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Abstract 

Background:  Breed-specific effects are observed when the same allele of a given genetic marker has a different 
effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a 
case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was 
to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured 
in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a 
traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from 
a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was 
composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The 
traits evaluated were litter size (LS) and gestation length (GL) in pigs.

Results:  The genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and 
GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared 
to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The high-
est prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For 
LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was 
similar to the accuracy of GS DGV (0.53 and 0.52, respectively).

Conclusions:  In this study, training on crossbred data resulted in higher prediction accuracy than training on 
purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was 
done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with 
a lower genetic correlation between purebred and crossbred performance should be included to further assess the 
value of the BS model in genomic predictions.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In pig breeding, selection takes place in purebred lines 
and genetic evaluations are performed mainly with infor-
mation that is collected on purebreds, in high-health 
environments, although the final product of the pig 
industry is a crossbred animal. This strategy may not 
be optimal when the objective is to improve crossbred 

performance. Genetic progress realized at the purebred 
level may not fully translate to improved crossbred per-
formance (under field conditions) when the genetic cor-
relation between purebred and crossbred performance 
is less than 1 [1, 2]. Low genetic correlations between 
purebred and crossbred performance in pigs have been 
reported for many production traits [3, 4] and can be 
caused by genotype-by-environment interaction, non-
additive biological (or functional) effects (such as domi-
nance and epistasis) or breed-specific effects of (genetic 
marker) alleles. Therefore, if the goal is to improve cross-
bred performance by selection in purebreds, effects that 
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influence the genetic correlation between purebred and 
crossbred performance must be evaluated. In addition, 
the use of crossbred data in genetic evaluations must be 
considered [1, 5–8].

Using either real or simulated data, several studies 
have investigated the relevance of genotype-by-environ-
ment interactions and dominance effects for pig breed-
ing [9–14]. However, to date, breed-specific effects of 
genetic marker alleles have not been extensively stud-
ied. Breed-specific effects are observed when the same 
allele, say allele A, of a given marker has a different effect 
on the crossbred phenotype depending on its breed ori-
gin. Breed-specific effects at genetic markers may occur 
when the linkage disequilibrium (LD) between markers 
and quantitative trait loci (QTL) differ between breeds 
or when the allele frequencies of the QTL vary across 
breeds [6]. When breed-specific effects are present, 
allele substitution effects will differ between breeds, and 
therefore, the breeding values that are estimated by using 
only data from one of the purebred parental line may not 
accurately predict crossbred performance.

With the recent availability of high-density marker 
genotypes on both purebred and crossbred animals, we 
can now include crossbred data in genomic evaluations. 
Breed origin of alleles in crossbreds can also be deter-
mined and used to build breed-specific relationship 
matrices, as proposed by Christensen et al. [15]. Replac-
ing the genomic relationship of a traditional genomic 
selection model (GS model) by the breed-specific rela-
tionship matrices (BS model), allows us to quantify 
the contributions of each parental breed to the addi-
tive genetic variance of the trait in crossbreds. In addi-
tion, we can also estimate breed-specific breeding values 
that can be backsolved for breed-specific marker effects 
[16]. Breed-specific marker effects could then be used 
to predict direct genomic values of purebred animals for 
crossbred performance, which would make it possible to 
benefit from training on crossbred field data.

In simulation studies, Ibanez-Escriche et  al. [6] con-
cluded that the BS model may not be required to effec-
tively select purebreds for crossbred performance, while 
Esfandyari et  al. [7] concluded that accounting for the 
breed origin of alleles can substantially improve accuracy 
of genomic prediction if the size of the training popula-
tion is sufficiently large and the parental breeds are not 
very closely related. Applying the method proposed by 
Christensen et  al. [15] to real pig data, Xiang et  al. [17] 
concluded that a BS model is a good method for select-
ing purebreds for crossbred performance, resulting in 
higher prediction accuracy than the GS model. However, 
further studies using real data are still necessary to deter-
mine the relevance of breed-specific effects for genomic 
prediction. In this study, we investigated the value of 

breed-specific effects for predicting crossbred perfor-
mance using real data. First, the contribution of each 
parental breed to the genetic variance was quantified for 
traits that were measured in a two-way crossbred popula-
tion. Second, prediction accuracies were estimated with 
the GS and BS model, using either purebred or crossbred 
training data.

Methods
Ethics statement
The data used for this study were obtained as part of rou-
tine data recording in a commercial breeding program. 
Samples collected for DNA extraction were only used 
for routine diagnostic purposes of the breeding program. 
Data recording and sample collection were conducted 
strictly in line with the rules given by Dutch Animal 
Research Authorities.

Data
Phenotypic and genotypic data were available for pigs 
from two purebred populations: Large White (LW) and 
Landrace (LR), and from a two-way crossbred popula-
tion (F1) that consisted of animals produced by recipro-
cal crosses of the purebred populations (LW♂  ×  LR♀ 
and LR♂  ×  LW♀). Phenotypic data were available for 
litter size (LS, sum of piglets born alive and stillborn in 
the same litter) and gestation length (GL, number of days 
between insemination and farrowing). Both traits were 
recorded from parities 2 to 7. Records from the first par-
ity were excluded because LS and GL measured in the 
first versus later parities have been described as different 
traits based on low genetic correlation [18, 19].

Phenotypic data on both traits were available for 
22,597 LW, 27,035 LR, and 29,847 F1 animals (Table 1). 
The F1 population consisted of 14,964 animals from 
the LW♂  ×  LR♀ cross, and 14,883 animals from the 
LR♂ ×  LW♀ cross. On average, data from 3.8, 3.6, and 
2.5 parities per animal were available in the LW, LR, and 
F1 populations, respectively. Data from the purebred 
populations were recorded on genotyped animals (3723 
LW and 3291 LR) and their non-genotyped contempo-
raries (i.e. animals from the same breed and farm as the 
genotyped animals; 18,874 LW and 23,744 LR). The pure-
bred animals were located on 18 (LW) and 20 (LR) farms 
and were born between 2004 and 2014. Data from the F1 
population were recorded on 1126 genotyped animals 
and their 1120 non-genotyped contemporaries. These 
genotyped F1 animals and their contemporaries were 
located on six farms. Finally, data were also recorded 
on 27,601 non-genotyped F1 offspring of the genotyped 
purebred animals. This additional group of F1 animals 
was located across 111 farms and was only used to 
increase the size of the crossbred population to estimate 
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the genetic correlation between purebred and crossbred 
performance. All F1 animals were born between 2010 
and 2014.

Phenotypes of genotyped animals were pre-adjusted 
for fixed effects using the larger dataset, i.e. including 
contemporaries, such that fixed effects were accounted 
for more accurately. Fixed effects were estimated by fit-
ting a single-trait, pedigree-based mixed linear model 
for each population, using ASReml v3.0 [20]. The model 
used for LS included the fixed effects of parity, interval 
between weaning and pregnancy (days), whether more 
than one insemination was performed or not (yes or 
no), litter type (whether the boar used for the insemina-
tions was from the same breed as the sow, i.e. purebred 
litter, or from a different breed i.e. crossbred litter), and 
herd-year-season, and the random effects of service sire, 
permanent environmental effects, and additive genetic 
effects. The model used for GL included the fixed effects 
of parity, whether more than one insemination procedure 
was performed or not (yes or no), litter type (purebred 
or crossbred), herd-year-season, and the covariate LS. 
The random effects of the model for GL were the same as 
for LS. When evaluating the performance of the F1 ani-
mals, the fixed effect of litter type was not included in the 
model for either trait.

Genetic correlations between purebred and crossbred 
performance
Genetic correlations between purebred and cross-
bred performance for both traits were estimated using 
a three-trait model, as described by Lutaaya et  al. [21]. 
Performance in each population (two purebreds and one 
crossbred) was considered as a different trait. The three-
trait model was implemented in ASReml 3.0 [20]. Effects 
accounted for in the three-trait model were the same as 
those accounted for in the single-trait model that was 
used for the pre-adjustment of the phenotypes, except 
that a fixed effect for breed reciprocity was added for 
crossbred performance (LR♂ × LW♀ or LW♂ × LR♀).

Genotyping
Genotyping was performed mainly using the Illumina 
Porcine SNP60 Beadchip, but some animals from all 
populations were genotyped using the Illumina Por-
cine SNP60 v2 Beadchip. Genotypic data were available 
on 3723 LW, 3291 LR, and 1126 F1 animals (Table 1). In 
the purebred populations, both males and females were 
genotyped. In the F1 population, only females were gen-
otyped. Genotypes of all animals were imputed to the 
SNP60 Beadchip for all SNPs that passed the quality con-
trol. The quality control excluded SNPs with a GenCall 
lower than 0.15, a call rate lower than 0.95, a minor allele 
frequency lower than 0.01, and SNPs that deviated sig-
nificantly from Hardy–Weinberg equilibrium (χ2 > 600). 
SNPs located on the sex chromosomes and unmapped 
SNPs were also excluded. Positions of the SNPs were 
based on the Sscrofa10.2 assembly of the reference 
genome [22]. All genotyped animals had a frequency of 
missing genotypes below the threshold of 0.05 in order 
to exclude poorly genotyped animals. After quality con-
trol and imputation, 39,788 SNPs for LW, 41,299 SNPs 
for LR, and 45,515 SNPs for F1 were available for further 
analyses.

Imputation and phasing of the genotype data
Imputation and phasing of the genotype data were per-
formed using AlphaImpute [23], combining genomic and 
pedigree information to determine the parental origin of 
alleles. Imputation of missing genotypes of the purebred 
populations was performed within populations using 
all SNPs that passed quality control. For the F1 popula-
tion, imputation of missing genotypes and phasing of the 
data were performed by combining the F1 data with the 
imputed purebred data but using only the 36,733 SNPs 
that segregated (minor allele frequency >0.01) in each 
population.

To ensure the use of accurately phased haplotypes 
for determining breed origin of alleles, a threshold was 
applied to the F1 phased data. For each SNP genotype of 

Table 1  Summary statistics

a  Large White (LW), Landrace (LR), and two-way crossbred (F1)
b  Number of animals with phenotypic information and total number of phenotypic records for these animals
c  Number of genotyped animals used for imputation and phasing procedures
d  Number of genotyped animals and number of phenotypic records for these animal used for estimating the variance components and SNP effects
e  Mean ± standard deviation of litter size (LS) and gestation length (GL) of the populations used for estimating the variance components and SNP effects

Populationa Phenotypesb Genotypesc Genotypes and phenotypesd Mean ± standard deviatione

Animals Records Animals Animals Records LS GL

LW 22,597 84,837 3723 924 3358 15.91 ± 3.71 115.38 ± 1.63

LR 27,035 96,431 3291 924 3319 15.40 ± 3.56 116.10 ± 1.61

F1 29,847 75,143 1126 924 3771 15.93 ± 3.59 115.12 ± 1.49
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each individual, AlphaImpute [23] generates two prob-
abilities: P1 is the probability that a specific allele was 
inherited from the father, e.g. allele G of a G/C geno-
type, and P2 is the probability that the same allele was 
inherited from the mother. For a heterozygous animal 
(CG), for which allele C was inherited with certainty 
from the father (and therefore allele G from the mother), 
the probabilities would be P1 = 0 and P2 = 1. When the 
phasing cannot be performed with certainty, these prob-
abilities will have values between 0 and 1. Values of P1 
or P2 between 0.1 and 0.9 were considered to have poor 
phasing. SNPs that were considered poorly phased in 
more than 95% of animals were excluded from the data-
set. Then, animals that had more than 5% poorly phased 
genotypes were excluded. After this quality control, 924 
F1 animals with genotypes for 31,930 SNPs were available 
to estimate variance components and SNP effects. The 
same set of SNPs was also used to estimate variance com-
ponents and SNP effects for the purebred populations.

After phasing of the genotype data, the breed origin of 
alleles was easily determined because the breeds of the 
parents of the F1 individuals were known. The final F1 
population included 414 animals from the LW♂ ×  LR♀ 
cross and 510 animals from the LR♂ × LW♀ cross.

Estimation of variance components and SNP effects
The number of animals with both phenotypes and gen-
otypes was larger in the purebred than in the crossbred 
population. Because the size of the training popula-
tion influences the estimation of SNP effects and conse-
quently prediction accuracy [24], we randomly selected 
924 animals born between 2010 and 2014 from each 
purebred population for use in estimation of variance 
components and SNP effects. Our aim was to conduct a 
fair comparison, since the size of the training population 
and range of birth years were the same for each popula-
tion (Table 1). In order to have independent datasets for 
validation analyses (discussed below), the purebred ani-
mals used as training population had no offspring or sibs 
in the F1 population.

Variance components and SNP effects were estimated 
within each population using a traditional genomic selec-
tion model (GS model) and a model that accounts for 
breed-specific effects (BS model). The GS model was 
applied to both purebred and crossbred data, while the 
BS model was applied only to the crossbred data. These 
models were implemented in ASReml [20], as follows:

y = 1µ+ Ss+ Pp+ ZuGS + e (GS model)

y = 1µ+ Ss+ Pp+ ZLWuBS|LW

+ ZLRuBS|LR + e (BS model)

where y is a vector of phenotypes pre-adjusted for fixed 
effects; µ is the mean of the populations and 1 a vec-
tor of 1s; S is the design matrix for service sire effects; 
s is an unknown vector of service sire effects; P is the 
design matrix for permanent environmental effects; 
p is an unknown vector of permanent environmental 
effects; Z, ZLW and ZLR are design matrices for the addi-
tive genetic effects; uGS is an unknown vector of additive 
genetic effects (i.e. breeding values); uBS|LW and uBS|LR 
are unknown vectors of breed-specific additive genetic 
effects (i.e. breed-specific breeding values). Assumed 
distributions were s ∼ N

(

0, Iσ 2
s

)

, p ∼ N
(

0, Iσ 2
r

)

, 

uGS ∼ N
(

0,Gσ 2
aGS

)

, uBS|F1LW ∼ N
(

0,BLW σ 2
aBS|F1LW

)

 , and  

uBS|F1LR ∼ N
(

0,BLRσ
2
aBS|F1LR

)

, where I is an identity 
matrix, σ 2

s  is the service sire variance, σ 2
r  is the perma-

nent environmental variance, G is the traditional genomic 
additive relationship matrix, σ 2

aGS
 is the additive genetic 

variance, BLW and BLR are breed-specific genomic relation-
ship matrices, and σ 2

aBS|F1LW
 and σ 2

aBS|F1LR
 are breed-specific 

additive genetic variances. Heritability was defined as 
σ 2
aGS

/σ 2
P for the GS model and as (σ 2

aBS|F1LW
+ σ 2

aBS|F1LR
)/σ 2

P 
for the BS model, where σ 2

P is the total phenotypic variance 
(sum of all variances from each model). The G matrix was 
built according to VanRaden [25]:

where pi and qi are the allele frequencies of the ith genetic 
marker, and M is a matrix of centered genotype codes 
(0 −  2pi, 1 −  2pi, 2 −  2pi). The BLR and BLW matrices 
were built according to the genomic gametic relationship 
matrices described by Christensen et al. [15] and Nishio 
and Satoh [26]:

where pi* and qi* are the frequencies of the allele codes 
from either LW (BLW) or LR (BLR) in the F1 population, 
and L is a matrix of centered allele codes (0 − pi*, 1 − pi*) 
from either breed LW (BLW) or LR (BLR). After obtaining 
the estimated breeding values (EBV) from the GS model 
(ûGS) and the BS model (ûBS|F1LW and ûBS|F1LR), we back-
solved these EBV to obtain estimates of SNP effects, 
which were used to estimate the direct genomic values 
(DGV) of the validation animals. Backsolving of EBV 
from the GS models to obtain SNP effect estimates (âGS) 
was performed as described by Wang et al. [16]:

G =
MM′

2
∑n

i=1 piqi
,

B =
LL′

∑n
i=1 p

∗
i q

∗
i

,

âGS =
M′G−1

ûGS

2
∑n

i=1 piqi
,
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and backsolving of EBV from the BS model to obtain 
breed-specific SNP effect estimates (âBS|F1LW and 
âBS|F1LR , for LW and LR breed, respectively), was per-
formed by extending the method described by Wang 
et al. [16]:

Predicting crossbred performance
A schematic representation of the steps involved in the 
prediction analyses is in Fig.  1. Individual performance 
of genotyped crossbred sows was predicted with the SNP 
effects estimated by the GS model and the BS model. A 
validation using a 40-fold random training-validation 
populations was performed to evaluate prediction accu-
racies. For each replicate, 10% of the genotyped F1 ani-
mals (N = 92) were randomly assigned to the validation 
population and the other 90% (N =  832) were assigned 
to the F1 training population. For the purebred train-
ing populations, 90% (N = 832) of the animals that were 
used to estimate variance components were randomly 

âBS =
L′B−1

ûBS
∑n

i=1 p
∗
i q

∗
i

.

assigned to the training population in each replicate. 
Within each replicate, traditional (GS) DGV of validation 
animals were estimated as: ûGS|j = MF1âGS|j, where MF1 
is a matrix of centered genotypes of the F1 validation ani-
mals and âGS|j is a vector of SNP effects estimated using 
the GS model on the training animals, where subscript j 
indicates the breed of the animals included in the train-
ing population (LW, LR or F1).

In addition, within each replicate, two types of breed-
specific (BS) DGV of the validation animals were esti-
mated. The first type of BS DGV used SNP effects 
estimated within the parental purebred populations as: 
ûBS|j = LF1j âGS|j, where LF1j is a matrix of centered allele 
codes that the F1 validation animals inherited from the 
jth parental purebred populations (LW or LR) and âGS|j is 
defined as above. Thus, separate BS DGV were estimated, 
one for each parental purebred population. In addition, 
total the BS DGV (ûBS|LW + ûBS|LR) was calculated for 
the validation animals. The second type of BS DGV used 
SNP effects that were estimated within the crossbred 
population as: ûBS|F1j = LF1j âBS|F1j, where âBS|F1j is a 
vector of SNP effects that were estimated using the BS 

Fig. 1  Schematic representation of the steps involved in the prediction analyses. LW Large-White, LR landrace population, F1 two-way crossbred, GS 
model traditional genomic selection model, BS model model that accounts for breed-specific effects
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model on the alleles that the F1 training animals inher-
ited from the jth parental purebred populations, and LF1j 
is defined as above. Total BS DGV (ûBS|F1LW + ûBS|F1LR) 
were also calculated for the validation animals.

Prediction accuracy was defined as the correlation of 
the GS DGV, the BS DGV, or the total BS DGV with pre-
adjusted phenotypes in the validation population. Pre-
diction accuracies presented are averages over 40-fold 
random reference-training population replicates.

Results
The estimate of the pedigree-based genetic correla-
tion between purebred LW and crossbred performance 
was 0.91 ± 0.04 for LS and 0.92 ± 0.02 for GL (Table 2). 
The estimate of the pedigree-based genetic correlation 
between purebred LR and crossbred performance was 
slightly lower, i.e. 0.89 ± 0.04 for LS and 0.88 ± 0.03 for 
GL. Estimates of the pedigree-based heritability for all 
traits and populations are provided in Table 2.

Using the GS model, estimates of the heritability of 
0.15 ±  0.03 and 0.12 ±  0.03 were obtained for LS in the 
LW and LR populations, respectively (Table 3). Using the 
GS and BS models, estimates of the heritability for LS in 
the F1 population were similar (0.12  ±  0.03). Using the 
GS model, estimates of the heritability of 0.34 ± 0.04 and 
0.33 ± 0.04 were obtained for GL in the LW and LR popu-
lations, respectively (Table 3). For GL in the F1 population, 
estimates of the heritability of 0.39 ± 0.04 and 0.40 ± 0.04 
were obtained with the GS and BS models, respectively. 
For both traits, the estimate of the breed-specific additive 
genetic variance was slightly larger for alleles that were 
inherited from the LW population compared to alleles that 
were inherited from the LR population, although the stand-
ard errors were high (0.74 ± 0.23 and 0.56 ± 0.24 for LS, 
and 0.42 ± 0.08 and 0.40 ± 0.08 for GL, respectively).

The highest accuracy for predicting the performance of 
crossbred sows was observed when training was done on 
crossbred data (Table  4), for which the GS and BS mod-
els resulted in similar prediction accuracies. For LS, when 
training was done on crossbred data, prediction accu-
racy was the same for the GS DGV and the total BS DGV 
(0.23 ±  0.08). For GL, when training was done on cross-
bred data, similar prediction accuracies were obtained 
for the total BS DGV and the GS DGV (0.53 ±  0.08 and 
0.52  ±  0.08, respectively). For both traits, the BS DGV 
based on the LW alleles resulted in higher prediction accu-
racies than the BS DGV based on the LR alleles (0.21 ± 0.08 
vs. 0.12 ± 0.09 for LS; 0.43 ± 0.08 vs. 0.34 ± 0.09 for GL).

Discussion
In this study, we showed, that, for LS and GL, the same 
SNP allele in the F1 population can contribute differently 
to the additive genetic variance depending on its breed 

Table 2  Estimates of  pedigree-based heritability (h2) 
and  genetic correlation between  purebred and  crossbred 
(rpc) populations from a three-trait model

a  Populations used in the analyses were Large White (LW), Landrace (LR), and 
two-way crossbred (F1)

Populationa h2 rpc

Litter size

 LW 0.18 ± 0.01 0.91 ± 0.04

 LR 0.14 ± 0.01 0.89 ± 0.04

 F1 0.14 ± 0.01

Gestation length

 LW 0.39 ± 0.01 0.92 ± 0.02

 LR 0.39 ± 0.01 0.88 ± 0.03

 F1 0.37 ± 0.01

Table 3  Estimates of variance components and (±) standard errors for litter size and gestation length

Variance components: service sire (σ 2
s ), permanent environment (σ 2

r ), additive (σ 2
a), additive for the alleles of the F1 population inherited from the LW (σ 2

aLW
) and LR 

(σ 2
aLR

) populations, and error (σ 2
e ). h2: heritability

a  Large White (LW), Landrace (LR), two-way crossbred (F1)
b  Traditional genomic selection model (GS) and a model that accounts for breed-specific effects (BS)

Populationa Modelb
σ
2
s σ

2
r σ

2
a σ

2
aLW

σ
2
aLR

σ
2
e

h2

Litter size

 LW GS 0.43 ± 0.13 1.70 ± 0.30 1.81 ± 0.36 – – 8.26 ± 0.25 0.15 ± 0.03

 LR GS 0.02 ± 0.09 1.22 ± 0.28 1.30 ± 0.31 – – 8.80 ± 0.27 0.12 ± 0.03

 F1 GS 0.10 ± 0.10 1.38 ± 0.28 1.42 ± 0.34 – – 8.54 ± 0.24 0.12 ± 0.03

 F1 BS 0.11 ± 0.10 1.37 ± 0.29 – 0.74 ± 0.23 0.56 ± 0.245 8.52 ± 0.24 0.12 ± 0.03

Gestation length

 LW GS 0.21 ± 0.03 0.33 ± 0.05 0.68 ± 0.09 – – 0.78 ± 0.02 0.34 ± 0.04

 LR GS 0.23 ± 0.03 0.26 ± 0.05 0.64 ± 0.09 – – 0.82 ± 0.03 0.33 ± 0.04

 F1 GS 0.16 ± 0.02 0.23 ± 0.06 0.81 ± 0.11 – – 0.90 ± 0.03 0.39 ± 0.04

 F1 BS 0.16 ± 0.02 0.17 ± 0.06 – 0.42 ± 0.08 0.40 ± 0.08 0.90 ± 0.03 0.40 ± 0.04
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origin (Table  3) and that accounting for this difference 
only has a small impact on prediction accuracy (Table 4). 
The standard errors of the breed-specific variance esti-
mates were rather high, as expected with a small dataset 
(N = 924), especially for LS, for which it reached 43% of 
the variance estimate (Table  3) and, thus, these results 
must be considered carefully. While standard errors can 
increase due to inaccurate determination of the breed 
origin of alleles, this increase is expected to be limited 
because a stringent quality control was applied to the 
phased genotypes.

Predicting performance of genotyped crossbred sows 
was more accurate when training was on crossbred data 
instead of purebred data (Table  4). The superiority of 
training on crossbred data compared to purebred data for 
predicting crossbred performance is in line with previous 

studies that were carried out using both simulated and 
real data. In simulation studies, training on crossbred 
data has been reported to yield either similar [27] or 
higher accuracies [7, 17] compared to training on pure-
bred data, while using real data, training on crossbred 
data has been found to yield the highest prediction accu-
racies [2, 28].

The GS and BS models resulted in similar prediction 
accuracies when training was on crossbred data. Greater 
benefits of using the BS model over the GS model are 
expected when crossbred populations are larger and 
more distant parental breeds are crossed [7]. In the cur-
rent study, we evaluated a small F1 population (N = 924) 
that was obtained by crossing two dam lines. If a sire line 
was used instead as one of the parental line, the parental 
breeds may, depending on the lines chosen, be more dis-
tant [29] and the BS model could have a larger impact on 
prediction accuracy. In pig breeding, the cross between 
sire and dam lines is typically done by mating F1 sows to 
boars from a sire line in the next generation. Therefore, 
we expect that applying the BS model to such a three-way 
crossbred population may result in larger benefits over 
the GS model. However, to evaluate three-way cross-
bred populations, even larger crossbred populations may 
be required because each crossbred will only carry two 
(grand) parental alleles.

Predictions of the performance of genotyped crossbred 
sows using BS DGV based on alleles of the LW breed 
resulted in higher accuracies than using BS DGV from 
alleles of the LR breed. This advantage of the LW breed 
compared to the LR breed when training was on cross-
bred data is consistent with the larger amount of vari-
ance that is explained by alleles of the LW breed (Table 3) 
and also with the higher estimate of the pedigree-based 
genetic correlation between the LW and F1 populations 
compared to that between the LR and F1 populations 
(Table  2). Furthermore, when training was on purebred 
data, the performance of genotyped crossbred sows was 
more accurately estimated when total BS DGV were used 
than when GS DGV based on SNP effects estimated in 
each purebred were used (Table  4). This suggests that 
determining the breed origin of the alleles in crossbred 
sows is beneficial, even if the training is on purebred data.

In this study, the BS model was applied to a training 
population composed of crossbred animals only. As a 
further step, the benefits of accounting for breed-specific 
effects could be evaluated under combined crossbred and 
purebred selection (CCPS), which has been described as 
an efficient way of increasing genetic progress in both 
purebred and crossbred populations [5, 30]. Such an 
approach was proposed by Christensen et  al. [15] and 
further evaluated by Christensen et al. [31] and consists 
of performing genomic evaluation using a combination 

Table 4  Prediction accuracy of  performance of  crossbred 
sows for gestation length and litter size

* Predicted direct genomic value was the “total direct genomic value” (sum of 
the breed-specific direct genomic values)
a  GS, traditional genomic selection model; BS, model that accounts for breed-
specific effects
b  LW, Large White; LR, Landrace; F1, two-way crossbred; F1LW, alleles of the F1 
population inherited from the LW population; F1LR, alleles of the F1 population 
inherited from the LR population. Training populations in each replicate were 
defined as a random set of 90% (N = 832) of the animals used for the estimation 
of variance components
c  Average of the 40 replicates; accuracy was defined as the correlation 
between the direct genomic values of the validation population [random set 
of 10% (N = 92) of the crossbred animals used for the estimation of variance 
components] and their average pre-adjusted phenotypes in each replicate
d  Standard deviation over replicates; the highest accuracies for each model and 
trait are indicated in bold

Modela Trainingb Accuracyc SDd

Litter size

 GS LW 0.06 0.10

LR 0.07 0.11

F1 0.23 0.08

 BS LW 0.06 0.11

LR 0.06 0.13

LW and LR* 0.09 0.12

F1LW 0.21 0.08

F1LR 0.12 0.09

F1LW and F1LR* 0.23 0.08

Gestation length

 GS LW 0.42 0.08

LR 0.30 0.09

F1 0.52 0.08

 BS LW 0.39 0.08

LR 0.23 0.10

LW and LR* 0.45 0.08

F1LW 0.43 0.08

F1LR 0.34 0.09

F1LW and F1LR* 0.53 0.08
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of the genomic relationship of the purebred popula-
tions and the breed-specific relationship matrices of the 
crossbred population. One of the limitations of applying 
CCPS using pedigree-based models is that it also resulted 
in increased rates of inbreeding [32]. However, with 
genomic-based models this increased inbreeding from 
CCPS is expected to be limited, or even absent, because 
the genomic information allows estimation of Mendelian 
sampling and therefore reduces the emphasis on family 
information in selection [1].

A CCPS approach to estimate BS DGV could be 
applied for both two-way and three-way crossbred pop-
ulations. In the current study, we evaluated a two-way 
crossbred population and determination of the breed 
origin of alleles depended on pedigree information. In 
three-way crossbred populations, pedigree information 
is not commonly recorded, and thus, different strate-
gies would be required to determine the breed origin 
of alleles. Recently, Bastiaansen et  al. [33] proposed a 
method to determine breed origin of alleles in cross-
breds using long-range phasing that can be applied to 
crossbred populations where pedigree information is 
lacking and this has been further evaluated by Sevil-
lano et  al. [34] and Vandenplas et  al. [35]. With this 
method, close relationships between the crossbred and 
purebred genotyped animals would not be required 
because long-range phasing will work even with distant 
purebred relatives of the crossbreds. Therefore, future 
studies on practical applications of BS models in CCPS 
should evaluate a combination of the methods proposed 
by Christensen et  al. [15] and Bastiaansen et  al. [33]. 
When crossbred genotypes are not available, an alter-
native strategy would be to apply models that account 
for purebred genotypes and crossbred phenotypes only, 
as proposed by Tusell et al. [36]. These authors showed 
that such a strategy improves the theoretical accuracy of 
selection for crossbred performance without crossbred 
genotypes. However, we must keep in mind that with 
the fast developments of genotyping platforms and tech-
niques, the major cost limitation for the use of crossbred 
data in genomic evaluation may come from obtaining 
phenotypes rather than genotypes.

In this study, we investigated the relevance of breed-
specific effects when genomic selection is applied to real 
data for two reproductive traits in pigs. In future stud-
ies, traits that have a lower genetic correlation between 
purebred and crossbred performance should be included 
because benefits of BS models are expected to be larger in 
those cases. In addition to studying less correlated traits, 
investigating breed-specific effects in crosses of more dis-
tant purebred populations may result in larger benefits 
of the BS model. Furthermore, evaluation of larger data-
sets than those used in the current study is also required 

for more conclusive results and to quantify the benefits 
of accounting for breed-specific effects in prediction 
models.

Conclusions
In this study, we provide evidence of breed-specific SNP 
effects for litter size and gestation length in a two-way 
crossbred population. Predicting performance of cross-
bred sows was shown to be more accurate when training 
was performed on crossbred instead of purebred data. 
However, when training was done on crossbred data, the 
GS and BS models resulted in similar prediction accu-
racies. In future studies, traits with lower genetic cor-
relations between purebred and crossbred performance 
should be evaluated to confirm the potential benefit of BS 
models in genomic predictions.
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