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Abstract 

Background:  Categorical traits without ordinal representation of classes do not qualify for threshold models. Alterna-
tively, the multinomial problem can be assessed by a sequence of independent binary contrasts using schemes such 
as one-vs-all or one-vs-one. Class probabilities can be arrived at by normalization or pair-wise coupling strategies. We 
assessed the predictive ability of whole-genome regression models and support vector machines for the classification 
of horses into four German Warmblood breeds.

Results:  Prediction accuracies of leave-one-out cross-validation were high and ranged from 0.75 to 0.97 depending 
on the binary classifier and breeds incorporated in the training. An analysis of the population structure using eigen-
vectors of the genomic relationship matrix revealed clustering of individuals beyond the given breed labels. Admix-
ture between two breeds became apparent which had substantial impact on the prediction accuracies between 
those two breeds and also influenced the contrasts between other breeds.

Conclusions:   Genomic prediction of unordered categorical traits was successfully applied to subpopulation assign-
ment of German Warmblood horses. The applied methodology is a straightforward extension of existing binary 
threshold models for genomic prediction.

© 2016 Heuer et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Categorical traits play an important role in livestock 
breeding. It is often possible to arrange K distinct classes 
of a particular trait into a meaningful order. Ordinal 
threshold models can then be applied by introducing 
K  −  1 thresholds to the liability. However, if ordering 
classes is doubtful or impossible, those threshold mod-
els do not apply in a meaningful manner. This is the case 
when treating subpopulations or breeds (both terms are 
used interchangeably throughout the paper) as classes of 
the trait “subpopulation assignment”. Partitioning indi-
viduals into groups or subpopulations is elementary in 

livestock breeding and can be done in various ways based 
on geographical, phenotypical or ideational criteria.

In breeding organisations, the composition of a par-
ticular breed is subject to selection, migration and drift. 
Also, breed definitions and breeding goals change over 
time, making stringent permanent classification dif-
ficult. Different subpopulations of the German Warm-
blood horse have different breeding schemes, breeding 
value definitions and evaluations, geographical locations, 
ancestral breed compositions and migration policies. 
We expect those differences to be visible on the genomic 
scale using high-density single nucleotide polymor-
phisms (SNPs). The most fundamental metric to measure 
divergence between populations is the fixation index [1], 
which allows detection of differences in allele frequencies 
at a particular genomic locus between subpopulations. 
An aggregate of fixation indices over all available loci 
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(e.g. SNPs) can be used as a measure of genetic distance 
between subpopulations.

At this point, it is important to distinguish between 
divergence between subpopulations caused by genetic 
drift and gene flow (demographic history) and actual 
selection, both of which will be reflected by the fixa-
tion index. When sequence data is available, this can be 
assessed by distinguishing between SNPs located in genic 
and nongenic regions (neutral markers) [2]. From a quan-
titative genetic perspective, estimating genetic variances 
and covariances of traits under selection between breeds 
can provide insights into the amount of genetic differ-
entiation at quantitative trait loci (QTL). However, the 
trait under investigation (assignment to subpopulation) 
reflects both sources of divergence and does not allow a 
direct differentiation between them.

Genomic prediction is widely used for the prediction 
of quantitative and qualitative traits in livestock, plant 
breeding and human genetics. It has been shown, that 
regression on markers can pick up genomic relationships 
between individuals as well as linkage disequilibrium 
and co-segregation between markers in founders and 
descendants, respectively [3]. Breed composition is based 
on demographic history, migration policies and selection 
of quantitative/qualitative traits.

The aim of this study was to investigate the ability of 
whole-genome regression methods that are used for 
genomic selection, to discriminate between subpopula-
tions. We did not seek to use genomic prediction meth-
odology to cluster a given data set into subsets, but used 
predefined subpopulation assignments, which were 
assumed as fixed cluster indices, and assessed the pre-
dictive ability of various methods. However, as a conse-
quence of this approach being applied to subpopulation 
categories, predictions of uncategorized individuals, 
based on the training of marker effects, can be used for 
subpopulation assignments or probabilistic assignments 
to several subpopulations. In addition, the discriminating 
ability of models based on genome-wide dense SNP pan-
els can be used as a criterion for the divergence between 
breeds.

Genomic prediction of ordinal traits has been suc-
cessfully applied in animal and plant breeding using 
either threshold models [4–7] or categorical discrimi-
nating machine learning techniques like support vector 
machines [7]. The prediction of unordered categorical 
traits involves several difficulties, which are addressed in 
the following section.

Methods
Dataset
The dataset included 917 stallions from four German 
Warmblood horse breeding populations that were part 

of a breed survey between 2005 and 2008, i.e. Hanover-
ian, Holsteiner, Oldenburger and Trakehner. The ani-
mals were genotyped with the Illumina Equine-SNP® 
BeadChip that contains 54,602 SNPs. Genotyping results 
for autosomal SNPs only were filtered based on Illumi-
na’s GenCall score applying a threshold of 0.15, which 
resulted in a mean call rate higher than 0.98. Further-
more, markers with a minor allele frequency less than 
0.05, and a genotyping rate of at least 90  % were dis-
carded. The final set comprised 44,159 SNPs. Before 
excluding SNPs based on the described criteria, we ana-
lysed each SNP for opposing fixation of certain alleles 
between the breeds. This should have allowed prediction 
of subpopulation assignment based only on those SNPs. 
However, none of the SNPs showed opposing fixation of 
alleles.

The pedigree consisted of 270 unique sires and 876 
unique dams, yielding a pedigree size of 2061 individuals 
that are summarized in Table 1. It should be noted here 
that the analysis of the different breeds was based on the 
sample of available stallions and might not appropriately 
reflect the real breed compositions.

Genomic prediction of unordered categorical traits
When investigating categorical traits, for which the dif-
ferent classes cannot be arranged in a meaningful order, 
the distinct categories have to be treated as K independ-
ent classes termed or labelled Ck, where k is a value 
between 1 and K. In that case, the use of ordinal thresh-
old models is questionable. We have treated the multiple 
class prediction problem as one that can be represented 
by binary contrasts between two or more classes. In logis-
tic regression, the multinomial case is dealt with by con-
ducting K − 1 binary contrasts against a base line class. 
Several schemes are possible to combine a collection of 
binary classifiers into a single multinomial classifier. The 
main difficulty is to define the scheme in a consistent way 
and to guarantee a unique classification, since more than 
one binary classifier might claim the same data for differ-
ent classes or none of the binary classifiers might claim 
the data at all. A customary scheme, also used here, is the 
one-vs-all (OVA), where each of the K classes is paired 
with the complement of samples from the K −  1 other 
classes. This will almost always be unbalanced, since 

Table 1  Overview of the analysed subpopulations

Subpopulation Numeric indicator Individuals Sires Dams

Hanoverian 1 306 95 296

Holsteiner 2 348 98 322

Oldenburger 3 219 95 216

Trakehner 4 44 33 43
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each binary classifier usually will see a larger number of 
negative samples consisting of the K − 1 classes in the 
complement of its positive class. The second customary 
scheme is the one-vs-one (OVO), where each possible 
K (K − 1)/2 pairing of classes is presented to a binary 
classifier. The classification of the data into the different 
classes is then decided by ’voting’. Unobservable data x, 
where x is a vector with D features (e.g. SNP covariates), 
can be classified according to the class that has most 
often been predicted by the binary classifiers.

In case of a probabilistic classifier such as the probit 
threshold model used here, one would, instead of work-
ing with binary classifications only, also seek to obtain a 
full K-dimensional vector of posterior predictive prob-
ability assignments:

before committing to a class by picking the class having 
the maximal probability for the individual x. Since only 
the conditional probability estimates from the binary 
machines are available, the task to consistently assign 
probabilities fundamentally hinges on these:

where the prime in k ′ represents one of the binary classifi-
cation pairings to Ck as given by the scheme employed. In 
case of the OVA scheme, this is relatively straightforward:

In the OVO scheme, it is certainly possible to implement 
class probabilities from the voting scheme’s {0, 1} valued 
table i.e.:

as a counting measure, but this would be based on 
already predicted class assignments. To retain the binary 
classifiers probabilities for estimating p, we therefore fol-
lowed an alternative pair-wise coupling approach given 
in Wu et al. [8], where the posterior predictive probabili-
ties are directly estimated from those of the binary clas-
sifiers. The known pair-wise probability estimates pkk ′ 
should, even if approximately, require the unknown class 
probabilities pk and pk ′ to satisfy the equation:

Fixing each k and summing over the complementary 
K − 1 classes k ′ results in the determining system:

p = (p1, ..., pK ) = p(x),

where pk = Pr(Ck |x) :≡ Pr(class(x) = Ck |x),

p̂kk ′ ∼ pkk ′ = Pr(class(x) = k|class(x) ∈ {Ck ,Ck ′ }, x),

Pr(Ck |x) =
Pr(Ck |class(x) ∈ {Ck ,Ck ′ }, x)

∑K
l=1 Pr(Cl |class(x) ∈ {Cl ,Cl′ }, x)

.

pk =
2

K (K − 1)

∑

k ′,k ′ �=k

ckk ′ , where ckk ′ = 1{pkk′>pk′k }
,

(1)pkk ′ =
pk

(pk + pk ′)
.

for the probability vector p = (p1, ..., pK ) to be obtained. 
This is recast as a fixed point problem in [8]. Thus, under 
the constraints given above still, p is to solve the follow-
ing fixed point equation:

Based on the Markov property of Q, it is then shown that 
this yields a unique solution although Eq. (1) is overde-
termined, and it is argued that this solution is a proper 
model to build multi-class probabilities from binary 
ones.

Threshold model
Bayesian regression models for binary contrasts have 
been applied using a threshold model. The conditional 
success probability for the vector of observed binary 
responses (breed assignments) y can be written as:

where η = Wb+ Zu represents a linear predictor for 
the liability that is assumed to give rise to the measured 
phenotypes:

where e is assumed to follow ∼ N (0, I). W and Z are 
known incidence matrices for fixed and random effects 
with b and u being their respective solution vectors.

The linear predictor is mapped to the expectation of y 
through the probit link function �, the standard normal 
cumulative distribution function. In our case with only 
two classes in the response vector, δ is a single threshold 
parameter. The predicted probabilities from the thresh-
old models can be used to obtain class probabilities as 
discussed in the previous section.

Estimation of multinomial breeding values
The computation of multinomial predictors based on 
binary contrasts can also be used to estimate multinomial 
breeding values expressed as expected fractions of off-
spring in the different categories. Considering the probit 
threshold model described above and a OVA scheme, a 
base population using the allele frequencies of the marker 
covariates (f) in, e.g., founders, can be defined. Let zn be a 
vector of marker covariates for selection candidate n, uk a 
vector of marker effects for class k, w a vector of average 
fixed effect coefficients and bk a vector of fixed effects for 
class k. pnk contains the expected fraction of offspring in 
class k for individual n averaged over the fixed effects and 
can be obtained as:

pk =
∑

k ′ ,k ′ �=k

pk + pk ′

K − 1
pkk ′ with constraints pk > 0,

K
∑

l=1

pl = 1,

p = Qp with Qkk ′ =
1

K − 1

{

pkk ′ if k �= k ′
∑K

l �=k pkl if k = k ′
.

(2)Pr(y = 1|η) = �(η − δ),

l = η + e,
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where δk is the threshold for the kth binary OVA model. 
Deviations of the offspring from the population means 
can be computed as gn = pn − p0, where p0 is a vector of 
the class fractions in the base population.

Bayesian regression models
Genomic prediction for the binary traits has been con-
ducted using the general model given in Eq. (2) but using 
two different models for the liability. Those models dif-
fer in their prior distribution for the marker effects u. The 
most prominent model, Ridge Regression (or equivalently 
GBLUP), assumes a Gaussian prior on u with a com-
mon variance component. In addition, we also employed 
BayesA [9], which effectively assumes a t-prior on u [10].

Support vector machines
Support vector machines (SVM) [11] are a supervised 
linear model for binary classification. A simple linear 
model or hypothesis is a function of the form:

where �.|.� denotes the standard scalar product, the 
argument x is a column vector of features (e.g. one of a 
marker or design matrices’ rows), β0 is an intercept and 
β is a D dimensional vector of weights to be determined 
during a training procedure. Such a function, given that 
β �= 0, defines a hyperplane on its domain (the feature 
space) by y−1(c) for any real constant c, the subspace of 
points x satisfying the equation y(x) = c. This geometri-
cally splits the feature space in two halves, and the hyper-
plane is to become the so-called separating hyperplane 
or decision boundary for a binary classification problem. 
Given paired data (xn, cn)1≤n≤N , where N is the number 
of samples and cn are realized class labels with values 
within {−1, 1}, a support vector machine seeks to adjust 
or learn β such that the hyperplane given by y(x) = 0 
separates the classes according to their labeling. A data-
set/labeling which admits this is called linearly separable. 
In this case, usually an infinite number of such separat-
ing planes exists, and the SVM will find a maximum mar-
gin solution. It is the plane that has the same maximally 
possible orthogonal distance to either of the classes. The 
data points touching the margin are called the support 
vectors, as these serve to define the separating plane and 
the margin. If the dataset is intertwined and not linearly 
separable, the margin serves as slack area (i.e. a volume in 
feature space), where misclassification is allowed.

Having established the basic binary SVM classifier, 
there are two important extensions to be made: a scheme 
for concatenating binary classifiers, such as described 

pnk =
�(w′bk + 0.5((zn − 2f)′uk)− δk)

∑K
l=1�(w′bl + 0.5((zn − 2f)′ul)− δl)

,

y(x) = β0 + x′β = β0 + �x|β�,

above, can be set up to build a single multinomial classi-
fier, and some (nonlinear) feature transformation can be 
carried out before using the basic SVM to accommodate 
for nonlinearities in the data. A feature transformation 
is an arbitrary (but somewhat ’reasonable’) mapping φ of 
the data into some other feature space. The linear model 
then follows the form:

Frequently, the data is mapped to a higher dimensional 
space under φ. The embedding of the data in a higher 
dimensional space increases the chances that the image 
of the data under φ, is linearly separable. An example for 
a feature space transformation is to let φ have the com-
ponents φn = �xn, .�, where xn might represent marker 
covariates for training. This is in essence a genomic rela-
tionship matrix. Here, the mapping φ depends on train-
ing data, and the dimension depends on the number of 
samples (individuals) available. The genomic relationship 
matrix can also be viewed as stemming from a kernel.

A kernel is usually given by a bivariate function K that 
takes the form:

for some feature mapping φ and some Hilbert space H 
with scalar product �.|.�H. Note that it is sufficient to know 
and evaluate an admissible (Mercer’s condition) K on 
pairs of data, while, conversely, the RHS of Eq. (3) defines 
a kernel in any case. The standard genomic relationship 
matrix emerges as a special case [12], it is the kernel from 
letting φ = id, the identity mapping [φ(x) = x].

This also reduces the dimension to the number of sam-
ples available, which, in general, will be smaller than the 
dimension of the marker covariates. Therefore, in our 
analysis, we concentrated on the original marker repre-
sentation to be used with the support vector machine.

Measuring prediction accuracy
Prediction accuracy was measured in two ways, depend-
ing on the classification rule via leave-one-out cross-
validation. Although this scheme is computationally 
very expensive, it was chosen because of the unbalanced 
representation of the different classes in our dataset and 
the very low numbers observed for the Trakehner class. 
The leave-one-out scheme ensures the highest possible 
absolute number of training animals while reflecting the 
structure of the data in a very similar fashion in each run. 
We used discrete classification from the support vector 
machines directly, while assigning the class with high-
est probability from the Bayesian regression models and 
measured the prediction accuracy in the discrete case as:

y(x) = β0 + φ(x)′β = β0 + �φ(x)|β�.

(3)K (x1, x2) = �φ(x1)|φ(x2)�H ,

Accuracy =
Number of correct classifications

Total number of classifications
.
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For the regression models, another metric that sums up 
squared differences between actual class category and 
predicted probabilities, was also used (Brier Score [6, 13, 
14]):

where yij is an indicator that takes a value of 1 if the 
observed value yi is j and 0 otherwise and pij is the pre-
dicted probability for individual i for class j. This score 
ranges from 0 to 2, with lower values indicating higher 
accuracy. In order to make inference about the prediction 
accuracy of a given model, it is necessary to compare it 
to a base line model for which we assume that the prob-
ability for any individual and class is pij = K−1, yielding 
equal probabilities for the assignment of any class. The 
relative performance of the models is reported as one 
minus the fraction of the Brier Score to the Brier Score 
of the base line model (sBS). Hence, an sBS value of 0 
indicates that the model predicts no better than random 
assignments of individuals to classes with uniform prob-
abilities. A value close to 1 indicates perfect prediction. 
This is only slightly different from the definition given in 
Steyerberg et al. [15], where the base line model uses the 
population frequencies of the classes, contrary to the uni-
form frequencies in the metric used here.

Population structure
Definition of subpopulations
Subpopulations or breeds can be defined in various ways 
and this definition has an impact on the interpretation 
of results. The general assumption of our linear model 
is that the response, which is the assignment of an indi-
vidual to a subpopulation, is measured without error. 
The absence of measurement error can only be assessed 
with respect to the breed definition. One possible defini-
tion might be based on a combination of phenotypes that 
unambiguously defines the breed. In this case, the pheno-
type “subpopulation assignment” is a linear or nonlinear 
combination of measurable phenotypes and will there-
fore be confounded with all phenotypes that are being 
used to define the particular subpopulations.

In the case of the present data set, the animals were 
assigned to the different breeds by their corresponding 
breeding organizations. Those assignments are variable 
in their restrictiveness, since one organization might be 
more open to migration than others. In other words, the 
phenotype “subpopulation assignment” was not identi-
cally defined across breeding organisations.

Actually, the Trakehner horse breed has been par-
tially closed since 1732 and only introgression of Thor-
oughbreds and Arab horses are allowed. Their total gene 

Brier Score = N−1
N
∑

i=1

K
∑

j=1

(

pij − [yi = yij]
)2
,

contribution has been estimated at 34  % [16]. The Hol-
steiner horse breed has historically also been influenced 
by Thoroughbred and Arab horse breed introgression as 
well as by the French Selle Francais that has had consid-
erable influence. Total contributions of approximately 
26 and 16 %, respectively, have been estimated for these 
breeds [17]. The actual Holsteiner breed policy, however, 
restricts the use of foreign breeding animals [http://www.
holsteiner-verband.de/front_content.php?idcat=408]. 
The Hanoverian breeding policy can be regarded as more 
open than that for the aforementioned populations. The 
Hanoverian breed has also been influenced by several 
waves of Thoroughbred introgression, but also by the 
Trakehner horse breed, which has been extensively used 
after World War II, and also by the Holsteiner breed 
since 1993, but to a lesser extent in the context of the 
Hanoverian Jumper Breeding program. It has been esti-
mated that approximately half of the Hanoverian gene 
pool is attributable to original Hanoverian founder ani-
mals [18]. Finally, the Oldenburger association operates 
the most open breeding program. According to its stat-
utes, a wide variety of other breeds and populations is 
allowed [http://www.oldenburger-pferde.net/upload/
Satzung_Stand_Juni_2014__korrigierte_Version].

Analysis of population structure
In order to assess the population structure of the data 
set, a principal component analysis was conducted 
using the realized genomic relationships based on the 
available markers [19]. Genomic relationships across 
breeds were computed according to VanRaden [20] as: 
G = MM′

∑m
i=1 2pi(1−pi)

, where M is a matrix containing cen-
tered coefficients of gene content for the 44,159 SNPs. 
In order to investigate potential clustering of the data, a 
scatterplot of the first two eigenvectors of the decompo-
sition G = UDU′ was visually inspected. In addition, we 
performed an eigenvector analysis of the genomic rela-
tionship matrices between pairs of breeds {kk ′}, which 
corresponds to the approach of Janss et al. [21] for quan-
titative traits.

A threshold model of the form given in Eq. (2) was 
assumed, with Z being a random effects design matrix 
with columns representing the eigenvectors of Gkk ′. The 
prior assumption on the vector u of random effects (solu-
tion to the regression on the eigenvectors in Z) was a 
point mass at zero plus a Gaussian slab. This basic vari-
able selection model corresponds to the approach of Kua 
and Mallick [22] and Habier et al. [23] (BayesCπ).

Janss et al. [21] used the proportion of explained vari-
ance by an eigenvector j times the estimated regres-
sion coefficients αj to the total sampling variance of the 
genetic values g (=Uα) for estimating the importance 

http://www.holsteiner-verband.de/front_content.php?idcat=408
http://www.holsteiner-verband.de/front_content.php?idcat=408
http://www.oldenburger-pferde.net/upload/Satzung_Stand_Juni_2014__korrigierte_Version
http://www.oldenburger-pferde.net/upload/Satzung_Stand_Juni_2014__korrigierte_Version
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of individual eigenvectors. By defining a threshold of 
explained variance similar to that of Fernando and Gar-
rick [24], eigenvectors that contribute significantly to 
the sampling variance in g can be identified. The differ-
ence here is that we use the inclusion probabilities of 
the eigenvectors in the BayesCπ model directly to make 
inference about the importance of certain eigenvectors. 
A similar approach for genome-wide association studies 
was proposed by Fernando et al. [25], where the indicator 
variable for all markers in a specified window is used in a 
BayesC model for computing the posterior probability of 
an association for that window.

We report the posterior mean of the proportion of 
eigenvectors with non zero effect (pEV) as a measure-
ment of model complexity. Higher values of pEV indicate 
a more complex relationship between two breeds, hence 
less discriminative power of single eigenvectors. An alter-
native would be to treat one eigenvector at a time as the 
response variable and perform an analysis of variance 
using the known class labels as the explanatory factor 
variable as in Patterson et al. [19], but this was not inves-
tigated here.

The power of the available markers to discriminate 
between the breeds was assessed through cross-valida-
tion using the multinomial prediction scheme described 
above. Furthermore, we estimated pedigree- and marker-
based heritabilities between pairs of breeds, using 
either Akk ′ or Gkk ′ as relationship matrix in an animal 
model, for the trait “subpopulation assignment” using 
Gibbs sampling. The heritability can then be computed 
as: h2Ped/Marker = σ 2

aPed/Marker
/(σ 2

aPed/Marker
+ σ 2

e ), where 

σ 2
aPed/Marker

 is the additive genetic or genomic variance 

component, respectively. The residual variance compo-
nent (σ 2

e ) is set to 1 (probit model).
In addition, marker-wise fixation indices (FST) between 

pairs of and across all breeds were estimated. This quan-
tity is defined as the ratio between variation in allele 
frequencies between breeds (σ 2

α) and the expected het-
erozygosity (σ 2

ǫ ) at the locus (FST =
σ 2
α

σ 2
ǫ
). Performing an 

analysis of variances to test for significant differences in 
allele frequencies between breeds can be used to iden-
tify loci that contribute to the discrimination between 
breeds. We estimated FST marker-wise using a linear 
mixed model by treating gene content as the response 
variable and subpopulations as random effects assum-
ing var(α) = MVN (0, Iσ 2

α ) [26], with I being an identity 
matrix of order K. It should be noted that the traditional 
FST value assumes Hardy-Weinberg equilibrium (HWE) 
for any marker, since it uses the expected heterozygosity 
as a measure of sampling variance for the markers. We 
report this measurement when comparing the four differ-
ent subpopulations pair-wise, since the estimation of the 

variance of a random effect with only two levels requires 
introducing some sort of prior knowledge.

However, for the whole population, the global FST 
values were estimated in a mixed model analysis and 
we report the ratio of the variance in allele frequencies 
between the subpopulations and the total model vari-
ance. Such estimation of FST has a strong connection 
to the recently proposed method of Forneris et  al. [27] 
based on the initial approach of Gengler et  al. [28], for 
which they assume that var(α) = MVN (0,Aσ 2

α ), with 
A being the numerator relationship matrix. In their 
approach, they use departures of the estimated heritabil-
ity from one as a measure of genotyping error for the loci.

Software
All evaluations were performed in R [29]. The Bayesian 
threshold models have been implemented using BGLR 
[30]. Classification using SVM was done with e1071 [31], 
which has libsvm [32] as a backend. We used default 
prior specifications (BGLR) and tuning parameters 
(e1071). Population-wide FST values were estimated using 
Asreml-R 3.0 [33]. The BayesCπ threshold model for 
the eigenvector analysis was implemented in JAGS [34] 
using the rjags package [35]. For the genomic prediction 
regression models, the Gibbs sampler was run for 30,000 
iterations (15,000 burn-in). For the estimation of herit-
abilities and pEV using BGLR and JAGS, respectively, the 
number of iterations was 60,000 while discarding the first 
20,000 as burn-in.

Results and discussion
Population structure
An overview of the breeds under investigation is in 
Table  1. For the 917 animals in the data set, 264 stal-
lions were used as sires, of which 46 were used in more 
than one breed. Most significantly, Hanoverian and Old-
enburger populations shared 34 sires which resulted in 
strong half-sib structures within and between breeds. 
The additive genetic relationship structure is illustrated 
in the upper triangular part of Fig. 1. The genomic rela-
tionships show the high within-breed relationships based 
on the observed marker genotypes. A strong connec-
tion between the Hanoverians and Oldenburger breeds 
beyond the half-sib structures becomes apparent, while 
the Holsteiner and Trakehner breeds show very little 
genomic relationship with other breeds besides the half-
sibs. This suggests that those breeds introduce only very 
few foreign sires into their breed. Although there is a 
lot of exchange of sires between the breeds, for the Hol-
steiner and Trakehner breeds, it is mainly unidirectional.

Averages over the additive genetic and genomic rela-
tionships are in Table  2. Since the genomic relationship 
matrix is centered based on the allele frequencies of the 



Page 7 of 16Heuer et al. Genet Sel Evol  (2016) 48:13 

whole sample, there are negative values that indicate 
below average relationships in this sample of individuals. 
The Holsteiner breed shows below average relationships 
with all other breeds while the Hanoverian breed has 
positive average relationships with the Oldenburger and 
Trakehner breeds. Average genomic relationships (and 
standard deviations thereof ) in distinct breeds are equal 
to 0.022 (0.055) for Hanoverians, 0.037 (0.06) for Hol-
steiner, 0.0116 (0.054) for Oldenburger and 0.10 (0.053) 
for Trakehner. The highest average pedigree relation-
ship was observed for the Hanoverian and Oldenburger 
breeds (0.00269), while the average pedigree relation-
ships within those breeds were equal to 0.0082 and 
0.0056, respectively.

The absolute and relative differences in the mean val-
ues of these measurements were small, while average FST 
values were more contrasted, although on a lower scale. 
The Hanoverians and Oldenburger breeds had by far the 
lowest mean FST values (0.0029), which means that aver-
aged over all markers, the variance in allele frequencies 

between these two breeds was small compared to the 
overall (expected) variance (heterozygosity). The mag-
nitude of FST values was most marked between the Hol-
steiner and any of the other breeds with a maximum 
value of 0.0151 against the Hanoverian breed. FST val-
ues across all breeds ranged from 0.00 to 0.513, with an 
average of 0.046. The summary FST statistics were similar 
across all chromosomes.

Eigenvector analysis
The first two eigenvectors of the genomic relationship 
matrix of all individuals in the data set were used to 
visually inspect the clustering of individuals according 
to their assigned breeds (Fig.  2a). The Holsteiner breed 
clearly clustered separately from the other breeds along 
the first axis. However, substructure of this population 
was also apparent along the second axis. A majority of the 
Hanoverians and Oldenburger animals formed a cluster 
along both axes, while the Oldenburger individuals were 
broadly spread along the first axis into the Holsteiner 

Fig. 1  Pedigree-derived and marker-derived additive relationship matrices arranged by subpopulations. The upper and lower triangular matrices 
represent the pedigree-derived and marker-derived additive relationships, respectively. Diagonals are set to 1
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population. The Trakehner animals clustered horizon-
tally separately from the Holsteiner cluster at the border 
of the Hanoverian cluster. The cumulative proportion of 
explained variance by the eigenvectors is in Fig. 2b, and 
reveals that the first five eigenvectors already explain 
more than 50 % of the variation in the data. This supports 
the visual result of the strong discriminative ability of the 
first two eigenvectors. The eigenvector clustering shows 
significant overlap between breeds (e.g. Hanoverians and 
Trakehner), while subclusters within breeds were appar-
ent. Hence, the data could be divided into different and 
more diverse clusters than the four breed labels. This 
finding was also supported by an evaluation of the data 
set using fastSTRUCTURE [36], which proposed a clus-
tering into 15 populations (data not shown).

In addition to the visual inspection, we used eigen-
vectors to estimate two additional metrics that are in 
Table  2. pEV is a measure of model complexity using 
the eigenvectors of the genomic relationship matrix 
between two breeds (Gkk ′) as random effects in the 
BayesCπ threshold model. If two populations differ at 
most of the SNPs, we would not expect more than one 
eigenvector to be necessary to distinguish between 
them [19]. Hence, pEV and the number of eigenvec-
tors with non-zero effects (nEV = pEV × (N − 1), with 
N being the number of individuals in the sample of the 
two breeds), serve as a measure of divergence between 
the two breeds, with higher values of pEV indicating 
lower divergence. The posterior means of pEV ranged 
from 0.0061 (Holsteiner vs. Trakehner) to 0.048 (Hano-
verian vs. Oldenburger), resulting in on average 2.4 and 

25.15 eigenvectors included in the models, respectively. 
The individual inclusion probabilities of the eigenvectors 
in the pair-wise contrasts are in Fig.  3. These estimates 
support the results from the pair-wise cross-validation 
(CV-Accuracy, Table 2) but also suggest that, except for 
the Holsteiner and Trakehner pair of breeds, no pair of 
breeds formed distinct clusters. This result corresponds 
well to the breeding policies described earlier.

In addition to the eigenvector analysis used here, a 
wide range of methods exists to cluster datasets into 
subgroups and assign individuals to these. Besides dis-
tance measures used in k-means clustering or discrimi-
native analysis, model-based approaches are frequently 
assessed. In particular, Pritchard et al. [37] and Raj et al. 
[36] used the aggregate of available marker genotypes 
to cluster individuals based on HWE and linkage equi-
librium assumptions, while discriminating between 
the populations based on departures from both these 
metrics.

Genomic prediction of subpopulation assignment
Besides the measurements already described in Table 2, 
three additional estimates, that quantify the ability of the 
available SNPs to discriminate between pairs of breeds, 
were investigated. These are inversely related to dis-
tance measures, which results in a higher discriminative 
ability of the SNPs and thus indicates that the distance 
between breeds is greater. Heritabilities on the liability 
scale of subpopulation assignment were estimated using 
either the numerator or genomic relationship matrix. 
They can be interpreted as the proportion of phenotypic 

Table 2  Measures of relationship and separability between subpopulations

The averages (standard deviations) of pair-wise additive genetic relationship (A), genomic relationship (G), average FST values of all markers, pedigree-based 
heritability on the liability scale (h2

Ped
), marker-based heritability on the liability scale (h2

Marker
) for the trait “subpopulation assignment”, percentage (pEV) and number 

(nEV) of eigenvectors included in the variable selection threshold model and the prediction accuracy of subpopulation assignment (CV-Accuracy) of a leave-one-
out cross-validation using SVM. Base indicates the classes used in the pairwise contrasts. Numeric indicators for subpopulations are: 1 Hanoverian, 2 Holsteiner, 3 
Oldenburger, 4 Trakehner

Base A G Fst h
2

Ped

12 0.0002 (0.0075) −0.0290 (0.0321) 0.0151 (0.0196) 0.9809 (0.0158)

13 0.0029 (0.0269) 0.0085 (0.0447) 0.0029 (0.0040) 0.9179 (0.0675)

14 0.0008 (0.0143) 0.0123 (0.0334) 0.0070 (0.0100) 0.8444 (0.0779)

23 0.0003 (0.0084) −0.0176 (0.0377) 0.0109 (0.0147) 0.9442 (0.0269)

24 0.0000 (0.0000) −0.0269 (0.0252) 0.0117 (0.0176) 0.9207 (0.0700)

34 0.0001 (0.0057) 0.0003 (0.0262) 0.0097 (0.0137) 0.7967 (0.1376)

Base h
2

Marker
pEV nEV CV-Accuracy

12 0.9575 (0.0180) 0.0133 (0.0056) 8.6981 (3.6581) 0.9832

13 0.8828 (0.0546) 0.0480 (0.0227) 25.1528 (11.8885) 0.7581

14 0.9233 (0.0417) 0.0122 (0.0071) 4.2579 (2.4701) 0.9457

23 0.9441 (0.0292) 0.0209 (0.0086) 11.8532 (4.8888) 0.9418

24 0.9214 (0.0532) 0.0061 (0.0043) 2.3697 (1.6806) 0.9974

34 0.9253 (0.0556) 0.0176 (0.0100) 4.6038 (2.6294) 0.9544
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variance (sum of the genetic and environmental vari-
ances) explained by the regression on the pedigree or 
marker covariates on the liability scale. This makes it 
necessary to define environmental (residual) variance in 
the case of subpopulation assignments. Assuming that 
the available sample of markers covers the genetic diver-
sity across the whole genome between the breeds, there 
are two non-genetic sources of variance. First, error is 
introduced by the assignment of the different classes to 
breeds, hence phenotype measurement errors. Second, 
non-genetic or lowly heritable criteria are involved in the 
assignment of an individual to a subpopulation. In both 
cases, a heritability lower than 1 indicates non-genetic 
sources of variation for the phenotype “subpopulation 
assignment”. This quantity was estimated on the whole 
data set, hence it does not directly allow inference about 
the predictive ability. In general, pair-wise marker herit-
abilities were high, ranging from 0.88 (Hanoverians and 
Oldenburger animals) to 0.96 (Hanoverian and Hol-
steiner animals). The pedigree-based heritabilities ranged 
from 0.80 (Oldenburger and Trakehner) to 0.98 (Hano-
verian and Holsteiner). Large differences between both 
relationship estimates are observed between Hanoverian 
and Trakehner and between Oldenburger and Trakehner 
animals together with larger standard deviations for h2Ped.  
Generally, the pedigree relationship matrix captures 

more recent relationships, which are particularly sig-
nificant in the two-generation pedigree used here, while 
the markers capture more ancient relationships [38]. We 
would expect heritabilities of 0 for random class assign-
ments, which would mean that all the variation in the 
phenotype is environmental or indeed random.

Since it may not be possible to generalize inferences 
without validation data [39], we used another metric 
based on pair-wise leave-one-out cross-validation using 
an SVM as binary classifier (See Table 2 CV-Accuracy). 
Resulting accuracies ranged from 0.76 (Hanoverians vs. 
Oldenburger animals) to 0.99 (Holsteiner vs. Trakehner 
animals) and reflect to which extent the SVM was able to 
predict unobserved data by learning marker weights in 
training data. Results using a Ridge Regression threshold 
model as the binary classifier were very similar (data not 
shown). Thus, it is obvious that there is strong predictive 
ability of the markers between any pair of breeds except 
for the Holsteiner and Oldenburger breeds. For these two 
breeds, prediction accuracy was higher than 0.5 (base 
line random assignment) but clearly lower than the accu-
racies achieved in the other pair-wise contrasts.

Prediction accuracies for the whole dataset
The results of the leave-one-out cross-validation are in 
Table 3. As binary classifiers, we used a Ridge Regression 
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threshold model using all available markers and an 
untuned SVM. The Ridge Regression model was run 
using two coupling schemes, namely one-vs-one and 
one-vs-all. Accuracies for this model were achieved by 
assigning the class with the highest probability. For the 
SVM, only the one-vs-one scheme was used. The alter-
native threshold model using BayesA resulted in almost 
identical predictions as those obtained with Ridge 
Regression and are not included in Table 3. Furthermore, 
we employed five different base classes in the training 
data set, in order to identify classes that might enhance or 
decrease prediction accuracies. This was done by exclud-
ing one breed from the analysis entirely and estimating 
the prediction accuracies in the remaining breeds.

In general, prediction accuracies were high and ranged 
from 0.59 to 0.97 across the whole data set. Using all 
classes for training results in intermediate overall predic-
tion accuracies. OVO and OVA Ridge Regression yielded 
accuracies of 0.74 and 0.84, respectively, while the SVM 

reached an accuracy of 0.81. More interesting are the 
individual accuracies for the different subpopulations. 
In the OVO Ridge Regression, the Holsteiner were pre-
dicted with an accuracy of 0.99 while the Oldenburger 
animals were all misclassified (0.00). In the OVA scheme, 
the accuracy reached 0.54, which was only slightly better 
than random guessing. These results were also reflected 
by the scaled Brier scores, for which the Oldenburger 
animals reached a value of −0.43, which again was worse 
than assigning equal probabilities for all classes. The sBS 
for the other breeds ranged from 0.66 for the Trakehner 
breed to 0.97 for the Holsteiner, resulting in an over-
all sBS of 0.58. The SVM performed similar to the OVA 
Ridge Regression in that scenario, with the main differ-
ence lying in the prediction accuracy of the Trakehner 
animals. The SVM achieved an accuracy of 0.59 in con-
trast to that of 0.86 for the threshold model.

Generally, the prediction accuracies and scaled Brier 
scores were below average for the least represented breed 
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in the data set (Trakehner), irrespective of the classifier 
used. Unbalanced sample sizes in the different classes can 
cause unreliable probability/classification estimates in 
weakly represented classes [40]. This is true for training 
and prediction. We are aware of this issue but addressing 
it was beyond the scope of the present investigation.

Cross-validation results, when one of the breeds was 
excluded, provided additional insights into the struc-
ture of the data. The schemes that achieved the highest 
overall and individual accuracies and sBS were those in 
which either the Hanoverian or Oldenburger breed was 
excluded. The OVA Ridge Regression model in which 
all but the Oldenburger breed reached the highest over-
all accuracies i.e., 0.97, 1.00 and 0.80 for the Hanoverian, 
Holsteiner and Trakehner breeds, respectively, and the 
average overall accuracy was equal to 0.97. The results 
were similar for the scheme that excludes the Hanover-
ian breed. This result implies that the inclusion of two 
breeds, even if they are strongly admixed, but given dis-
crete class labels, significantly reduces the power of any 
of the binary classifiers to unambiguously predict unob-
served data to the available classes. The reason is the 
error in the phenotype measurement, as previously dis-
cussed, which gives the class labels. One consequence of 
this finding is that given the present sample of individu-
als, the classification of the Hanoverian and Oldenburger 

animals into two distinct breeds is questionable. Numer-
ous admixed individuals, resulting from stallion exchange 
between the two breeding organizations, have a strong 
impact on the results. This becomes more apparent when 
summarizing the predictive distributions of class label 
probabilities by subpopulations. This has been done in 
Figs. 4 and 5. The former visualizes the predicted prob-
abilities from leave-one-out cross-validation for all four 
subpopulations arranged by breed origin and contrast 
scheme.

In terms of binary classification, the probability mass 
concentrated in the class of origin of a particular breed 
that is higher than 0.5 is of importance. The probabilities 
in the other classes clearly show a large proportion of 
individuals that are not unambiguously classified in one 
or the other class. This was especially true for the Han-
overian and Oldenburger animals. In the OVO scheme, 
the majority of the Oldenburger individuals had a pre-
dicted probability to belong to the Hanoverian breed 
higher than 0.5, which explains the 0.00 prediction accu-
racy for that breed and scheme (Table  3). In the OVA 
scheme, the Oldenburger individuals had on average the 
highest probability in their own class, although they show 
substantial probability mass in the remaining classes.

The difference in identical classifiers between the 
two coupling schemes (OVO vs OVA) used raises the 

Table 3  Prediction accuracies and scaled Brier scores for subpopulation assignment

The proportion of correct classifications to all classifications (Accuracy) and the scaled Brier Scores (sBS) per class and over all samples (Total) for the classification 
of subpopulation assignment using leave-one-out cross-validation. Base indicates the classes that were included in training and testing. Numeric indicators for 
subpopulations are: 1 Hanoverian, 2 Holsteiner, 3 Oldenburger, 4 Trakehner

Base Contrast Accuracy sBS

1 2 3 4 Total 1 2 3 4 Total

Ridge Regression

 1234 One-vs-one 0.97 0.99 0.00 0.86 0.74 0.86 0.97 −0.43 0.66 0.58

 1234 One-vs-all 0.86 1.00 0.54 0.86 0.84 0.69 0.98 0.18 0.68 0.68

 234 One-vs-one 1.00 0.87 0.75 0.93 0.97 0.72 0.59 0.85

 234 One-vs-all 1.00 0.87 0.93 0.95 0.98 0.70 0.77 0.87

 134 One-vs-one 0.85 0.66 0.64 0.76 0.66 0.31 0.36 0.50

 134 One-vs-all 0.85 0.67 0.82 0.78 0.66 0.32 0.59 0.52

 124 One-vs-one 0.97 1.00 0.66 0.96 0.93 0.99 0.38 0.92

 124 One-vs-all 0.97 1.00 0.80 0.97 0.92 0.99 0.61 0.94

 123 One-vs-one 0.84 1.00 0.54 0.83 0.65 0.96 0.09 0.63

 123 One-vs-all 0.85 1.00 0.53 0.83 0.65 0.97 0.07 0.63

SVM

 1234 One-vs-one 0.86 1.00 0.50 0.59 0.81

 234 One-vs-one 1.00 0.85 0.73 0.93

 134 One-vs-one 0.87 0.62 0.59 0.75

 124 One-vs-one 0.96 1.00 0.59 0.96

 123 One-vs-one 0.86 1.00 0.50 0.82
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question which one might be more appropriate. Across 
all scenarios, the OVA Ridge Regression scheme yielded 
higher accuracies within and between breeds compared 
to OVO. The leave-one-out scheme appears to be more 
sensitive to weak contrasts, which is readily explained 
by the fact that the classifier in that scheme never sees 
more than two classes. If that particular contrast is weak, 
the resulting prediction cannot be expected to yield high 
accuracies. In the OVA scheme, the classifier is always 
presented as the contrast between one class and all the 
remaining classes. Hence, even if two classes are not eas-
ily separated, the remaining classes still contribute to the 
binary discrimination. Although the SVM uses the OVO 
coupling scheme, the prediction accuracies are similar 
to those obtained with the threshold model using OVA. 
This might be due to the voting used in contrast to the 
estimation of posterior predictive probabilities.

In addition to the admixture between the Hanoverian 
and Oldenburger animals, Fig.  4 shows the strong dis-
criminative ability of the threshold models for the Hol-
steiner and Trakehner animals. In order to assess the 

influence of the Oldenburger individuals on the total pre-
dictive ability of the threshold model and the admixture 
with the other breeds, we excluded them from training in 
Fig. 5. This resulted in significantly improved prediction 
accuracies for the Hanoverian animals. The prediction 
model based on Hanoverian, Holsteiner and Trakehner 
animals only was also used to predict the left out Olden-
burger individuals. More then 75  % of them had a pre-
dicted probability of belonging to the Hanoverian breed 
close to 0.8, 50 % of which beyond 0.95. Only a minority 
of individuals had the highest predicted probabilities for 
the Holsteiner breed, which reflects the influence of that 
breed on parts of the sample.

Generally, the classification of unobserved individuals 
to one (or partially several) subpopulation(s) achieved 
high cross-validation accuracies. One application would 
be to use a reference population, that reflects subpopula-
tions or breeds with high confidence, to estimate marker 
effects. To which subpopulations belong uncertain indi-
viduals can be predicted based on the training of those 
effects if prior breed assignment is doubtful. Probabilities 
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for the different categories can be used to make inference 
about the genetic background of individuals and assign 
them to one or partially to several subpopulations under 
the restriction that the subpopulations represented in the 
training set are the only choices for classification.

It should be noted that it is certainly possible to 
increase the overall prediction accuracies by alternative 
clustering of the data. However, the scope of our investi-
gation was to evaluate the ability to predict unobserved 
individuals given the original subpopulation assignments. 
Migration of animals through the exchange of sires has a 
large impact on the results, but from a breeding organisa-
tion perspective the definition of a particular breed still 
makes sense, even with strong admixture with other pop-
ulations. Breeding organisations define breeding goals 
and provide tools that might be more or less restrictive 
to achieve these goals. Breeding goals are an aggregate of 
desired phenotypic expressions that the breeders want 
to achieve by artificial selection and controlled mating. 
Given an unrestricted breeding policy, breeders would 

use stallions and mares, regardless of their origin, that 
most suitably contribute to the given breeding goal, 
hence having high estimated breeding values for traits of 
interest.

A recent study investigated the impact of selection 
according to identical criteria in two distinct populations 
on the change in allele frequencies of SNPs on a genome-
wide scale [41]. The main finding was, that genomic 
regions that responded to selection by changes in allele 
frequencies that were greater than those due to drift, did 
not overlap between populations. The authors reasoned 
that response of genomic regions to selection depends on 
the initial allele frequencies in the population. In horse 
populations, such an investigation is hardly possible 
considering the long generation intervals. However, after 
a sufficiently long period of concurrent selection, dis-
tinct populations will likely show similar allele frequen-
cies at QTL. Given the available data, it is not possible to 
distinguish between demographic history and selection 
but the phenotype “subpopulation assignment” certainly 
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reflects both. An interesting follow-up study would be to 
investigate the genetic covariance of certain traits under 
selection between all breeds. Such an analysis would 
allow the estimation of the ratio of among-population 
genetic variance (σ 2

G) with total genetic variance, which 
is the sum of σ 2

G and the within-population genetic vari-

ance (σ 2
GW), i.e. QST =

σ 2
G

σ 2
G+σ 2

GW

 [42]. Instead of differenti-

ating between subpopulations using anonymous markers 
with unknown effects on quantitative traits, one would 
obtain measures of population divergence based on 
traits of interest that are under selection. This question 
could be investigated by an interaction model in which 
a baseline effect is fitted across breeds while allowing for 
breed-specific deviations, as proposed by de los Campos 
and Sorensen [43].

Genomic prediction of unordered categorical traits
The described methodology for conducting multinomial 
prediction rests on the assumption that the multiple class 
problem can be represented by a number of pair-wise 
binary contrasts. In order to compute posterior predic-
tive probabilities for all classes, it is sufficient to normal-
ize the posterior predictive probabilities from the binary 
models in the OVA scheme and to solve a fixed point 
equation in OVO. Besides its appealing simplicity and 
the ability to make use of the variety of whole-genome 
regression models used in the genomic prediction frame-
work, it also allows the use of existing software imple-
mentations without explicit multinomial extensions. 
The framework described is not limited to the applica-
tion given here. There are numerous categorical traits of 
interest in livestock breeding, that cannot, or only barely, 
be ordered in a sensitive way to allow for ordinal thresh-
old models to apply. Examples include coat color, func-
tional traits or anatomical discrete measurements. Traits 
that are usually being ordered like calving ease might 
also benefit from a non-ordinal treatment of the different 
classes if the applied ordering scheme is questionable.

Quantitative genetic considerations
The binary classification scheme used here implicitly 
assumes independence between any two contrasts and 
ignores unobserved classes (independence of irrelevant 
alternatives, [44]). In the OVA scheme, each class of a 
categorical trait is treated as an independent binary trait 
for which exclusive marker effects are estimated.

Defining a single additive genetic variance for unor-
dered categorical traits is counterintuitive and, therefore 
treating the different categories as potentially correlated 
traits could provide insights about the genetic architec-
ture of the multivariate trait aggregate. Genetic correla-
tions could be estimated on the liability scales and the 

multinomial probit model would be a good candidate to 
investigate this topic since it does not rely on the inde-
pendence of irrelevant alternatives assumption and can 
therefore take genetic covariances across the pair-wise 
binary contrasts into account [44].

In addition, selection index theory could be used to 
generate a genotypic aggregate of the different categories 
of an unordered categorical trait. Selection could then 
proceed on an economically weighted index, since it is 
very likely that different categories have different eco-
nomical impacts. The heritability for a single unordered 
categorical trait would then be defined by the applied 
index.

Alternative prediction of subpopulation assignment
The application given here certainly has alternatives 
such as substituting the marker matrix used for predic-
tion by the lower Cholesky factor of the numerator rela-
tionship matrix (A), resulting in a regression over the 
pedigree rather than the markers. This has been inves-
tigated for the prediction between pairs of breeds. For 
the threshold model, the marker regression achieved 
between 5 and 10  % higher prediction accuracies, 
while the SVM failed to discriminate when the lower 
Cholesky factor of A was presented as feature matrix. 
It was also observed that, when the same factorization 
of the genomic relationship matrix was used as feature 
matrix in a SVM, predictions were in the range of those 
presented in Table 3 but still clearly inferior. This might 
be due to the fact that the SVM has less features to work 
with.

An alternative approach for the classification of popu-
lations is to use the conditional genotype probabilities of 
an individual given the estimated allele frequencies in the 
populations under HWE assumptions [45].

Conclusions
Multinomial classification using whole-genome regres-
sion methods can be assessed by pair-wise binary con-
trasts in conjunction with appropriate classification rules. 
The application to the prediction of population assign-
ments revealed high prediction accuracies over all classes 
except for one. Results of the regression models using an 
OVA scheme were comparable to the prediction accu-
racies achieved by support vector machines in an OVO 
scheme.

The estimated inclusion proportion of eigenvectors 
(pEV) of a genomic relationship matrix in pair-wise 
contrasts serves as a sensitive indicator for population 
divergence and can be easily extended for the analysis 
of quantitative traits, when the number and location of 
relevant eigenvectors to explain variation in the response 
are doubtful [21].
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The reduction of breeding populations to a single class 
label does not allow inferences about the divergence of 
certain quantitative traits between populations. Further 
research is necessary to determine the genetic variability 
across the Warmblood horse populations with respect to 
the traits under selection.
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