description of the reproduction cycle in honey bees

starts with a virgin queen. Soon after emerging from the
brood cell, the virgin queen leaves the colony (nuptial
flight) to mate in flight with multiple drones that come
essentially from other colonies. These drones concentrate
in so-called drone congregation areas, bringing together
queens and drones in a range as large as 10 km. Drones
die immediately after mating, which means that they can
mate to a single queen only. Queens are mated only dur-
ing their nuptial flight, or perhaps during a few nuptial
flights within a small time slot and they cannot be mated
again later in life. The queen stores a life lasting stock of
millions of sperm cells in her spermatheca. After returning
to their colony, mated queens produce two types of eggs,
fertilized and unfertilized eggs. Fertilized eggs usually de-
velop into diploid workers, while unfertilized eggs develop
into haploid drones. Occasionally, an offspring of a fertil-
ized egg receives a special diet from the workers and as a
consequence develops into a virgin queen, which means
that both workers and a virgin queen develop from a
fertilized egg. The haploid drones that develop from
unfertilized eggs have no father. They can be considered
as flying gametes, and produce cloned sperm (i.e., all gam-
etes produced by a drone are genetically identical).
Controlled mating of queens requires control of drones,

which is possible only by restricting the presence of
drone-producing queens with a particular pedigree on iso-
lated mating stations (e.g. islands), or by artificial insemin-
ation. Under normal circumstances, in a colony, drones
are produced along with workers, but the production of
drones can be stimulated by management measures. Note
that queens are always mated to multiple drones, both
with natural mating and artificial insemination. Thus, the
worker progeny of a queen descend from multiple drones.
This situation resembles that with mixed semen in the
case of e.g. pigs, for which the progeny of a sow derive
from multiple boars. With respect to genetic relationships,
the key difference between bees and mixed semen in pigs
is that each piglet descends from a genetically unique pa-
ternal gamete, while subsets of the workers in a colony
descend from the same drone and therefore from genetic-
ally identical paternal gametes.
The Beebreed system is shown in Figure 1 (see reference

[10]). On the maternal side, the pedigree is straightforward
because each queen (e.g., 1a) has a single queen as mother
(2a) but the paternal (i.e. drone) side is more complex. A
queen is mated to multiple drones that descend from a
group of drone-producing queens (1b). These drone-
producing queens descend from a single mother (4a),
which, in turn, has also been mated to drones that des-
cend from a group of drone-producing queens (4b) with a
single mother (12a). Note that, although drone-producing
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queens are also mated, the drones they produce contain
genes of the queen only i.e. not of its mate.
Drones cannot be not traced and it is unknown how

many and which drones have mated to the queen. As a
consequence, the contribution of each drone-producing
queen to the offspring of the queen is unknown. For this
reason, the group of drone-producing queens can be
treated as a single “individual”, which we will refer to as
the sire of the workers of the colony. In Figure 1, for ex-
ample, the three drone-producing queens in 1b together
constitute the sire of the workers in the colony of queen
1a. By grouping the drone-producing queens into a sin-
gle sire, each individual in the pedigree has precisely two
parents, a queen and a sire. This grouping makes it eas-
ier to trace the pedigree without loss of information.
Observations in honey bees are on colony perform-

ance, and may relate to traits like honey production, be-
haviour and disease resistance [4]. The performance of a
colony is affected by the joint genetic effects of the ten
thousand workers (called worker effect) and by the gen-
etic effects of the queen (called queen effect). Colony
performance results from the action of the workers and
the interaction between workers, but also from the ef-
fects of the queen on the workers, for example, due to
the number of workers produced or by producing pher-
omones that affect worker behaviour. However, workers
also affect the behaviour of the queen. Despite these
different interactions, the performance of a colony can
be partitioned into an additive worker effect and an
additive queen effect, based on the principle of least
squares [11]. Conceptually, this is similar to defining
the average effect of an allele for a locus showing dom-
inance, and to maternal effects in mammals [12]. Sev-
eral studies [10,13] have shown that the contribution of
queen effects to colony performance is considerable, al-
though smaller than that of worker effects, while the
genetic correlation between worker and queen effects is
negative.
Methods
In the following paragraphs, we consider three types of
individuals: (i) queens, (ii) sires, and (iii) groups of
workers in a colony, referred to as worker groups.
Queens are single individuals, while sires and worker
groups are aggregates of individuals. With this categor-
isation, we cover individuals responsible for the pheno-
types (queens and worker groups) and individuals in the
pedigree (queens and sires). To emphasize that worker
groups and sires consist of groups of individuals, we will
write their breeding values as averages, using �A , while
using A for the breeding value of a queen. Since breed-
ing values are to be estimated on all three categories, the
size of the numerator relationship matrix will be twice
the number of queens (because each colony has one
queen and one worker group) plus the number of sires.
The performance of a colony, Pc, can be written as the

sum of a worker effect, �A
W
w , a queen effect, AQ

d , and a
non-heritable residual, Ec,:

Pc ¼ �AW
w þ AQ

d þ Ec; ð1Þ

where �A
W
w is the average breeding value of the worker

group for worker effect, and AQ
d the breeding value of

the dam of workers, i.e., the queen in the colony, for
queen effect. Thus, superscript W denotes the worker ef-
fect, superscript Q the queen effect, and subscript c de-
notes a colony, w the worker group of the colony, and d
the queen of the colony. Equation (1) shows that the ex-
pected colony performance is equal to the sum of the
queen effect and the worker effect.
Candidates for selection are the queens of the col-

onies, either to produce the next generation of queens,
or to produce the next generation of sires. It is import-
ant to realize that the queens were mated early in life
and cannot be re-mated, which means that selection fo-
cuses on the combination of a queen and the drones it
was mated to. This situation clearly differs from the
usual situation in animal breeding, where parents of
both sexes are selected separately and mated afterwards.
Thus, when selecting queens, the criterion of interest is
the estimated breeding value of an average female off-
spring of a mated queen, say i, which equals the esti-
mated breeding value of the workers in the queen’s
colony:

ÂW
i þ ÂQ

i ¼ ÂW
w þ ÂQ

w : ð2Þ

Mixed model
Here, we consider a single trait situation, where each ob-
servation is affected by the worker effect of the worker
group in the colony and the queen effect of the queen in
the colony. Thus, observations on colonies are modelled
as:

y ¼ Xbþ ZWaW þ ZQaQ þ e; ð3Þ
where y is the vector of observations on colonies, b a
vector of fixed effects with incidence matrix X, aW a vec-
tor of worker effects with incidence matrix ZW, aQ a
vector of queen effects with incidence matrix ZQ, and e
a vector of residuals. In both methods BB and BER, ZW

and ZQ simply contain 1 s to connect the breeding value
to the observation. In Equation (3), the residual includes
the non-genetic effects due to both the queen and its
workers. However, since a queen has only one colony
throughout its life and workers contribute to a single
colony only, those two non-genetic effects can be
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combined into a single residual that is independent be-
tween colonies: var eð Þ ¼ Iσ2e . Estimates of the fixed ef-
fects and breeding values are obtained by solving the
following mixed model equations [14]:

X′X X′ZW X′ZQ

Z′
WX Z′

WZW þ A−1α1 Z′
WZQ þ A−1α2

Z′
QX Z′

QZW þ A−1α2 Z′
QZQ þ A−1α3

2
4

3
5

μ
aW
aQ

2
4

3
5 ¼

X′y
Z′
Wy

Z′
Qy

2
4

3
5;

ð4Þ

Where A is the numerator relationships matrix and

α1 α2
α2 α3

� �
¼ σ2AW

rGσAW σAQ

rGσAW σAQ σ2
AQ

" #−1

σ2e : ð5Þ

Here σ2AW
and σ2

AQ
are the additive genetic variances

for worker and queen effect, respectively, and rG is the
genetic correlation between these effects.
In the next section, we develop the method to derive

A− 1 that is needed in Equation (4).

Numerator relationship matrix
Henderson [9] derived a simple method to compute the
inverse of a numerator relationship matrix. Consider the
breeding value Ai of individual i, which is the sum of
half the breeding value of its father, As, half the breeding
value of its mother, Ad, and a Mendelian sampling term,
δi,

Ai ¼ 1
2
Ad þ 1

2
As þ δi: ð6Þ

In matrix notation, the breeding values of all individ-
uals in the pedigree may be represented by a vector a,
such that:

a ¼ Maþ d; ð7Þ

where M is a matrix connecting an individual to its par-
ents, with offspring on the rows and parents on the col-
umns. The row for an offspring contains two ½’s when
both parents are known, one ½ when only one parent is
known, and all 0’s when no parents are known. The
vector d contains the Mendelian sampling terms. Let A
denote the covariance matrix of a, the numerator rela-
tionship matrix, and D the covariance matrix of d.
Under normal diploid inheritance, which is the most
common in animal breeding, D is a diagonal matrix be-
cause the Mendelian sampling terms for different indi-
viduals are independent of each other. From Equation
(7), the vector of Mendelian sampling terms can be writ-
ten as d = (I −M)a. It follows that a = (I −M)− 1d and
consequently A = var((I −M)− 1d) = (I −M)− 1D(I −M)'− 1.
Taking the inverse yields:

A−1 ¼ I−Mð Þ′D−1 I−Mð Þ: ð8Þ
Equation (8) is used as the basis for a simple method

to invert A [15], because I and M are simple matrices
and D is a diagonal matrix for most livestock species.
Equations (6) through (8) hold for honey bees as well,

but D is no longer a diagonal matrix. In the following,
we derive the diagonals and off-diagonals of D, consider-
ing the three types of individuals defined above: queens,
sires and worker groups. Because D is the same for all
traits of interest, we do not distinguish between worker
and queen effects, and therefore drop the W and Q
superscripts.

Diagonal elements of D
Queens
The breeding value of a queen, say i, can be decomposed
into parental terms and a Mendelian sampling deviation:

Ai ¼ 1
2
Ad þ 1

2
�As þ δi: ð9Þ

The interesting feature is in the diagonal element of D
for queens, which is given by:

Dii ¼ var δið Þ
σ2A

; ð10Þ

where σ2
A is the additive genetic variance in the base

population. The var(δi) follows from writing the variance
of Equation (9) and solving the resulting expression for
var(δi). Taking the variance of Equation (9) yields:

var Aið Þ ¼ σ2A 1þ Fið Þ ¼ 1
4
σ2A 1þ Fdð Þ þ 1

4
var �Asð Þ

þ 1
2
cov Ad; �Asð Þ þ var δið Þ;

ð11Þ

where F denotes the coefficient of inbreeding. Note that
var(Ai) denotes the variance of the breeding value for
the individual of interest, whereas σ2A in Equation (10)
denotes additive genetic variance in the base population.
The variance of the breeding value of the sire in Equa-
tion (11) is given by:

var �Asð Þ ¼ σ2
A

S
1þ Fsð Þ þ S−1ð Þass½ �; ð12Þ

where S is the number of drone-producing queens con-
stituting a sire, Fs the inbreeding coefficient of the
drone-producing queens, and ass the additive genetic re-
lationship between those drone-producing queens. Be-
cause all drone-producing queens within a sire have the
same pedigree (Figure 1), they all have the same value
for Fs and ass. Furthermore, 12 cov Ad; �Asð Þ ¼ Fiσ2

A , so that
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Fi cancels from Equation (11). Finally, solving this equa-
tion for var(δi) yields (Appendix 1):

var δið Þ ¼ 1
4
σ2
A 1−Fdð Þ þ 1

4
σ2
A 1−Fsð Þ þ 1

4
σ2A

S−1ð Þ
S

1þ Fs−assð Þ:
ð13Þ

The first component in Equation (13) represents the
variance due to the Mendelian sampling of maternal
gametes, the second one the variance due to the Mendelian
sampling of gametes of an individual drone-producing
queen, and the third one the variance due to the sam-
pling among drone-producing queens. Note that this
equation can be applied when both parents of individual
i are known. If this is not the case, refer to Appendix 1.

Sires
The breeding value of a sire can be decomposed into
parental terms and a sampling deviation:

�Ai ¼ 1
2
Ad þ 1

2
�As þ �δ i: ð14Þ

Since a sire is a group of S (drone-producing) queens,
the �δ i in Equation (14) is the average of S individual δ
values as defined by Equation (9):

�δ i ¼ 1
S

XS
j¼1

δij: ð15Þ

Taking the variance of Equation (15) shows that the
sampling variance for sires equals:

var �δ i
� � ¼ var δið Þ

S
þ S−1

S
cov δij; δik

� �
; ð16Þ

where var(δi) is given by Equation (13). (Since all δij have
the same variance, we dropped subscript j in var(δi)).
Usually, in animal breeding, Mendelian sampling terms

of individuals are independent because each individual de-
scends from unique gametes, so that cov(δij, δik) = 0. For
example, in pigs for which mixed semen is used, two off-
spring born from the same artificial insemination of a sow
have independent Mendelian sampling terms because they
derive from different gametes. In that case, the covariance
between sibs is completely taken care of by the pedigree,
as described by the term Ma in Equation (7), so that
cov(δij, δik) = 0. The situation is different in the honey bee,
because a drone produces clonal sperm that consists of
identical gametes. As a consequence, two offspring of the
same drone derive from identical paternal gametes, and
therefore have identical paternal Mendelian sampling
terms. Offspring can descend from the same drone if and
only if they have the same mother, because drones can
mate only once. Since drone-producing queens within a
sire have the same mother, they may descend from the
same drone. Thus, the paternal covariance between two
drone-producing queens within the same sire, say j and k,
arises not only because they share a common sire (a
drone-producing queen), but also because they may des-
cend from the same drone. The size of the covariance be-
tween the Mendelian sampling terms of two offspring of
the same queen and sire combination, which can be writ-
ten as cov(δij, δik) = cov(δFS), where subscript FS denotes
full-sibs, is discussed in the next paragraph. Here we only
rewrite Equation (16) to become:

var �δ i
� � ¼ var δið Þ

S
þ S−1

S
cov δFSð Þ; ð17Þ

where var(δi) is given by Equation (13). The diagonal el-
ements for sires are equal to:

Dii ¼
var �δ i

� �
σ2
A

: ð18Þ

Worker groups
Since worker groups and sires are groups of individuals
that descend from a single mother, the decomposition of
the breeding value of a worker group is the same as for a
sire (Equation (14)). Analogous to Equation (17), the vari-
ance of the average sampling deviation of the ten thou-
sand workers in a colony can be written as

var �δ i
� � ¼ var δið Þ

n þ n−1
n cov δFSð Þ , n denoting the number of

workers in a colony. Since n is very large, it follows that:

var �δ i
� � ¼ cov δFSð Þ: ð19Þ

Hence, Equation (19) shows that the worker group has
a non-zero sampling term merely because workers may
descend from the same drone; otherwise var �δ i

� �
would

average to zero. Finally, diagonal elements for worker
groups follow from Equation (18).

Off-diagonal elements of D
Off-diagonal elements of D occur only between individ-
uals that derive from the same queen and sire combin-
ation and are given by (see above Equation (17)):

Dij ¼ cov δFSð Þ
σ2A

: ð20Þ

Covariance between sampling terms of full-sibs cov(δFS)
In honey bees, full-sibs are the offspring of the mating
between a queen and a sire. Within a colony, some pairs
of workers are full-sibs in the ordinary sense (when they
descend from a common queen and a common drone-
producing queen, but from different drones) with an
additive genetic relationship of aXY ¼ 1

2 , ignoring in-
breeding. A pair may also descend from the same drone,
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resulting in aXY ¼ 3
4, or from different drone-producing

queens, resulting in aXY ¼ 1þaSS
4 .

Usually in animal breeding, the covariance between
breeding values of relatives is fully accounted for by the
pedigree. In general, however, this requires two condi-
tions. The first condition is that, conditional on the
pedigree, Mendelian sampling terms of offspring are in-
dependent. In honey bees this is not the case for full-
sibs, because they may descend from the same drone, in
which case their paternal Mendelian sampling terms are
identical. The second condition is that the pedigree fully
accounts for the contributions of parents to offspring.
Usually in animal breeding, this condition is met, be-
cause a parent contributes precisely half the genes of an
offspring. However in a honey bee pedigree, this condi-
tion is not met because the sire is an aggregate of mul-
tiple drone-producing queens and the contribution of
individual drone-producing queens to offspring varies
among the drone-producing queens that constitute a
sire. This will occur by chance, even when the a priori
expected contribution is the same for all drone-
producing queens that make-up a sire but the pedigree
accounts for only the average contribution of a drone-
producing queen to the offspring, which is given by the 1

2
�As in Equations (9) and (14). Variation among drone-
producing queens in their contribution to offspring cre-
ates a paternal covariance among full-sibs that exceeds
the var 1

2
�As

� �
that is accounted for by the pedigree, and

thus creates a covariance between the δ terms of full-
sibs. Thus, the δ terms of full-sibs may be correlated be-
cause (i) sibs may descend from the same drone, and (ii)
the contribution to offspring may vary among drone-
producing queens.
Let p1 denote the probability that two full-sibs descend

from the same drone, and p2 the probability that they
descend from the same drone-producing queen (includ-
ing the case where they descend from the same drone,
so p2 > p1).

Then; cov δFSð Þ ¼ p1
1−Fs

4
σ2A þ p2−

1
S

� �
1þ Fs−assð Þ

4
σ2
A:

ð21Þ

The first term in equation (21) arises from the prob-
ability that two full-sibs descend from the same drone.
The second term arises from variation in the contribu-
tion of individual drone-producing queens to offspring,
around the expected value of 1

S . Thus, in the second
term, the − 1

S term represents subtraction of the covari-
ance already accounted for by the pedigree.
Both p1 and p2 depend on variation in contributions of

parents to offspring. For p1, suppose that the ith drone
contributes a fraction cD,i to the offspring of the queen,
so that

PD
1 cD;i ¼ 1, where D denotes the number of

drones that mate to a queen. Then, the probability that
two full-sibs descend from the same drone is p1 ¼

PD
1 c

2
D;i .

Since �cD ¼ 1
D, this can be written as:

p1 ¼ Dσ2cD þ
1
D
; ð22Þ

where σ2cD is the variation among the drones that mated
to the queen in their contributions to its offspring. This
result shows that variation in contributions among
drones increases the covariance among full-sibs. Analo-
gously, for drone-producing queens, it follows that:

p2 ¼ Sσ2cS þ
1
S
; ð23Þ

where σ2
cS is the variation among the drone-producing

queens in their contributions to the offspring of the

queen (thus
XS
i¼1

cS;i ¼ 1 and �cS ¼ 1
S).

Equations (21) to (23) are valid irrespective of the dis-
tribution of the contributions of drones and drone-
producing queens to offspring. In other words, p1 and p2
do not depend on the details of that distribution, but
only on the variance. In practical applications, empirical
values for σ2cD and σ2cS may be used. However, when such

values are not available, the expected values of σ2cD and

σ2cS may be derived under the assumption that the num-
ber of offspring of a parent follows a Poisson distribu-
tion, which is the default distribution for family size in
population biology. Assuming that the number of off-
spring of a drone follows a Poisson distribution, it fol-
lows that (see Appendix 2):

p1;Poisson ¼
1
T
þ 1
D
≈
1
D
; ð22aÞ

where T denotes the total number of offspring of a
queen. Since T is very large, p1 will be close to 1

D when
family size follows a Poisson distribution. Moreover,
when the number of drones of a single drone-producing
queen that mates to the queen follows a Poisson distri-
bution and the number of offspring per drone is large,
then it follows that (Appendix 2):

p2;Poisson≈
1
D
þ 1
S
: ð23aÞ
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Substituting those values into Equation (21) yields:
cov δFS; Poisson
� � ¼ 2−ass

4D
σ2A: ð21aÞ

Finally, off-diagonals of D are obtained from substitut-
ing Equation (21a) into Equation (20). Thus, when the
number of offspring per parent follows a Poisson distri-
bution, the covariance between Mendelian sampling
terms of full-sibs depends only on the relatedness be-
tween drone-producing queens (ass) and on the number
of drones mated to a queen. Under the assumption that
the number of drones of a single drone-producing queen
that mates to the queen follows a Poisson distribution,
there is no covariance between sampling deviations of
paternal half sibs (i.e., between two offspring of the same
sire but of a different queen; see Discussion). Whether
the assumption of a Poisson distribution is realistic will
be addressed in the Discussion.
In method BER, p1 ¼ 1

D was used, assuming equal con-
tribution of each drone to the progeny. To obtain p2, a
Poisson distribution was not assumed but the total prob-
ability that full-sibs descend from different drones i.e.,
1−p1 ¼ 1− 1

D , was partitioned into a fraction 1
S for the

same drone-producing queen, and a fraction 1− 1
S for

different drone-producing queens. In that case, the prob-
ability that two full-sibs descend from the same drone-
producing queen equals 1

D (the probability that two progeny

descend from the same drone) plus 1− 1
D

� �
1
S (the prob-

ability that two progeny descend from the same drone-
producing queen but from two different drones), which
gives a total probability of:

p2;BER ¼ S þ D−1
DS

; ð23bÞ

which differs from the p2 for a Poisson distribution by
an amount equal to −1

DS. Replacing p2 in Equation (21) by
p2,BER yields:

cov δFS; BER
� � ¼ 1−Fs

4D
σ2A þ 1þ Fs−assð Þ S−1ð Þ

4DS
σ2A

ð21bÞ
Note that the BER method does not implement off-

diagonal elements in D (see below); here, we merely
present Equation (21b) to show the outcome of cov(δFS)
for the p2 proposed by [5]. Note that for S-1 ap-
proaching S, Equation (21b) approaches (21a).

Construction of D and D− 1

Calculation of the elements of D requires additive gen-
etic relationships between drone-producing queens, ass,
and inbreeding coefficients, F. These values can be ob-
tained recursively when proceeding in the pedigree,
starting with the oldest individuals. For sires from the
base generation of the pedigree, it is reasonable to take
ass = 0, because their dams can be considered as unre-
lated just like the drones they are mated to. For later
generations, ass builds up stepwise according to:

assi ¼
1þ Fd

4
þ 1
2
p1 þ

1
4

p2−p1ð Þ 1þ Fsð Þ þ 1
4

1−p2ð Þassi−1 þ
asd
2

:

ð24Þ
In this equation, the first term represents the additive

genetic relationship between drone-producing queens
because they descend from the same dam, the second
term relates to the case when they descend from the
same drone, which has probability p1 and a paternal re-
latedness of 1

2 , the third term relates to the case when
they descend from the same drone-producing queen but
from a different drone, which has probability (p2 − p1)
and a paternal relatedness of 1

4 1þ FSð Þ, the fourth term
relates to the case when they descend from different
drone-producing queens, which has probability (1 − p2)
and a paternal relatedness of ass

4 , and the last term ac-
counts for the additive genetic relationship between dam
and sire of the drone-producing queens.
With a Poisson distribution for the numbers of drones

and drone-producing queens mating to the queen, p1≈
1
D

and p2≈
1
D þ 1

S (Equations (22a) and (23a)), so that Equa-
tion (24) becomes:

assi; Poisson ¼ 1þ Fd

4
þ 1
2D

þ 1þ Fs

4S
þ DS−D−Sð Þassi−1

4DS
þ asd

2
:

ð24aÞ
When substituting the p2 of BER, its expression being

given by Equation (23b) here, into Equation (24) we get:

assi; BER ¼ 1þ Fd

4
þ 1
2D

þ D−1ð Þ 1þ Fsð Þ
4DS

þ D−1ð Þ S−1ð Þassi−1
4DS

þ asd
2

ð24bÞ
Inbreeding coefficients can be derived from the addi-

tive genetic relationship between the sire and the dam of
individual i as:

Fi ¼ 1
2
asd: ð25Þ

As a result, D is a block-diagonal matrix, each block
representing the offspring of a single queen, i.e. the
combination of a queen and a sire. Chronologically,
such a block starts with a single individual, being the
worker group that descends from that queen. When the
queen is selected to breed new queens, the queens in its
progeny will be added to the block. Moreover, when the
queen is selected to breed drone-producing queens,
then one or more sires will be added to the block. The
size of a block, therefore, equals 1 plus the number of
queens plus the number of sires that descend from the



Brascamp and Bijma Genetics Selection Evolution 2014, 46:53 Page 8 of 15
http://www.gsejournal.org/content/46/1/53
mother queen. Thus, a block contains at maximum
three distinct diagonal values, one for the worker group,
one for queens, and one for sires. All off-diagonals within
a block are equal, and equal to the diagonal element for
the worker group (Equation (20)). Off-diagonals outside
blocks are 0.
Since D is a block-diagonal matrix, the inverse of D is

also a block-diagonal matrix, each block being the in-
verse of the corresponding block of D. Since blocks of D
have a specific structure, with at maximum three distinct
values, D− 1 can be obtained analytically, e.g., with the
help of equation-solving software such as Mathematica
[16]. However, since blocks of D can have different num-
bers of queens and sires, there are multiple analytical so-
lutions, each of which is a complicated expression.
Therefore, since the size of the blocks is usually small,
numerical inversion of each block is easy and more prac-
tical and, thus, we do not present the analytical inversion
of D here.
The Bienefeld, Ehrhardt and Reinhardt (BER) method [5]
The main methodological problem addressed in [5,10] is
that the additive genetic relationship that can be attrib-
uted to the sire differs between two workers in the same
colony versus two workers in different colonies. This dif-
ference arises because workers within a colony partly
descend from the same drone, whereas workers in differ-
ent colonies must derive from different drones. In the
BER method, these two additive genetic relationships are
replaced by a single additive genetic relationship, the
square root of which is the path coefficient q between a
sire and the workers descending from this sire. Conse-
quently, breeding values are estimated using:

Ai ¼ 1
2
Ad þ qAs þ δi: ð26Þ

The approach used by Bienefeld, Ehrhardt and Rein-
hardt [5] consists of two steps. In the first step, the
asymptotic value of the additive genetic relationship be-
tween full-sibs is calculated by ignoring inbreeding and
the additive genetic relationship between dam and sire.
The asymptotic value is obtained by solving the equilib-
rium condition assi ¼ assi−1 in Equation (24b), together
with asd = Fs = Fd = 0. Numerically, the asymptotic value
of asd, denoted by aFS, is approached closely within a
few generations [5]. Then, the paternal component of
the additive genetic relatedness between workers in the
same colony is obtained by subtracting the maternal
component, apFS ¼ aFS− 1

4. Because full-sibs can descend
from the same drone, the resulting value differs from the
additive genetic relationship between paternal half sibs (i.e.,

workers in different colonies), which is apHS ¼ 1þ S−1ð ÞaFS
4S . In
the second step of the BER method, both relationships are
replaced by their mean, i.e.

a ¼ aFS− 1
4 þ apHS
2

; ð27Þ

and the additive genetic relationship between a worker and
its sire is calculated as the square root of this mean, i.e.

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aFS− 1

4 þ apHS
2

s
: ð28Þ

Then, M and D follow from the model in Equation
(26). In M, the row for an offspring has 1

2 in the column
for its mother (the queen) and q in the column for its
father (the sire). Matrix D is assumed to be diagonal
with elements σ2δi=σ

2
A that equal:

Dii ¼ 1þ 1
2
−q

� �
ads−

1
4

1þ Fdð Þ−q2 1þ Fsð Þ; ð29Þ

when both parents are known (Appendix 1). This result
shows that Dii includes not only the Mendelian sampling
variance but also a component due to the difference be-
tween q and 1

2.
In the BER method, both the sire and the worker group

are treated as single individuals, not as virtual individuals
that consist of a group of individuals. As a consequence,
the diagonal elements of D are neither affected by the
number of drone-producing queens nor by the number of
drones involved in mating, so that the sampling variances
are computed in the same manner as those of queens.
Note that in [13], the breeding value of an individual

is described as:

Ai ¼ 1
2
Ad þ qAs þ 1

2
−q

� �
�As þ δi; ð30Þ

where the term 1
2−q
� �

�As is a correction to account for
the fact that offspring inherit less than 50% of their
genes from the sire in Equation (26). In the current im-
plementation of breeding value estimation in the Beeb-
reed program, �As represents the average breeding value
of sires of a particular year (Ehrhardt K, 2013, personal
communication). This correction is essential to properly
account for genetic trend when parents are selected
across years.

Simulation
The purpose of the simulation was to study properties of
estimated breeding values from the BER and BB
methods, and to compare the estimated breeding values.
In the simulation, breeding values are generated for
three types of individuals, queens, sires and worker
groups, and subsequently the phenotypes for colonies
are generated.
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Table 1 illustrates the selection scheme. Two-year-old
tested queens produce the next generation of virgin
queens. Just after birth, these virgin queens are mated to
sires. The sires descend from queens that are three years
old at birth of the virgin queens. In the actual Beebreed
program, the dams may also produce offspring at an
older age but Table 1 illustrates the most frequent situ-
ation. Table 1 also illustrates that sires on mating stations
(or with artificial insemination) are mated to groups of
full-sib queens. At two years of age each queen produces a
colony observation that is added to the data to estimate
breeding values.
The basic simulation starts with NSY (number of sires

per year) base sires generated in years 1, 2 and 3, and
NQY (number of queens per year) base queens gener-
ated in years 2 and 3. The base queens were simulated
as full-sib groups with NQ (number of full-sibs per
group) individuals each because that is also the structure
in future generations. Sires from years 1 and 2 are mated
randomly to queens in years 2 and 3 with an equal num-
ber of NFQ mates for each sire, each producing NQ
full-sibs. From year 4, the NSY queens with the highest
estimated breeding value according to Equation (2) are
selected to produce the next generation of sires. The
NSYxNFQ queens with the highest estimated breeding
value are selected to produce NQ queens each. Allocation
of mates (sires) to queens is random, but each queen
within a full-sib group is mated to the same sire and each
sire is mated to the same number of queens. The queens
that will produce sires are therefore selected NSY out of
NQY, and the queens that will produce queens are se-
lected 1 out of NQ.
Two breeding values are simulated for each individual,

a breeding value for the worker effect and a breeding
value for the queen effect. To allow for a correlation be-
tween these two breeding values, random samples for an
individual are taken from a bivariate normal distribution
(using the function mvrnorm from the package MASS
in R; http://cran.r-project.org/package=MASS). Because
Table 1 Simplified selection cycle in the honey bee
selection programme

Year Queens Sires

t Selection of queens to produce
drone-producing queens (sires);
birth of sires

t + 1 Selection of queens to
produce full-sib groups of
queens to be mated to sires

Use of sires for mating to
groups of queens, each group
being the progeny of a selected
queen

t + 2 Test of colonies of the set
of full-sibs born in t + 1

t + 3 Selection of queens and birth
of next-generation queens to
be mated to sires born in t + 2

Selection of queens to produce
drone-producing queens
Mendelian sampling terms are correlated between off-
spring of the same queen, sampling terms were con-
structed as the sum of two independent components: a
component specific to each individual and a component
common to all offspring of the same queen.
For the ith queen belonging to the dth dam family, the

two breeding values were generated as:

AW
i

AQ
i

� �
¼ 1

2
AW
d þ �A

W
s

AQ
d þ �A

Q
s

" #
þ

nWd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov δWFS;d

	 
r

nQd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov δQFS;d

	 
r
2
664

3
775

þ
nWi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var δWi

� �
−cov δWFS;d

	 
r

nQi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var δQi

	 

−cov δQFS;d

	 
r
2
664

3
775 ;

ð31Þ

where nWd ; nQd

	 

is a sample from a standard bivariate

normal distribution with correlation rG, which was sam-
pled once for each dam family (hence the subscript d).

The nWi ; nQi
	 


is another sample from the same distribu-

tion, independent of the previous, which was sampled
once for each individual queen (hence the subscript i).
Thus, the second term on the right-hand side of Equation
(31) is common to all offspring of the same dam family,
whereas the third term is specific to each individual off-
spring. The cov(δFS,d) denotes the sampling variance com-
mon to all offspring of dam family d, superscripts Q and
W denoting the queen and worker effect respectively, and
was obtained from Equation (21b), assuming proportional
contributions of sires and drones according to the BER
method. The term var(δi) − cov(δFS,d) in Equation (31) rep-
resents the remaining sampling variation for an individual
queen after subtracting the variance common to all
offspring of the same dam, i.e. cov(δFS,d). The var(δi) in
Equation (31) was taken from Equation (13).
For the ith sire belonging to the dth dam family, the

two breeding values were generated as

�AW
i

�A
Q
i

" #
¼ 1

2
AW
d þ �AW

s

AQ
d þ �A

Q
s

" #
þ

nWd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov δWFS;d

	 
r

nQd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov δQFS;d

	 
r
2
664

3
775

þ
nWi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var �δ

W
i

	 

−cov δWFS;d

	 
r

nQi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var �δ

Q
i

	 

−cov δQFS;d

	 
r
2
664

3
775 ;

ð32Þ
where only the last term differs from Equation (31) and
var �δ i

� �
was taken from Equation (17).

For worker groups, the individual sampling deviation is
practically 0 because of the large numbers of individuals

http://cran.r-project.org/package=MASS
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in a worker group (Equation (19)). Since a queen has only
a single worker group, in Equation (32) subscript i can be
replaced by w, so that the two breeding values for the
worker group belonging to the dth dam family were gener-
ated as:

�A
W
w

�AQ
w

" #
¼ 1

2
AW
d þ �AW

s

AQ
d þ �AQ

s

" #
þ

nWd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov δWFS;d

	 
r

nQd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov δQFS;d

	 
r
2
664

3
775
ð33Þ

When a sire, queen or worker descended from the same

dam, then the values of nWd ; nQd

	 

in Equations (31)

through (33) are identical for those individuals.
Based on Equation (1), colony observations were gen-

erated as:

Pc ¼ �AW
w þ AQ

d þ ncσE; ð34Þ
where nc is a sample from a univariate standard normal
distribution.
Using the simulated data and pedigree, the inverse nu-

merator relationship matrix A− 1 (Equation (8)) was cre-
ated using either method BB or method BER, and
breeding values were estimated by solving Equation (4).
The criterion to select queens to produce the next gen-
eration of queens and sires for method BB is given by
Equation (2). For method BER, the factor of 1

2 for the es-
timated breeding value of the sire in Equation (2) is re-
placed by q.
To evaluate the effect of selection using the two

methods, we analysed the effect on the true breeding
value of unfertilized queens (the breeding goal), which
were simulated as:

AW
Q þ AQ

Q ¼ 1
2

AW
d þ AQ

d

	 

þ 1
2

�A
W
s þ �A

Q
s

	 

þ δQ;

ð35Þ
which is the sum of the dam’s and the sire’s breeding
value for worker and queen effects, plus Mendelian sam-
pling. The Mendelian sampling consists of a term com-
mon to all offspring of the pair of dam and sire, using
the common values for nWd and nQd , and a residual sam-
pling term, as in Equation (31).
Parameter values used in the simulation were σ2

AW = 1,

σ2
AQ = 0.5, σ2E = 2 and rG = −0.5, which are in line with

estimates reported by [13]. Based on [5], the number of
drone-producing queens that constitute a sire (S) was
equal to 8 and the number of drones mating to a queen
(D) was equal to 12. We analysed the simulated data for
a small example, in which the only fixed effect was the
mean. NSY was equal to 5, the number of full-sib groups
to which a sire is mated (NFQ) was equal to 5 and NQ
was fixed at 3. We simulated 20 years of data, including
colony performance of queens born in year 20.
First, the properties of estimated breeding values

(EBV) were investigated using 1000 replicated schemes
without selection. The quality of EBV was judged by the
regression coefficient of the true (i.e., simulated) breed-
ing value (TBV) on the EBV and by the correlation coef-
ficient between TBV and EBV in year 20. We chose
those criteria because the regression coefficient of TBV
on EBV should be equal to 1 with BLUP (best linear un-
biased prediction), while response to selection on EBV is
proportional to the correlation coefficient. We did not
implement the correction factor 1

2−q
� �

�As from Equation
(30), since this does not affect results because regression
and correlation coefficients were calculated within one
generation. Second, we compared response to selection
between the two methods, again using 1000 replicates.
Because selection took place within years (non-overlap-
ping generations), we did not implement the correction
factor of Equation (30) here either, since it did not affect
results.
Results
Table 2 gives the regression coefficients of TBV (simu-
lated) on EBV from 1000 replicates of simulation. The re-
sults with method BB were according to theory: regression
coefficients of TBV on EBV were very close to 1, not only
for year 20, but also for preceding years (results not
shown). With method BER, regression coefficients devi-
ated from 1 and, in early years, from the stable values
reached in later years. For queens, the regression coeffi-
cient for the EBV for the queen effect was larger than 1,
which means that the variance in EBV was too small, i.e.
positive TBV were underestimated and negative TBV were
overestimated. Thus, the BER method shrinks the EBV
too much towards the mean. Also the regression coeffi-
cients for sires in year 20 were larger than 1, although with
a large standard deviation. The regression coefficients for
colonies were much lower than 1, which is primarily a
variance issue: in the BER method, colonies are treated as
single individuals so that their variance is taken to be
equal to that of a queen, while in fact it is much smaller
due to the averaging of Mendelian sampling terms.
Response to selection depends on the accuracy of the

estimated values for the breeding objective given by
Equation (2), in pairs of queens and sires that are candi-
dates to be selected to breed future queens. To get an
impression of possible responses to selection using the
two methods, we studied the correlations between the
TBV (simulated) and EBV for the breeding objective. Re-
sults are in Table 3 and show that, for this simple ex-
ample, the correlations with methods BB and BER were



Table 2 Regression coefficients of true breeding values on estimated breeding values1 obtained from two methods
(BB and BER)

BB BER

Worker effect Queen effect Worker effect Queen effect

Queens 0.971 (0.022) 0.998 (0.014) 1.061 (0.025) 1.160 (0.016)

Sires 1.088 (0.080) 1.025 (0.056) 1.148 (0.076) 1.175 (0.071)

Colonies 0.998 (0.017) 1.000 (0.019) 0.423 (0.007) 0.699 (0.024)
1Values refer to year 20; standard errors are given in brackets; BB is the method developed in this paper and BER is the method developed by Bienefeld, Ehrhardt
and Reinhard [5].
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fairly similar. Across years, correlations differed by nearly
10% between both methods. Although the EBV obtained
with the BER method were not unbiased, while those with
the BB method were, the animals ranked similarly.
Responses to selection are also in Table 3. The annual

responses to selection started slowly in early years and
remained somewhat irregular in later years. There was a
strong similarity in results for the two methods in that
respect. This irregularity is caused by the structure of
the simulation. The simulation started with the simula-
tion of base sires in years 1 to 3 and base queens in
Table 3 Correlations between the true and estimated
breeding values and cumulative responses to selection
with two breeding value estimation methods (BB and
BER)1

Correlation2 Cumulative response to selection3

Year BB BER BB BER

2 0.1845 0.1845 0.0012 −0.0025

3 0.1884 0.1884 0.0006 −0.0023

4 0.2244 0.2170 0.0886 0.0842

5 0.2744 0.2581 0.2463 0.2404

6 0.2771 0.2613 0.3114 0.2934

7 0.2980 0.2741 0.4732 0.4534

8 0.3014 0.2756 0.6159 0.5819

9 0.3015 0.2737 0.7106 0.6859

10 0.3161 0.2855 0.8679 0.8296

11 0.3037 0.2768 0.9823 0.9461

12 0.3072 0.2765 1.1052 1.0664

13 0.3120 0.2849 1.2296 1.1921

14 0.3098 0.2778 1.3546 1.3064

15 0.3118 0.2828 1.4771 1.4306

16 0.3048 0.2795 1.6092 1.5377

17 0.3061 0.2794 1.7243 1.6577

18 0.3075 0.2785 1.8564 1.7770

19 0.3104 0.2821 1.9632 1.8897

20 0.3084 0.2782 2.0894 2.0086
1Correlations were calculated from schemes in which no selection was
practiced; 2standard errors are about 0.004; 3standard errors increase from
about 0.0040 in year 2 to about 0.0110 in year 20; BB is the method
developed in this paper and BER is the method developed by Bienefeld,
Ehrhardt and Reinhard [5].
years 2 and 3. A first batch of offspring (born in year 4)
is produced from base sires of year 1 and base queens of
year 2 and a second batch (born in year 5) from base
sires of year 2 and base queens of year 3. Genetically,
progeny of these batches of offspring mixed in later
years due to the fact that the dams of the sires were
three years old at birth of the next generation of queens,
while the dams were two years old at birth of the next
generation of queens. However, this mixing developed
fairly slowly and was delayed by the fact that pairs of
queens and sires were selected to produce the next gen-
eration. Similar results have been observed in simula-
tions of breeding schemes with overlapping generations
in dairy cattle [17]. The cumulative selection response
differed little between the two methods BB and BER but
were 5% higher with method BB compared to method
BER in years 8 to 10, and 4% higher in years 18 to 20.

Discussion
In this paper, we derived a method to calculate the rela-
tionship matrix and its inverse for honey bee popula-
tions, which is required to estimate breeding values and
genetic parameters. The situation in honey bees differs
from the usual situation in farm animal breeding, be-
cause of the honey bees’ mode of reproduction. The first
major difference is that two full-sibs may carry identical
paternal gametes. This occurs because sires (drone-pro-
ducing queens) produce drones which may be consid-
ered as flying gametes that produce many identical
sperm cells. Because a drone can mate to a single queen
only, paternal half-sibs always carry different paternal
gametes. Consequently, the paternal contribution to the
additive genetic relationship between full-sibs differs
from that between half-sibs, which results in a block di-
agonal D matrix of covariances between Mendelian sam-
pling terms. Off-diagonals of those blocks equal the
covariance between sampling terms of full-sibs. The sec-
ond difference is that selection candidates (queens) are
mated early in life, before they can be selected as par-
ents. As a consequence, selection is not of individual
dams but of matings from which breeding stock can be
produced after the estimation of breeding values. Thus,
the selection target is the breeding value of a future
queen from this mating, which equals half the breeding
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values of both mates plus the part of Mendelian sam-
pling that is common to all progeny of these mates. This
also implies that the EBV of such a future queen equals
the EBV of the colony. Another difference from trad-
itional animal breeding is that the “father” of a queen is
usually unknown because the drones that mate with the
queen come from multiple drone-producing queens. In
this context, our work follows that of Dempfle [8], who
discussed the consequences of mixed semen for the esti-
mation of breeding values, rather than focussing on the
haploid nature of the drones [6,7].
Equation (21) gives a general expression for the covari-

ance of the Mendelian sampling terms of full-sibs. This
covariance depends on the variance of the number of
offspring per drone (Equation (22)) and the variance of
the number of drones per drone-producing queen
(Equation (23)). Without further knowledge, a Poisson
distribution of family sizes is a common choice, which
leads to Equation (21a). Numerically, this equation dif-
fers very little from Equation (21b), which results from
substituting the probabilities from the BER method
(Equation (23b)) into Equation (21), but these probabil-
ities do not have a theoretical basis. However in reality,
the assumption of a Poisson distribution of family sizes
does not seem to hold, since a review of the literature
[18] suggests that the proportion of progeny descending
from different drones deviates from Poisson. Further-
more, results of an experiment using drone-producing
colonies each producing a similar number of drones,
suggested that drone-producing queens that contribute a
higher proportion of drones to matings also produce
drones with a higher proportion of offspring in colonies
[19]. The Poisson distribution arises when variation in
contributions is entirely by chance, i.e., when a priori the
expected number of offspring is equal for each drone-
producing queen and for each drone. When there are
systematic differences between drone-producing queens
or drones in the expected number of offspring, then the
variance in contributions will be larger than in the case
of a Poisson distribution, which implies a larger covari-
ance between sampling terms of full-sibs. Numerically,
this effect may be neutralised by assuming a smaller
number of drones, i.e., by using an effective number of
drones rather than the actual number of drones. Note
that in this context, [5] used a number of drones equal
to 12, while a consensus number is around 16 [18].
When assuming a Poisson distribution, the covariance
between Mendelian sampling terms for half sibs is 0.
This is, however, not true if some drone-producing
queens are systematically more successful to contribute
drones to matings [19].
In practice, in the Beebreed program, inbreeding coeffi-

cients are computed for possible planned matings that are
not yet included in the pedigree (http:www.beebreed.eu).
Efficient methods to compute inbreeding coefficients have
been derived [20,21], based on [15]. These methods ex-
ploit the fact that the D matrix is a diagonal matrix. We
derived a modification to [15], which takes into account
the fact that the D matrix contains off-diagonal elements
in the bee breeding case. This method, however, requires
the whole pedigree of an individual to be searched for the
occurrence of parents that are full-sibs, which may be very
time-consuming. As an alternative, the A matrix of the
pedigree may be kept in memory such that the required
inbreeding coefficients can be used in Equation (25).
In the development of the methods and analyses pre-

sented here, we used the current mating system applied
in the Beebreed program as a starting point. This implies
that drone-producing queens are full-sibs from a shared
dam and sire. That may not be the case for parts of the
pedigree or for other programs. For those cases, we sug-
gest to include the individual drone-producing queens in
the pedigree, with diagonal elements in D equal to those
of individual queens, combining Equations (13) and (10).
Elements in M then need to be adapted to reflect the frac-
tions that are contributed by these individual drone-
producing queens. Without prior knowledge on these
fractions, we suggest to use equal fractions as an ap-
proximation, although this may not be true in reality
[18,22].

Conclusions
We have presented methodology to construct the relation-
ship matrix and its inverse for honey bee populations,
which is required in the mixed model equations used for
the estimation of breeding values and genetic parameters.
The method allows for different assumptions on the con-
tribution of drones and drone-producing queens to off-
spring, and is exact if those assumptions are correct. The
method yields EBV that are unbiased predictors of TBV.
We also carried out an exploratory comparison with the
BER method [5] that is currently used in practice and
weighs information on relatives, differently. Although
EBV obtained with the BER method were biased, selection
candidates were ranked similar to those of our method
and the response to selection was only slightly lower than
with our method. This suggests that suboptimal weighting
of information from relatives has limited impact on the
ranking of selection candidates. It remains to be seen
whether this conclusion extends to the estimation of gen-
etic parameters.

Appendix 1
Variance of Mendelian sampling terms
In this Appendix, first we derive Equation (13), the
Mendelian sampling variance for queens with known
parents for method BB. Subsequently, we derive the
variances when parents are unknown, for queens and

http://www.beebreed.eu
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sires. Finally, we repeat all steps for method BER.
Equation numbers between brackets refer to equations
in the main text.

BB method
The model describing the breeding value of a queen is:

Ai ¼ 1
2
Ad þ 1

2
�As þ δi; ð9Þ

such that the variance of the breeding value can be writ-
ten as:

σ2A 1þ Fið Þ ¼ 1
4
σ2A 1þ Fdð Þ þ 1

4
var �Asð Þ þ 1

2
cov Ad; �Asð Þ

þ var δið Þ:
ð11Þ

Because 1
2 cov Ad; �Asð Þ ¼ Fiσ2A, and furthermore:

var �Asð Þ ¼ 1

S2
Sσ2A 1þ Fsð Þ þ S S−1ð Þassσ2A
� �

¼ σ2A
S

1þ Fsð Þ þ S−1ð Þassð Þ;

it follows that:

var δið Þ ¼ σ2A−
1
4
σ2A 1þ Fdð Þ− 1

4
var �Asð Þ

¼ σ2A−
1
4
σ2A 1þ Fdð Þ− σ2A

4S
1þ Fsð Þ− σ2A

4S
S−1ð Þass:

To rearrange this to a biologically useful form we
replace:

σ2
A

4S
1þ Fsð Þ ¼ Sσ2A

4S
1þ Fsð Þ− S−1ð Þσ2A

4S
1þ Fsð Þ;

which gives:

var δið Þ ¼ σ2
A 1−

1
4

1þ Fdð Þ− 1
4

1þ Fsð Þ
� �

þ 1
4
σ2A

S−1ð Þ
S

1þ Fs−assð Þ

¼ σ2A
1
2
−
1
4
Fd−

1
4
Fs

� �
þ 1
4
σ2A

S−1ð Þ
S

1þ Fs−assð Þ

¼ 1
4
σ2A 1−Fdð Þ þ 1

4
σ2A 1−Fsð Þ þ 1

4
σ2
A

S−1ð Þ
S

1þ Fs−assð Þ:
ð13Þ

When both parents are unknown the following situa-
tions can be distinguished:

1. A queen with unknown parents (base queen). In
that case, Ai = δi and so var δið Þ ¼ σ2A.

2. A sire with unknown parents (base sire). In that

case, �Ai ¼ �δ i and var �δ i
� � ¼ σ2A

S , because the drone-
producing queens constituting the sire are assumed
to be unrelated.
3. An individual with a known dam but an unknown
sire. In that case, Ai ¼ 1

2Ad þ δi and σ2A ¼ 1
4 1þ Fdð Þ

σ2A þ σ2δi such that var δið Þ ¼ 1
2 σ

2
A þ 1

4 1−Fdð Þσ2A.
4. An individual with an unknown dam, but a known

sire. Then, Ai ¼ 1
2
�As þ δi and σ2

A ¼ 1
4 var

�Asð Þ
þvar δið Þ ¼ σ2A

4S 1þ Fsð Þ þ S−1ð Þassð Þ þ var δið Þ and

after some rearrangement: var δið Þ ¼ 1
2 σ

2
A þ 1

4 σ
2
A 1−Fsð Þ

þ 1
4

S−1ð Þσ2A
S 1þ Fs−assð Þ.

5. A sire with an unknown dam and a known sire.
This is very unlikely because it implies that a sire is
bred from a dam for which neither pedigree nor
breeding values are available. Nevertheless, in that

case �Ai ¼ 1
2
�As þ δi and �δ i ¼ 1

S

X
δi , as when both

parents are known with δi as under point 4 of this

paragraph, such that var �δ i
� � ¼ var δið Þ

S þ S−1
S cov δi; δj

� �
where var(δi) is as under point 4 and cov δi; δið Þ ¼
1
4D 1−FSð Þσ2A as before, when both parents are

known. Therefore, var �δ i
� � ¼ σ2δi

S þ S−1
4SD 1−FSð Þσ2A.

6. A sire with a known dam and an unknown sire.
This also seems odd. Nevertheless, in that case
�Ai ¼ 1

2Ad þ δi , and �δ i ¼ 1
S

X
δi with δi as under

point 3. Now, var �δ i
� � ¼ var δið Þ

S , with var(δi) as
under point 3. Covariances between δi and δj are
equal to 0 because no covariance due to drones
is involved.

BER method
The model that describes the breeding value of a queen,
and also of a sire or colony equals:

Ai ¼ 1
2
Ad þ qAs þ δi; ð19Þ

Therefore

σ2
A 1þ Fið Þ ¼ 1

4
σ2A 1þ Fdð Þ þ q2σ2A 1þ Fsð Þ

þ qcov Ad;Asð Þ þ var δið Þ:
ð2aÞ

Note that cov Ad;Asð Þ ¼ adsσ2A ¼ 2σ2AFi . Taking this
into account it follows that:

1þ 1
2
ads

� �
σ2A ¼ 1

4
σ2A 1þ Fdð Þ þ q2σ2

A 1þ Fsð Þ
þ qadsσ

2
A þ var δið Þ

and

var δið Þ ¼ 1þ 1
2
−q

� �
ads

� �
σ2A−

1
4

1þ Fdð Þ−q2 1þ Fsð Þ
� �

σ2A:

When neither the dam nor the sire is known
var δið Þ ¼ σ2A.
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In the case when only the dam is known, Ai ¼ 1
2

Ad þ δi and var δið Þ ¼ 1− 1
4 1þ Fdð Þ� �

σ2
A . In the case

when only the sire is known, Ai = qAs + δ i, and
var δið Þ ¼ 1−q2 1þ Fsð Þð Þσ2A.

Appendix 2
Here, we derive the probability p1 that two offspring of a
queen descend from the same drone, and the probability
p2 that two offspring descend from the same drone-
producing queen, under the assumption that the number
of drones per drone-producing queen and the number
of offspring per drone follow a Poisson distribution.
Take the average number of drones per drone-producing
queen to be equal to DS and the average number of off-
spring per drone to be equal to ND. Furthermore, take
the total number of offspring per sire to be equal to T,
such that T = SDSND and the number of offspring per
drone-producing queen to be equal to NS.
The average number of drones is equal to D, such that

the average number of offspring per drone equals T
D ¼ ND.

Furthermore, because the number of offspring per drone
follows a Poisson distribution:

var NDð Þ ¼ ND ¼ T
D
:

The proportion of offspring that derives from a par-
ticular drone is cD ¼ ND

T .

It follows that σ2cD ¼ var NDð Þ
T2 ¼ 1

TD.
Using:

p1 ¼ Dσ2cD þ
1
D
; ð22Þ

it follows that:

p1 ¼
1
T
þ 1
D
≈
1
D

ð22aÞ

because T is very large.
The average number of drones per drone-producing

queen equals D
S . This number follows a Poisson distribu-

tion such that var DSð Þ ¼ D
S .

We have defined cS as the proportion of offspring from
a particular drone-producing queen, where on average
cS ¼ 1

S ¼ DSND
T , using T = SDSND.

With this result,

σ2
cS ¼

var DSNDð Þ
T 2 ¼ 1

T2

�
�N 2

Dvar DSð Þ þ �D2
Svar NDð Þ þ var NDð Þvar DSð Þ

�

¼ 1

T 2

T2

D2

D
S
þ D2

S2
T
D
þ T

D
D
S

� �
≈

1
DS

;

because T is very large. The derivation assumes that DS

and ND are independent. This is a reasonable assump-
tion: the number of offspring of a drone is independent
of the number of drones produced by its dam.
Using p2 ¼ Sσ2cS þ 1
S (23), it follows that:

p2≈
1
D
þ 1
S
: ð23aÞ
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