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Abstract 

Background: Cattle include a large number of breeds that are characterized by marked phenotypic differences and 
thus constitute a valuable model to study genome evolution in response to processes such as selection and domes-
tication. Detection of “signatures of selection” is a useful approach to study the evolutionary pressures experienced 
throughout history. In the present study, signatures of selection were investigated in five cattle breeds farmed in Italy 
using a multivariate approach.

Methods: A total of 4094 bulls from five breeds with different production aptitudes (two dairy breeds: Italian Holstein 
and Italian Brown Swiss; two beef breeds: Piemontese and Marchigiana; and one dual purpose breed: Italian Simmen-
tal) were genotyped using the Illumina BovineSNP50 v.1 beadchip. Canonical discriminant analysis was carried out on 
the matrix of single nucleotide polymorphisms (SNP) genotyping data, separately for each chromosome. Scores for 
each canonical variable were calculated and then plotted in the canonical space to quantify the distance between 
breeds. SNPs for which the correlation with the canonical variable was in the 99th percentile for a specific chromo-
some were considered to be significantly associated with that variable. Results were compared with those obtained 
using an FST-based approach.

Results: Based on the results of the canonical discriminant analysis, a large number of signatures of selection were 
detected, among which several had strong signals in genomic regions that harbour genes known to have an impact 
on production and morphological bovine traits, including MSTN, LCT, GHR, SCD, NCAPG, KIT, and ASIP. Moreover, new 
putative candidate genes were identified, such as GCK, B3GALNT1, MGAT1, GALNTL1, PRNP, and PRND. Similar results 
were obtained with the FST-based approach.

Conclusions: The use of canonical discriminant analysis on 50 K SNP genotypes allowed the extraction of new vari-
ables that maximize the separation between breeds. This approach is quite straightforward, it can compare more than 
two groups simultaneously, and relative distances between breeds can be visualized. The genes that were highlighted 
in the canonical discriminant analysis were in concordance with those obtained using the FST index.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
During the long process of animal domestication that 
began approximately 8000 to 12,000 years ago, man and 
environment played a fundamental role in the evolu-
tion of livestock species [1]. DNA mutations, adaptation, 
migrations, and selection have affected the biological 
diversity of natural populations, leading to the prevailing 

variability in livestock [2]. Thus, domestic animal species 
represent a relevant model for genetic diversity studies. A 
particularly useful example is the large range of current 
cattle breeds that are characterized by wide phenotypic 
variation due to the intense artificial selection they have 
been subjected to in the last 50 years [3–5].

Studies on cattle are supported by the availability of 
whole-genome sequence data, of well-developed linkage 
maps, and of a pedigree structure that, for many breeds, 
allows for a precise dissection of the effects that under-
lie complex traits [6–8]. High-throughput genotyping 
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techniques, together with developments in compara-
tive genomics, have opened great opportunities for the 
study of genomic modifications due to natural and arti-
ficial selection. These selective pressures increase the 
frequency of the most favorable allele at a target locus. 
This process also affects allele frequencies at loci at 
nearby locations and results in a loss of heterozygosity 
across that chromosomal region [9–11]. This phenom-
enon, known as “hitchhiking”, leads to the formation of 
selective sweeps or “signatures of selection”, that are char-
acterized by distributions of allele frequencies around 
favorable mutations that statistically differ from those 
expected by chance [12].

Several approaches have been proposed to study signa-
tures of selection in cattle that differ in the metrics and 
statistical inferences used [13, 14]. They are all essentially 
based on assessment of differences in allelic or haplotype 
frequencies between populations (i.e. breeds, different 
geographic origins and distributions, levels of selection, 
production aptitudes). Akey [15] classified tests for 
detecting signatures of selection into: (1) spectrum tests 
that are based on the distribution of polymorphisms in 
specific regions; (2) tests that are based on linkage dise-
quilibrium (LD) between adjacent loci, i.e. tests that con-
sider haplotypes; and (3) tests that compare population 
structures, such as the popular fixation index (FST), that 
was originally proposed by Wright [16]. Studies on signa-
tures of selection in cattle and sheep have used all three 
classes of methods, with the majority being based on 
FST [17–20], although spectrum- [12, 21] and LD-based 
methods [14, 22] have also been used. Furthermore, inte-
grated approaches that combine the detection of signa-
tures of selection with genome-wide association studies 
have been applied in dairy cattle [23]. Recently, detection 
of signatures of selection based on LD has been imple-
mented using whole-genome sequence data [24].

Genetic differences are often evaluated under the 
perspective of a single locus or an aggregate of a small 
number of loci because studies on signatures of selec-
tion are focused mainly on detection of single nucleotide 
polymorphisms (SNPs) that tag chromosomal positions 
where putative candidate genes may be located. However, 
since signatures of selection are the result of the interac-
tion between selection pressure on a causative gene and 
LD with adjacent loci, analyzing the correlation structure 
between SNPs in a specific genomic region could repre-
sent an interesting starting point to quantify the existence 
of a signature of selection. Multivariate statistics offer a 
set of techniques to study the different aspects of corre-
lation matrices, among which principal component anal-
ysis (PCA) has proven to be very efficient in extracting 
information from a set of multiple genetic markers and 
has been successfully used in several fields of genetics 

[14, 25, 26]. In the specific case of the detection of sig-
natures of selection where predefined groups of individu-
als are compared, canonical discriminant analysis (CDA) 
is particularly appealing. CDA aims at quantifying the 
relationship between a categorical variable, i.e. the group 
the individual belongs to, and a set of independent vari-
ables [27]. As for PCA, CDA is based on the extraction 
of linear combinations of original variables. However, 
whereas PCA aims at explaining the maximum amount 
of variance, canonical variables (CVA) are generated 
to maximize the difference between groups. Once CVA 
are extracted, their structure (i.e. correlations between 
CVA and original variables) can be examined in order to 
identify SNPs that contribute most to the discrimination 
between breeds. CDA was recently proposed by Dimauro 
et al. [28] to select a reduced pool of SNPs that were able 
to distinguish bovine breeds.

The aim of our study was to detect the presence of 
signatures of selection in cattle by comparing five Ital-
ian breeds with different production aptitudes (Italian 
Holstein–Friesian, Italian Brown Swiss, Italian Simmen-
tal, Marchigiana and Piemontese) using CDA. In order 
to assess the reliability and power of the CDA-based 
approach for the detection of signatures of selection, 
a comparison with the fixation index (FST) method was 
also performed.

Methods
Data
A total of 4094 bulls were genotyped using the Illumina 
BovineSNP50 v.1 beadchip [29]. These animals were from 
five bovine breeds that were characterized by different 
production aptitudes: two dairy breeds (Italian Holstein–
Friesian n = 2092, Italian Brown Swiss n = 749), two beef 
breeds (Piemontese n = 364, and Marchigiana n = 410) 
and one dual purpose breed (Italian Simmental n = 479). 
DNA for genotyping was extracted from semen straws 
that were produced for artificial insemination (AI) and 
supplied by the Breed Associations of each of these five 
breeds. In this study, since animal manipulation was not 
necessary, approval by the Animal Care Committee was 
not requested.

Among the animals included in this study, none had 
more than 1000 missing genotypes. Only SNPs that 
mapped to autosomes were considered. Filtering of SNP 
genotypes was performed across all breeds based on 
missing data (<2.5 %) and minor allele frequency (<1 %). 
After filtering, 39,833 SNPs that were common among 
the five breeds were retained for further analyses.

Canonical discriminant analysis (CDA)
Given the data matrix M(nxp) of p markers measured 
on n animals from k breeds, the CDA derives linear 
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combinations of SNPs that maximize the between-breed 
variation. The i-th CVA, can be written as:

where aip are the canonical coefficients, which indicate 
the partial contribution of each SNP to the discriminant 
function; mi are the SNP genotypes. The vector of coef-
ficients ai for the i-th canonical variable is obtained by 
maximizing the ratio:

where B and W are the between- and within-group SNP 
(co)variance matrices, respectively [30]. The dimension of 
the canonical space is the smallest value between k and p 
minus 1. In the present work, five breeds were considered 
and therefore four CVA were extracted. The eigenvalue 
of each i-th CVA, i.e. the amount of variance explained 
by the CVA, is ρ2i /

(

1− ρ
2
i

)

, where ρi
2 is the i-th squared 

canonical correlation. The eigenvalue can be interpreted 
as the ratio of the between-breed to the pooled within-
breed variation.

In our study, CDA was carried out using the CANDISC 
procedure of SAS 9.2 (SAS/STAT® Software version 9.2, 
SAS Institute, Inc., Cary), separately for each bovine chro-
mosome (BTA for Bos taurus chromosome). Thus, M was 
the data matrix of SNP genotypes (coded as 0, 1, 2) with 
n =  4094 rows, i.e. the number of bulls. The number of 
columns p varied from 2610 for BTA1 to 796 for BTA29, 
respectively. The CDA requires a full rank correlation 
matrix. However, the rank of a rectangular matrix is less 
or equal to the minimum value of the number of rows and 
columns [31, 32] and genetic correlation matrices are often 
not full rank [33]. Thus, the genome-wide SNP correlation 
matrix is singular. Conducting the CDA by chromosome 
mitigates these problems, while considering the substan-
tial biological orthogonality among chromosomes [34].

Scores for each CVA and for each individual were cal-
culated and then plotted in the canonical space. Differ-
ences between breeds were measured by the Mahalanobis 
distance, which expresses the distance between the cen-
troids of each group.

The meaning of the extracted canonical variables was 
assessed by examining correlations between SNP geno-
types and CVA scores within each chromosome [35, 36]. 
Some authors suggest that canonical coefficients instead 
of correlations should be used to assess relationships 
between CVA and original variables [28, 30]. However, 
when CDA is performed on a large number of variables 
that are characterized by a particular variability (i.e. SNP 
genotypes can have only three values), it is reasonable to 
expect that the pattern of the canonical coefficients may 
not be very simple to interpret.

(1)CVAi = ai1m1 + ai2m2 + · · · + aipmp,

(2)
a
′

iBai

a′Wai
,

SNPs that were considered as “relevant”, i.e., as pos-
sible indicators of signatures of selection, were identi-
fied in two steps. First, SNPs for which correlations with 
CVA were in the 99th percentile for a given chromosome 
were selected [25]. However, provided that each canoni-
cal variable explains a different amount of the variance, 
the final number of SNPs that was retained for each 
CVA was proportional to the ratio between its eigen-
value and the eigenvalue of the first CVA for the given 
chromosome. For example, BTA2 comprised 2110 SNPs 
and the eigenvalues of the first and second CVA were 
equal to 814.2944 and 495.8699, respectively. Thus, the 
retained SNPs were the top 1 % (i.e., 21) for the first CVA 
and 21*(495.8699/814.2944) =  13 for the second CVA, 
respectively.

Fixation index (FST) analysis
In order to compare the results of the CDA with a com-
monly applied method for detection of signatures of 
selection, the fixation index (FST) was calculated at each 
locus for all the pairwise (n =  10) between breed com-
parisons using the formula proposed by Nei [37]:

where HT is the weighted expected heterozygosity calcu-
lated considering the two breeds as a single population; 
HS is the same parameter calculated by considering the 
two breeds separately. Raw FST values were smoothed 
using a locally weighted scatterplot smoothing (LOW-
ESS) regression, combined with a control chart approach 
[17]. A SNP was declared significant if the corresponding 
FST value exceeded the threshold of 3 standard deviations 
(σ) from the mean. Significant SNPs detected by the FST 
approach were compared with those identified by CDA.

Annotated genes within the genomic regions that con-
tained the relevant SNPs were obtained from the UCSC 
Genome Browser Gateway (http://genome.ucsc.edu/) 
using the Bos taurus UMD 3.1 of the Tau 6 release. Inter-
vals of 500 kb (250 kb upstream and 250 kb downstream 
of the significant SNP) were considered in both applied 
approaches.

Results
Detection of significant SNPs
The average amount of variance explained by the four 
canonical variables (Table 1) ranged from 0.56 for CVA1 
on BTA23 to 0.08 for CVA4 on BTA28. An increase in 
the amount of variance extracted by the first CVA was 
observed from longer to shorter chromosomes (i.e. 0.44 
for BTA1 and 0.54 for BTA29, respectively).

The largest values of the Mahalanobis distance were 
found for Marchigiana with the other breeds [see 

FST =
(HT −HS)

HT
,

http://genome.ucsc.edu/
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Additional file 1 Table S1], especially with the Italian Hol-
stein–Friesian breed for BTA10 to 29. The smallest values 
were observed between Italian Simmental and Piemon-
tese, again for BTA10 to 29.

The number of SNPs that were identified as significant 
in the FST analysis was more than 10 times larger than 
that in the CDA (864 versus 9108 SNPs, Table 2). How-
ever, note that the FST results were based on the sum of 
the significant SNPs detected in each of the 10 pairwise 
comparisons. Moreover, several SNPs were detected 
in two or more pairwise comparisons, thus increasing 
the number of SNPs detected with FST. When only one 

pairwise comparison was considered for FST, the number 
of detected SNPs was comparable to that obtained in the 
CDA (Table 2). A total of 332 SNPs were found in both 
the CDA and in at least one of the 10 FST comparisons.

Detection of signatures of selection
The CDA highlighted a large number (n = 613) of signa-
tures of selection that were characterized by one or more 
SNPs (their number ranging from 1 to 8). The largest 
number of signatures of selection was detected on BTA1 
(n =  45), whereas the smallest number was on BTA29 
(n = 8). BTA4 had the largest number of relevant SNPs 
that were located in the same region. In particular, eight 
SNPs between 76.9 and 77.6 Mb were detected for CVA1 
and five SNPs (between 34 and 35 Mb) for CVA2.

Comparison between the results of the CDA and FST 
analyses shows good agreement between the locations of 
the most relevant signatures of selection [see Additional 
file 2 Figure S1]. Figure  1a compares the CDA and FST-
based results for the two dairy breeds (Italian Holstein–
Friesian and Italian Brown Swiss) and shows that both 
methods identify signatures of selection on BTA4, 6, 7, 
14, 26, and 28. Similarly, both methods detected com-
mon signatures of selection in the dairy versus beef cattle 
comparison (Italian Holstein–Friesian and Marchigiana; 
Fig. 1b) on BTA2, 4, 6, 7, 14, 18, and 26 and in the com-
parison between the two specialized beef breeds (Pie-
montese and Marchigiana; Fig. 1c) on BTA2, 5, 6, 13, 18, 
and 26.

Detection of signatures of selection that include known 
genes
More than 200 candidate genes that have a role in meta-
bolic pathways of interest for the considered breeds were 
identified in the genomic regions flagged by the CDA 
[see Additional file  3 Table S2]. These results suggest a 
good reliability of this method. On BTA2 for example, 
the CVA4 was able to separate the Piemontese breed 
from the other breeds (Fig. 2). Among the SNPs that had 
the largest correlation with this CVA (Table  3), three 
were located between 6.6 and 6.8 Mb on BTA2, which is 
where the myostatin locus maps. CVA1, with two SNPs 
positioned between 5.8 and 6.1 Mb, distinctly separated 
the Italian Holstein- Friesian from the two beef breeds 
(Fig.  2), while the Italian Brown Swiss was found at an 
intermediate position between these two breeds. This 
region contains the inositol polyphosphate-1-phosphatase 
(INPP1) gene. Moreover, the CVA2 that separated the 
Italian Brown Swiss from the other breeds had six signifi-
cant SNPs in the region around 62  Mb, which contains 
the lactase (LCT) gene.

On BTA6, CVA2 showed that the Marchigiana breed 
was separated from the other breeds (Fig.  3). The 

Table 1 Variance explained by the four canonical variables 
for each chromosome

a CVA1, CVA2, CVA3, and CVA4 are the first, second, third and fourth extracted 
canonical variable, respectively

Chromosome CVA1a CVA2 CVA3 CVA4

BTA1 0.44 0.27 0.17 0.12

BTA2 0.44 0.27 0.17 0.12

BTA3 0.48 0.24 0.18 0.10

BTA4 0.51 0.22 0.16 0.11

BTA5 0.44 0.28 0.16 0.12

BTA6 0.42 0.26 0.18 0.14

BTA7 0.47 0.25 0.17 0.11

BTA8 0.46 0.26 0.17 0.11

BTA9 0.50 0.23 0.17 0.11

BTA10 0.48 0.25 0.17 0.10

BTA11 0.48 0.25 0.17 0.10

BTA12 0.53 0.23 0.15 0.09

BTA13 0.47 0.28 0.16 0.10

BTA14 0.54 0.22 0.16 0.09

BTA15 0.52 0.21 0.17 0.10

BTA16 0.51 0.25 0.15 0.09

BTA17 0.53 0.23 0.15 0.09

BTA18 0.54 0.23 0.15 0.08

BTA19 0.52 0.24 0.15 0.09

BTA20 0.52 0.24 0.15 0.09

BTA21 0.49 0.25 0.16 0.09

BTA22 0.53 0.20 0.19 0.08

BTA23 0.56 0.21 0.15 0.08

BTA24 0.50 0.23 0.16 0.10

BTA25 0.54 0.24 0.15 0.07

BTA26 0.55 0.21 0.16 0.09

BTA27 0.52 0.22 0.17 0.09

BTA28 0.52 0.22 0.18 0.08

BTA29 0.54 0.23 0.14 0.09

Mean 0.50 0.24 0.16 0.10

Standard deviation 0.04 0.02 0.01 0.01

Maximum 0.56 0.28 0.19 0.14

Minimum 0.42 0.20 0.14 0.07
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correlation structure of this canonical variable had large 
correlations with six SNPs that identified two closely-
located clusters of genes between 37 and 39 Mb, that are 
known to affect dairy (PDK2, SPP1, MEPE, and ABCG2) 
and beef (IBSP, LAP3, NCAPG, and LOCRL) traits, 
respectively. On the same chromosome, CVA3 revealed 
a gradual separation between breeds according to pro-
duction aptitudes (dairy ⇒ beef ⇒ dual purpose) (Fig. 3). 
The structure of this CVA (Table  4) showed large cor-
relations with six SNPs that were located between 71.4 
and 71.8 Mb, a region that contains the platelet derived 
growth factor receptor, alpha polypeptide (PDGFRA) 
gene.

On BTA20, CVA1 identified a clear separation between 
Italian Holstein–Friesian and the other breeds (Fig.  4). 
This CVA1 was correlated with several SNPs that were 
within the genomic region that contains the growth hor-
mone receptor (GHR) gene (Table 5).

Three well-known genes involved in the determinism of 
coat color in mammals were correlated with CDA: (1) on 
BTA6, CVA1 was correlated mainly with SNPs that were 
located close to the v-kit Hardy Zuckerman 4 feline sar-
coma viral oncogene homolog (KIT) locus; (2) on BTA18, 
CVA1 was correlated with three SNPs that were located 
between 14.3 and 14.5  Mb, where the melanocortin 1 
receptor (MC1R) gene is positioned; and (3) on BTA13, 
CVA2 separates the Marchigiana breed from the other 
ones and was mainly correlated with SNPs that mapped 
close to the agouti signalling protein (ASIP) gene.

Other known genes that were identified in the discrim-
ination between the five breeds were the leptin receptor 
(LEPR) on BTA3, and the stearoyl-CoA deasturase (SCD) 

on BTA26 and the family of cathelicidins (CATHL) on 
BTA22, respectively.

Detection of signatures of selection that include candidate 
genes
The CDA analysis also identified several genomic regions 
that harbored genes, which have not been previously 
reported in studies on the detection of signatures of 
selection for cattle breeds. Two large signatures of selec-
tion were identified on BTA4 with (1) the glucokinase 
(hexokinase 4) (GCK), and the insulin like growth factor 
binding protein 3 and 1 (IGFBP1 and IGFBP3) located 
in the first signature of selection (between 77.7 and 
77.9 Mb); and (2) the glutamate receptor metabotropic 3 
(GRM3) in the second signature of selection. On BTA17, 
seven SNPs were identified within a region between 
18.3 and 19.1  Mb that includes seven annotated genes 
(NDUFC1, RAB33B, CCRN4L, MGST2, ELF2, THOC7, 
and MGARP). Several signatures of selection in regions 
that harbor genes involved in the metabolism of milk oli-
gosaccharides (MO) were detected across the genome 
[see Additional file 3 Table S2] i.e.: B3GALNT1 on BTA1 
(two SNPs for CVA2), MGAT1 on BTA7 (one SNP for 
CVA3), GALNTL1 on BTA10 (one SNP for CVA3), 
POMT, ST6GAL2 and GALNT14 on BTA11 (four SNPs 
for CVA1 and one for CVA2, respectively).

Interestingly, on BTA13, CVA1 emphasized the sepa-
ration between Italian Holstein–Friesian and Marchi-
giana [see Additional file  4 Figure S2], and revealed 
six significant SNPs between 47.1 and 48.3  Mb. Two 
genes are present in this region: the prion protein 
(PRNP) between 47,400,392 and 47,418,507 bp and the 

Table 2 Number of  significant SNPs detected by  the canonical discriminant analysis (CDA) and  the fixation index (FST) 
approach

BRW Italian Brown Swiss, HOL Italian Holstein, MAR Marchigiana, SIM Italian Simmental, PIE Piemontese cattle
a CVA1, CVA2, CVA3, and CVA4 are the first, second, third and fourth extracted canonical variable, respectively

Pair-wise FST FST analysis Number of common SNPs between CDA and - FST

Number of detected significant SNPs CVA1a CVA2 CVA3 CVA4 Total

BRW–HOL 833 82 19 11 1 113

BRW–MAR 719 10 43 8 0 61

BRW–SIM 821 13 11 32 0 56

BRW–PIE 749 14 19 19 9 61

HOL–MAR 1035 82 21 8 2 113

HOL–SIM 923 82 11 17 3 113

SIM–MAR 883 20 36 24 2 82

PIE–HOL 1172 97 8 19 11 135

PIE–MAR 943 14 27 10 9 60

PIE–SIM 1030 18 12 19 21 70

Total 9108 432 207 167 58 864

Unique SNP in common 155 78 66 33 332
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prion protein 2 (dublet) (PRND) between 47,444,352 
and 47,449,390  bp. We analyzed the polymorphisms 
at these significant SNPs and found four C/T SNPs 
(Hapmap53245-rs29026914, BTB-01997512, Hap-
map31215-BTA-32775 and BTB-01718516), one G/T 
SNP (Hapmap39323-BTA-32823) and one A/C SNP 
(ARS-BFGL-NGS-3711). Allele frequencies at each SNP 
differed between breeds (Table  6), with frequencies in 
the Italian Holstein–Friesian breed differing most from 

those in the other breeds; of particular interest is the 
frequency difference at the SNP BTB-01718516, which 
maps within the PRPN locus.

Finally, three genes regulated by epigenetic mecha-
nisms were detected. CVA1 for BTA3 was associated 
with two chromosome-wide significant SNPs located at 
around 36.5  Mb. The closest gene to these two SNPs is 
arginine methyltransferase 6 (PRMT6). On BTA21, CVA1 
was correlated with a SNP located at 67.4  Mb, close to 

Fig. 1 Manhattan plot of FST (light and dark grey dots) and canonical coefficients (red dots) for Italian Brown Swiss-Italian Holstein (a), Italian Holstein-
Marchigiana (b), and Piemontese-Marchigiana (c) comparisons, respectively
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the maternally expressed gene 3 (MEG3). Finally, CVA3 
for BTA28 was significantly associated with a SNP at 
24.6 Mb, close to the sirtuin, type 1 (SIRT1) gene.

Discussion
Canonical discriminant analysis
The use of canonical discriminant analysis on 50 K SNP 
genotypes allowed the extraction of new variables that 
were able to maximize the separation between breeds. 
Interpretation of the canonical structure led to the iden-
tification of a large number of signatures of selection. The 

Fig. 2 Plot of the individual scores of the first, second and fourth 
canonical variables (CVA1, CVA2, and CVA4) extracted from BTA2 in 
the five breeds. Circles Italian Brown Swiss; flowers Italian Holstein; 
diamonds Piemontese; cubes Marchigiana; pyramids Italian Simmental

Table 3 SNPs with the 1 % highest correlations with CVA4 
for BTA2

a Fourth extracted canonical variable

Marker Position in Mb Correlation with CVA4a

Hapmap55212-rs29013415 9,245,063 0.46

Hapmap38411-BTA-48376 9,499,870 0.42

Hapmap32300-BTA-133908 38,980,525 0.42

Hapmap47560-BTA-30470 6,831,955 0.40

ARS-BFGL-NGS-11319 6,763,227 0.40

ARS-BFGL-NGS-112454 6,675,045 0.36

BTB-01977132 7,520,210 0.35

Hapmap51331-BTA-85692 8,272,673 0.354

UA-IFASA-5029 111,206,088 0.349

BTB-01929922 8,188,132 0.339

Hapmap57611-rs29021061 5,464,367 0.338

ARS-BFGL-NGS-28178 58,653,662 0.336

Hapmap44381-BTA-47399 5,640,288 0.327

ARS-BFGL-NGS-106761 5,601,419 0.314

ARS-BFGL-NGS-90839 7,169,804 0.297

ARS-BFGL-NGS-10357 132,764,293 0.293

BTA-47785-no-rs 4,958,110 0.292

Hapmap39337-BTA-46816 4,488,303 0.292

ARS-BFGL-NGS-18261 1,896,078 0.290

BTB-00078691 7,492,224 0.283

ARS-BFGL-NGS-5566 107,378,666 0.282

Hapmap54594-rs29019168 113,899,270 0.281

BTB-00078030 4,421,299 0.280

Fig. 3 Plot of the individual scores of the first three canonical vari-
ables (CVA1, CVA2, and CVA3) extracted from BTA6 in the five breeds. 
Circles Italian Brown Swiss; flowers Italian Holstein; diamonds Piemon-
tese; cubes Marchigiana; pyramids Italian Simmental

Table 4 SNPs with the 1 % highest correlations with CVA3 
for BTA6

a Third extracted canonical variable

Marker Position in Mb Correlation with CVA3a

Hapmap31616-BTC-042811 71,873,004 0.672

Hapmap42715-BTA-87995 80,128,784 0.640

Hapmap44452-BTA-22099 89,399,736 0.633

Hapmap27692-BTC-042876 71,519,635 0.623

Hapmap56688-rs29025335 81,767,374 0.623

Hapmap33128-BTC-041916 71,421,017 0.622

ARS-BFGL-NGS-38827 71,476,002 0.621

Hapmap32220-BTC-042831 71,552,977 0.612

Hapmap26269-BTC-041695 71,452,210 0.609

BTA-77011-no-rs 82,773,692 0.594

BTB-00272881 97,826,840 0.588

BTA-110240-no-rs 81,652,194 0.583

Hapmap27224-BTA-161106 81,551,479 0.571

Hapmap30962-BTC-032558 33,189,478 0.559

BTA-20903-no-rs 81,467,492 0.549

ARS-BFGL-NGS-67658 105,075,435 0.536

Hapmap52018-BTA-75646 29,355,660 0.530

Hapmap48462-BTA-77136 93,080,797 0.530

BTB-01312468 64,487,002 0.530
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CDA approach is quite straightforward, based on simple 
visual inspection of individual locations in the canonical 
spaces and on interpretation of the canonical structure. 
Analyses were carried out separately for each chromo-
some in order to mitigate the large unbalance between 
the number of animals and the number of SNPs. An 
alternative would be to select SNPs based on their abil-
ity to discriminate among populations. However, the use 
of selected SNP panels for the discrimination of individu-
als between breeds may give different results depending 
on the metric used [38]. Moreover, SNP selection results 
in loss of information, while all SNPs are represented in 
each CVA.

A useful feature of CDA compared to other methods 
for detection of signatures of selection is that more than 
two groups can be compared in a single calculation step 
while other approaches may require repeated calcula-
tions. For example, in this study 10*39,833 FST values had 
to be calculated in order to carry out the comparisons 
among the five breeds.

In genetic diversity studies, a widely used multivari-
ate method is principal component analysis. Figure  5 
shows the plot of individual scores of the first three 
principal components (PC) extracted from BTA2. The 
comparison with Fig.  2, which shows the scores of the 
first three CVA extracted from the same chromosome, 
reveals larger within-breed variability in the PCA plot. 
These results are a consequence of theoretical differ-
ences between these two multivariate techniques [30]. 
PCA extraction is aimed at accounting for progressive 
descending amounts of the original variance (which 
includes both between- and within-group variation) 
without any assumption on sample stratification. In con-
trast, CVA extraction is aimed at maximizing variation 
between predefined groups. The greater ability of CVA 
to discriminate between groups is also enhanced by a dif-
ferent partition of the variance across the new variables. 
The number of PC is equal to the number of original vari-
ables, whereas the number of CVA is equal to the num-
ber of groups minus 1. In the example of BTA2, the first 
three canonical variables explained 88 % of the variance 
(Table 1) whereas the first three PC accounted for 13 % of 
the variance (8, 3, and 2 % respectively).

Detection of signatures of selection
A large number of signatures of selection were detected 
and well-known or new candidate genes were identi-
fied. This result could be, at least partially, due to the 
structure of the sample analysed. Breeds with different 
production aptitudes and selection histories were consid-
ered. As a result, genes that are involved in specific bio-
logical functions or metabolic pathways of interest were 
detected [see Additional file 3 Table S2]. These results are 
consistent with those from previous studies [12, 14, 24, 
39] and with our results obtained by using the popular 
FST approach. However, several of the identified regions 
did not contain genes, either because annotation of the 
bovine genome is incomplete or the SNP was positioned 
outside a coding region [14, 40]. In any case, compared to 
other studies that were based on SNP or whole-genome 
sequence data, the number of signatures of selection that 
we detected was relatively large. Moreover, the number of 
detected regions was larger than that previously obtained 
using the same data [41], or different methods [24, 40, 
42]. Overall, the comparison of the results between CDA 

Fig. 4 Plot of the individual scores of the first three canonical vari-
ables (CVA1, CVA2, and CVA3) extracted from BTA20 in the five breeds. 
Circles Italian Brown Swiss; flowers Italian Holstein; diamonds Piemon-
tese; cubes Marchigiana; pyramids Italian Simmental

Table 5 Top 1  % highest correlation coefficients between   
CVA1 and SNP genotypes for BTA20

Marker Position in Mb Correlation 
with CVA1

BTA-50702-no-rs 46,405,056 0.812

BTA-50697-no-rs 46,346,416 0.780

ARS-BFGL-NGS-102895 24,228,836 0.751

Hapmap54326-rs29009836 21,160,226 0.744

Hapmap42401-BTA-102906 39,538,676 0.724

ARS-BFGL-NGS-10108 31,848,979 0.719

BTB-00784875 44,452,488 0.697

Hapmap52341-rs29025776 11,971,234 0.673

ARS-BFGL-NGS-39275 70,454,164 0.665

BTA-113191-no-rs 33,256,096 0.660

Hapmap51681-BTA-110411 18,882,445 0.657

ARS-BFGL-NGS-93510 25,429,674 0.653

BTB-01583562 55,425,112 0.648
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and FST analyses revealed 290 genes that were detected 
by both methods [see Additional file 5 Table S3].

Strong signatures of selection were observed on 
BTA13. Two adjacent genes (PRPN and PRND) are 
located within the peak at 47–48  Mb. The PRPN and 
PRND genes encode the prion protein (PrP) and the dop-
pel protein (Dpl), respectively. PrP is a transmembrane 
glycoprotein whose normal function is still unknown 
[43]. It is widely known that the endogenous PrP is 
responsible for the occurrence of transmissible spongi-
form encephalopathies (TSE) [44]. In domestic and wild 
animals, several distinct TSE diseases are recognized. 
Among these, the best known are scrapie in sheep and 
goat, and the bovine spongiform encephalopathy (BSE) in 
cattle [45]. SNPs and indel events are responsible for the 

genetic polymorphism at the PRPN locus [46], with the 
SNPs being responsible for atypical forms of BSE, while 
indels appear to be involved in susceptibility to disease 
[44, 47]. However, the high degree of conservation of the 
PRPN gene and its ubiquitous expression among mam-
mals suggest several biological roles, such as regulation 
of the circadian rhythm, central nervous system devel-
opment, neuronal survival, and maintenance of cellular 
Ca+2 homeostasis [48]. In cattle, several studies recently 
revealed a large allelic variability at the PRPN and PRND 
loci [49–51] and also associations with susceptibility to 
BSE [52–54]. A recent investigation on the possible asso-
ciation between polymorphisms of the PRPN gene and 
milk production traits in cattle led to statistically signifi-
cant results for milk fat content [55]. Using the same data 

Table 6 SNP Allele frequencies (%) for the SNP associated with CVA1 for BTA13

BRW Italian Brown Swiss, HOL Italian Holstein, MAR Marchigiana, SIM Italian Simmental, PIE Piemontese
a Correlation between the SNP and the first canonical variable extracted from BTA13 that maps close to PRNP and PRND genes

Marker ra
(SNP, CVA1) Breed A C G T

BTB-01997512 0.78973 BRW 0.08 0.92

HOL 0.84 0.16

MAR 0.12 0.88

SIM 0.14 0.86

PIE 0.22 0.78

ARS-BFGL-NGS-3711 0.73262 BRW 0.05 0.95

HOL 0.82 0.18

MAR 0.15 0.85

SIM 0.34 0.66

PIE 0.43 0.57

Hapmap39323-BTA-32823 0.67370 BRW 0.99 0.01

HOL 0.48 0.52

MAR 1.00 0.00

SIM 0.97 0.03

PIE 0.98 0.02

Hapmap31215-BTA-32775 0.67348 BRW 0.99 0.01

HOL 0.43 0.57

MAR 0.97 0.03

SIM 0.90 0.10

PIE 0.85 0.15

BTB-01718516 0.65564 BRW 0.98 0.02

HOL 0.02 0.98

MAR 0.90 0.10

SIM 0.40 0.60

PIE 0.42 0.58

Hapmap53245-rs29026914 0.65456 BRW 0.15 0.85

HOL 0.80 0.20

MAR 0.26 0.74

SIM 0.30 0.70

PIE 0.39 0.61
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as in our study but with a different approach, Mancini 
et  al. [41] detected a signature of selection at the same 
position on BTA13 and identified the CDP-diacylglycerol 
synthase (CDS2) gene, which is involved in the phospho-
lipid biosynthetic process. This signature of selection 
may be an effect of artificial selection but the signal that 
we detected here, in the region that contains the PRPN 
and PRND genes, could be the result of natural selection. 
However, more studies are necessary on e.g. the distribu-
tion and frequency of genetic variants, linkage between 
PRPN alleles, recombination rate, and haplotype diver-
sity within and between populations, in order to improve 
management of the disease (especially atypical cases) and 
possibly production performance.

New candidate genes
A new result of interest in our study was the detection 
of signatures of selection in regions that harbor genes 
involved in the metabolism of bovine colostrum/milk oli-
gosaccharides (MO). The first biochemical characteriza-
tion of these molecules was done in the early 1980s [56]. 
Recently, several studies have been conducted to clarify 
the biological role of MO in mammals [57–59]. In mam-
malian milk, a large variability in concentration, compo-
sition and timing of oligosaccharides is observed during 
lactation. Changes in the quality and quantity of MO do 
not depend on the nutritional status of the mother [60]. 
Variations in glycans may be genetically driven but may 
also result from response to environmental pressures 
[61]. From an evolutionary point of view, this variabil-
ity is explained by greater fitness [62]. In fact, presence 
of free oligosaccharides in the milk must have a selec-
tive advantage (for the mammary gland and for the 

offspring) [63]. These molecules do not play a nutritional 
role (although they are carbohydrates) since they pass 
undigested into the large intestine [60]. However, several 
studies have shown that MO play a critical role in devel-
opment and maintenance of the intestinal bacterial flora 
and protection against enteric diseases [64–66]. The role 
of MO in human health [61, 67] and the genes involved in 
their metabolism have been investigated [68]. Currently, 
because of their role as micronutrients and prebiotics, 
there is much interest in elucidating their genetic basis in 
mammalian species [56]. Genes that are involved in the 
metabolism of MO in cattle were recently reported [69] 
and were consistent with about one third of those iden-
tified in our study. Bovine milk was studied as a possi-
ble source of functional oligosaccharides for improving 
human health [70].

Genes involved in epigenetic regulatory mechanisms
In our genome-wide survey, three SNPs defined three 
signatures of selection on BTA3, 21 and 28, respectively. 
Among the identified genes, PRMT6, MEG3 and SIRT1 
are under epigenetic control and represent interesting 
candidate genes. Traditionally, for traits of economic 
interest, the relationship between genome and phe-
nome has been investigated by considering that vari-
ability was the result of several combined genetic and 
environmental factors. Until a few years ago, epigenet-
ics was neglected in livestock production. However, over 
the last 20 years, there have been numerous articles on 
this topic in humans, mouse and plants [71, 72]. Only 
recently, QTL that affect productive performance have 
been considered to be subject to epigenetic mechanisms 
[73]. Differences in the epigenome may explain some of 
the phenotypic variations observed within populations. 
Economically important traits such as milk composition 
and yield or muscle mass and fat deposition appear to 
be the result of a synergy between the genome and epig-
enome [74–76].

MEG3 on BTA21 was previously reported to be poly-
morphic in cattle but the polymorphism was not asso-
ciated with production traits [75]. In beef breeds, CDA 
(CVA3) identified a strong signal on BTA28 where the 
sirtuin1 (SIRT1) gene is located. SIRT1 is a nicotinamide 
adenine dinucleotide (NAD)-dependent deacetylase that 
is involved in a plethora of biological processes, including 
metabolic regulation, aging and stress response [76, 77]. 
In humans, this gene has attracted much interest because 
polymorphisms at this gene have been associated with 
longevity [78] and obesity [79] and recently, a polymor-
phism at this locus was also associated with growth traits 
in the Nanyang cattle breed [80]. Based on these results, 
it is clear that it is important to elucidate, at the molecu-
lar level, the epigenetic mechanisms that control genes 

Fig. 5 Plot of the individual scores of the first, second and fourth 
principal components (PC1, PC2, and PC4) extracted from BTA 2 for 
the five breeds. Circles Italian Brown Swiss; flowers Italian Holstein; 
diamonds Piemontese; cubes Marchigiana; pyramids Italian Simmental
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and to understand how they can influence production 
traits to improve animal production performance.

The issue of ascertainment bias
In this work, five breeds of different geographical origin, 
selection histories, morphological appearance and pro-
duction aptitudes were compared. A main issue of the 
between-breed comparisons that were carried out is the 
ascertainment bias caused by the method used to identify 
the SNPs. On the one hand, although SNP editing in the 
present work was performed across breeds, it should be 
recalled that the beadchip used was developed for other 
ascertainment groups [81]. On the other hand, stud-
ies on the effect of ascertainment bias on estimation of 
genetic diversity parameters (such as FST or PCA) have 
led to conflicting results [82, 83]. In any case, none of the 
studies on genetic variability have considered methods 
to correct for ascertainment bias and its effect is, at pre-
sent, not predictable [84]. The main reason of the lack of 
correction for ascertainment bias is that breed-specific 
SNP panels are not commercially available. Finally, it 
should be noted that the BovineSNP50 assay was tested 
on a panel of 21 indicine and taurine breeds, for which 
nearly 95  % of the considered SNPs were polymorphic 
[29], although these authors pointed out that the power 
of the assay for genome-wide association studies differed 
between populations.

Conclusions
Our results suggest that canonical discriminant analysis 
can be a valid tool for detection of signatures of selection 
based on 50 K SNP beadchip data. The approach is quite 
straightforward, allows the comparison of more than two 
groups at the same time, and relative distances between 
breeds can be visually appreciated. A large number of 
signatures of selection were detected, within which, sev-
eral well known candidate genes that affect meat or milk 
production traits were identified e.g. myostatin and GHR. 
Moreover, several interesting new candidate genes were 
identified, such as those involved with metabolism of 
milk oligosaccharides or those known to be regulated by 
epigenetic mechanisms.

along the whole genome obtained in the ten pairwise comparisons 
between all the five breeds considered in this study, evidencing the 
concordance between the two approaches in the detection of selec-
tion signatures. BRW = Italian Brown Swiss; HOL = Italian Holstein; 
MAR = Marchigiana; PIE = Piemontese; ISIM = Italian Simmental.

Additional file 3: Table S2. List of putative candidate genes detected 
using CDA derived from Bos taurus UMD 3.1/bosTau6 assembly. This table 
reports the genes that have been identified considering an interval of 
0.5 Mb around SNPs that have the highest (top 1 %) correlations with the 
canonical variables.

Additional file 4: Figure S2. Plot of the individual scores of the first 
three canonical variables (CVA1, CVA2, and CVA3) extracted from BTA13 
in the five breeds. This plot represents the clear separation between 
Italian Holstein and Marchigiana obtained on BTA13; circles = Ital-
ian Brown Swiss; flowers = Italian Holstein; diamonds = Piemontese; 
cubes = Marchigiana; pyramids = Italian Simmental.

Additional file 5: Table S3. List of markers and genes identified by both 
CDA and FST approaches. This table reports the markers and the genes 
in common between the two considered approaches for detection of 
selection signatures.

Additional Files

Additional file 1: Table S1. Matrices of Mahalanobis distances between 
the five breeds on the 29 autosomes. This table reports the Mahalanobis 
distance between the centroids of the five cattle populations calculated 
with the canonical discriminant analysis. The distances are reported for 
all the 29 autosomes. BRW = Italian Brown Swiss; HOL = Italian Holstein; 
MAR = Marchigiana; PIE = Piemontese; SIM = Italian Simmental.

Additional file 2: Figure S1. Manhattan plot of FST values (light and 
dark grey dots) and canonical coefficients (red dots) for all ten pairwise 
comparisons. This plot reports the FST values and the canonical coefficient 
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