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SOFTWARE

BESSiE: a software for linear model BLUP 
and Bayesian MCMC analysis of large-scale 
genomic data
Vinzent Boerner* and Bruce Tier

Abstract 

Background: The advent of genomic marker data has triggered the development of various Bayesian algorithms for 
estimation of marker effects, but software packages implementing these algorithms are not readily available, or are 
limited to a single algorithm, uni-variate analysis or a limited number of factors. Moreover, script based environments 
like R may not be able to handle large-scale genomic data or exploit model properties which save computing time or 
memory (RAM).

Results: BESSiE is a software designed for best linear unbiased prediction (BLUP) and Bayesian Markov chain Monte 
Carlo analysis of linear mixed models allowing for continuous and/or categorical multivariate, repeated and missing 
observations, various random and fixed factors and large-scale genomic marker data. BESSiE covers the algorithms 
genomic BLUP, single nucleotide polymorphism (SNP)-BLUP, BayesA, BayesB, BayesCπ and BayesR for estimating 
marker effects and/or summarised genomic values. BESSiE is parameter file driven, command line operated and 
available for Linux environments. BESSiE executable, manual and a collection of examples can be downloaded http://
turing.une.edu.au/~agbu-admin/BESSiE/.

Conclusion: BESSiE allows the user to compare several different Bayesian and BLUP algorithms for estimating marker 
effects from large data sets in complex models with the same software by small alterations in the parameter file. The 
program has no hard-coded limitations for number of factors, observations or genetic markers.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In quantitative genetics, various software packages are 
available for the analysis of phenotypic observations 
with linear mixed models, which can be categorised 
by the algorithm used to infer dispersion and location 
parameters of the modelled factors: (a) restricted maxi-
mum likelihood  (REML) based software, and (b) Bayes-
ian inference based software using Markov chain Monte 
Carlo  (MCMC) methods  (e.g. Gibbs sampling). While 
various REML software packages specifically designed 
for quantitative genetics are widely used and well  
documented, (e.g. ASREML [1], WOMBAT [2], DMU [3], 
REMLF90 [4], VCE [5]), software packages that apply the 
MCMC methodology are less common   (e.g. GIBBSF90 

and THRGIBBSF90  [4], GS3  [6], BAYESR  [7], MCM-
Cglmm [8]). The relatively small number of MCMC soft-
ware packages for quantitative geneticists may reflect 
the disadvantage of MCMC methodology in terms of 
processing time. In addition, large-scale genomic marker 
data  [e.g. single nucleotide polymorphisms  (SNPs)] that 
emerge in the late 2000 can easily be accommodated in 
existing REML software via approaches such as single 
marker regression, genomic best linear unbiased predic-
tion (GBLUP) [9] or SNP-BLUP [10]. By contrast, several 
Bayesian algorithms for sampling dispersion and location 
parameters of genomic markers have been proposed (e.g. 
“BayesA”, “BayesB”, “BayesCπ”, “BayesR”  [11–13]), which 
differ only slightly but require adjustments in the source 
code, thus making it more difficult to develop and main-
tain a software package which covers all algorithms.

The aim of this article is to describe the software BES-
SiE which is designed for uni- and multivariate BLUP and 
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Bayesian analysis of linear mixed models in quantitative 
genetics allowing for various factors, algorithms, large-
scale genomic data and both continuous as well as cate-
gorical observations.

Software description
Program modes
BESSiE allows for two different modes, “BLUP” and 
“GIBBS”.

Mode “BLUP” performs a best linear unbiased analysis 
of the specified linear mixed models given the observed 
data and supplied variances of random factors. The 
results are best linear unbiased estimations for levels of 
fixed factors and best linear unbiased predictions for lev-
els of random factors.

Mode “GIBBS” performs a Bayesian analysis of the 
specified linear mixed model given the observed data 
using supplied variances of random factors as starting 
values or as prior knowledge in an MCMC Gibbs sam-
pling approach, which is expanded by Metropolis–Hast-
ing steps if required. The results for factor levels and for 
co-variances are draws from their conditional posterior 
distributions as given in [14]. In addition, for factors 
that model genetic markers, the results are draws from a 
posterior distribution as specified in [11]  (“BayesA” and 
“BayesB”), in [12] (“BayesCπ) or in [13] (“BayesR”).

Models
The super-set model to be fitted in BESSiE may be writ-
ten as:

where (y1, ., yn)′, (b1, .,bn)′, (u1,1, .,un,k)′, (g1, ., gn)′ and 
(e1, ., en)

′ are vectors of phenotypic observations of lin-
ear or categorical scale (including repeated and/or miss-
ing observations), fixed effects, random non-marker 
effects [1..k] and random marker effects, X, Z and Q are 
matrices relating the effects to their respective observa-
tions, M is a matrix of marker genotypes of dimension 
“number of genotyped individuals” × “number of mark-
ers” and the subscripts are for trait 1 to n. Values in X 
may be dummy variables or linear co-variables, where 
for the latter the order of polynomial regression is user-
defined. Values in (u1, .,un) are assumed to be distributed 





y1
.

yn



 =





X1 . 0

. . .

0 . Xn









b1
.

bn





+





Z1,1 . Z1,k . 0 0 0

. . . . . . .

0 0 0 . Zn,1 . Zn,k









u1,1
.

un,k





+





Q1M . 0

. . .

0 . QnM









g1
.

gn



+





e1
.

en





N ([0, ., 0]′,A ⊗�), N ([0, ., 0]′,G⊗�), N ([0, ., 0]′, I⊗�) 
or N ([0, ., 0]′,K ⊗�), where A is the pedigree-derived 
numerator relationship matrix, G is a relationship matrix 
derived from genetic markers, I is an identity matrix, K is 
an unknown, but symmetric and positive definite matrix 
of dimension “number of factor levels” × “number of fac-
tor levels” provided by the user, and � is a co-variance 
matrix of factors. Note that all random non-marker 
effects can be fitted together.

Effects of genetic markers (g1, ., gn)
′ can be 

obtained from “BayesA” and “BayesB” [11],  “BayesCπ
” [12], “BayesR” [13] or ridge regression SNP BLUP [10]. 
For “BayesA”, “BayesB” and “BayesCπ”, default values for 
parameters of the algorithms and prior distributions of 
marker variances are derived from the related publica-
tions, but can also be specified by the user.

If the co-variance structure of a factor is G⊗�,  
where G is a genomic relationship matrix, G can be pre-
calculated by the user and read from a file, or can be cal-
culated by the program from a file of genomic markers. 
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second method in [9] except for the diagonal elements.
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In multivariate analysis using “BayesA”, “BayesB”, “BayesCπ

” or “BayesR” effects of genetic markers are estimated from
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where �1 to �n are diagonal matrices of dimension “num-
ber of markers” × “number of markers” of which elements 
contain the marker variances generated according to 
the Bayesian method specified for trait 1 to n. Thus, the 
co-variances between the effects of a genetic marker on 
trait 1 to n are assumed to be zero. The user should be 
aware that modelling markers in a multivariate analysis 
that assumes no co-variance between effects of a single 
marker on different phenotypes may lead to spurious 
results if a polygenic (pedigree-based) component is not 
included in the model.

Program input
BESSiE reads all necessary information from a parameter 
file, which also contains names and locations of other 
input files. These might be files containing data, geno-
types, pedigree, co-variances and other matrices. Pro-
gram information in the parameter file is identified by 
case sensitive keywords, and the block structure within 
these keywords are nested, which ensures robustness 
against input errors, easy extension for new input param-
eters, and allows for extensive commenting outside the 
block structure (see Fig. 1).

BESSiE data files must contain only numeric input and 
assumes the user will be able to renumber all modelled 
factors. However, BESSiE conducts an extensive data 
check and will provide informative error messages in 
case it detects any inconsistency in factor numbering.

If BESSiE is used to estimate effects of genetic markers 
via one of the six above mentioned implemented algo-
rithms, it expects that markers are coded “0”, “2” and “1” 
for both the homozygous and the heterozygous genotype. 
Thus, missing markers within genotypes are not accom-
modated for. Markers are provided via an ASCII file con-
taining one line per genotype and as many columns as 
markers. Thus, genotypes of different markers must not 
be separated by any character, which allows for a reduced 
file sizes. However, BESSiE checks for valid marker cod-
ing while reading through that file.

Program output
BESSiE generates various outputs in ASCII or Fortran 
binary files where the desired output can be chosen by 
the user. In mode “BLUP”, the output may include solu-
tions for factor levels conditional on the variances pro-
vided. In mode “GIBBS”, the output may include draws 
from conditional posterior distributions of factor levels 
and factor co-variances. For random marker effects mod-
elled by “BayesA”, “BayesB”, “BayesCπ” or “BayesR”, effects 
and variances for each marker as well as the total variance 
explained by genetic markers and summarised genomic 
values for each genotype can optionally be written in the 
file. Moreover, for algorithms “BayesCπ” and “BayesR”, 

the output may include the draws from Beta/Dirichlet 
conditional posterior distributions assigning probabilities 
to the distributions from which markers may come from, 
and marker-to-distribution assignment statistics. By 
default BESSiE also generates an extensive log file which 
contains informative messages in case of input errors and 
information about the current state of the program while 
a Bayesian analysis is running, for example.

Technical details
For Bayesian analysis, BESSiE uses a blocked Gibbs sam-
pler as described in [14], but only for fixed and random 
non-marker effects. That is, random non-marker effects 
are sampled from their assigned distributions. The right-
hand side of the mixed model equation  (MME) is cor-
rected for these draws and the MME is subsequently 
solved. Draws are added back to the related MME solu-
tions and the resulting values can be regarded as draws 
from the conditional posterior of each random non-
marker effect. Effect sizes and variances of genetic 
markers modelled by “BayesA”, “BayesB”, “BayesCπ” or 
“BayesR” are obtained from a single site Gibbs sampler 
using phenotypic observations corrected for fixed and 
random non-marker effects. For solving the MME in 
a BLUP analysis and in blocked Gibbs sampling, BES-
SiE uses a preconditioned gradient solver. This may slow 
down the number of Gibbs sampler cycles per second if 
the data set is very large, but it is assumed to accelerate 
convergence drastically [16, 17]. BESSiE does not set up 
the coefficient matrix of the MME. While this prevents 
exploitation of parallel processing, computer memory 
requirements are kept to a manageable level even for 
genome-wide association studies including whole-
genome sequences and “BLUP” estimations including 
millions of animals. However, parts of the preconditioned 
gradient solver steps are parallelised. The algorithm 
that is used to obtain dispersion and location param-
eters when trait observations are of categorical scale is 
described in [18] and [19].

Speed, memory requirements, implementation 
and availability
BESSiE has no hard coded limitations in terms of number 
of traits, factors, genotypes and markers, and has been 
tested on very large data sets.

As an example, a bi-variate analysis with 4420 indi-
viduals genotyped for 510,174 SNPs, 19,549 individuals 
in the pedigree, seven fixed effects and a polygenic ran-
dom effect per trait, and SNP effects modelled according 
to “BayesR” with four distributions required ∼4.3 GB of 
RAM and about seven real time seconds on an Intel(R) 
Core(TM) i7-3770 processor to sample all location and 
dispersion parameters once.
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Fig. 1 Example parameter file
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Another example is a uni-variate analysis of publicly 
available mouse data  (http://mus.well.ox.ac.uk/mouse/) 
consisting of 1940 phenotypes and genotypes, where 
genotypes contained 8516 SNP genotypes, and a model 
including only the mean and a random marker factor 
modelled by the “BayesR” algorithm with four distribu-
tions. When executed on a notebook with an Intel(R) 
Core(TM) i7-2637M processor, BESSiE used ∼72  MB 
of RAM and need 5 real time milliseconds to sample all 
location and dispersion parameters once.

BESSiE is written in Fortran 2008, command line oper-
ated, parameter file driven and comes with an extensive 
manual. It is available for 64bit Unix-like operation sys-
tems only. BESSiE uses the Intel Math Kernel library [20] 
for random number generation and matrix operations and 
is therefore optimised for Intel architecture. However, it 
will run on AMD architecture but run time may increase.

BESSiE comes free of charge for the scientific commu-
nity, but users are required to credit its use in any publica-
tion. Commercial users must contact the authors. BESSiE 
executable, manual and a collection of examples can be 
downloaded from http://turing.une.edu.au/~agbu-admin/
BESSiE/. BESSiE is under ongoing development, and due 
to the number of features, some combinations of algo-
rithms and/or modelled factors may not have been tested 
thoroughly. Thus, users use BESSiE at their own risk.
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