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Using a very low-density SNP panel 
for genomic selection in a breeding program 
for sheep
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Abstract 

Background: Building an efficient reference population for genomic selection is an issue when the recorded popula‑
tion is small and phenotypes are poorly informed, which is often the case in sheep breeding programs. Using sto‑
chastic simulation, we evaluated a genomic design based on a reference population with medium‑density genotypes 
[around 45 K single nucleotide polymorphisms (SNPs)] of dams that were imputed from very low‑density genotypes 
(≤ 1000 SNPs).

Methods: A population under selection for a maternal trait was simulated using real genotypes. Genetic gains 
realized from classical selection and genomic selection designs were compared. Genomic selection scenarios that 
differed in reference population structure (whether or not dams were included in the reference) and genotype quality 
(medium‑density or imputed to medium‑density from very low‑density) were evaluated.

Results: The genomic design increased genetic gain by 26% when the reference population was based on sire 
medium‑density genotypes and by 54% when the reference population included both sire and dam medium‑density 
genotypes. When medium‑density genotypes of male candidates and dams were replaced by imputed genotypes 
from very low‑density SNP genotypes (1000 SNPs), the increase in gain was 22% for the sire reference population and 
42% for the sire and dam reference population. The rate of increase in inbreeding was lower (from − 20 to − 34%) for 
the genomic design than for the classical design regardless of the genomic scenario.

Conclusions: We show that very low‑density genotypes of male candidates and dams combined with an imputation 
process result in a substantial increase in genetic gain for small sheep breeding programs.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Although technical and economic interests of genomic 
breeding programs in sheep have been positively 
assessed by various authors [1–5], only a few coun-
tries deliver genomic breeding values for meat and 
dairy sheep [6]. For many sheep breeds, the remaining 
main obstacle is to build an efficient reference popula-
tion based on medium-density (MD  ~  50  K) genotypes 
and estimated breeding values (EBV) of sires to estimate 
the effects of single nucleotide polymorphisms (SNPs). 
Genomic prediction accuracy depends mainly on the 
number of animals included in the reference population, 

the accuracy of their EBV, their relationship with target 
animals (mostly candidates without phenotypes), and 
the effective size of the population [7]. In sheep, com-
pared to dairy cattle, the effective population size is gen-
erally larger [8], and especially for maternal traits, EBV 
of both artificial insemination (AI) and naturally-mated 
sires are less accurate due to smaller numbers of progeny 
per sire. An increase in reference population size could 
counterbalance these unfavorable factors. However, this 
increase is limited when the population itself is small and 
the reference population is based on sires only. Including 
records and genotypes from lower tiers of the population 
is promising [9], whereas, so far, multi-breed approaches 
have not led to the expected increases in genomic predic-
tion accuracy [10]. Another way to increase the reference 
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population would be to include females. Studies on dairy 
cattle breeding programs show that this strategy is effi-
cient, especially when the reference population is based 
on a limited number of sires and/or records [11–15]. The 
impact of including females in the reference population 
on a sheep breeding program has never been assessed.

In sheep, the profitability at the nucleus level remains 
a critical factor for the design of breeding programs [16]. 
Implementation of genomic selection is mostly likely 
only if the cost is similar to that of the current design. In 
a genomic design, AI sires are no longer progeny-tested 
but both the animals in the reference population and the 
selection candidates must be genotyped. Since genotyp-
ing costs are quite high in sheep relative to the economic 
value of breeding animals, the number of genotypes has a 
large influence on the profitability of the design. Includ-
ing dams in the reference population would increase the 
genotyping costs. Besides, the magnitude of the selec-
tion differential on genomic estimated breeding values 
(GEBV) of male candidates is a critical factor that deter-
mines the additional benefit of genomic selection breed-
ing programs [17]. Increasing the selection differential 
requires additional candidate genotypes resulting in 
additional genotyping costs as well.

Very low-density (VLD) genotypes in association with 
imputation techniques would reduce the genotyping 
costs of a genomic design. VLD panels based on a few 
hundred SNPs are available at lower cost than low-den-
sity genotypes (~ 15 K) and are mainly used for parentage 
assignment [18–20]. Since candidate SNPs for parentage 
assignment are widely available across breeds (e.g. 9269 
SNPs had a minor allele frequency higher than 0.30 in 
at least 20 French sheep populations [20]), new panels 
under development will probably be close to 1000 SNPs. 
Imputation techniques based on common SNPs that are 
present on both MD and VLD panels can be used to infer 
missing MD genotypes of male candidates and dams, 
thus to exploit MD genotypes of selected sires as a ref-
erence population. Population-based methods use the 
linkage disequilibrium (LD) between SNPs and haplotype 
frequencies only, whereas population- and family-based 
methods also include co-segregation information based 
on pedigree. The factors that affect imputation accuracy 
[21–35] and the relation between imputation accuracy 
and genomic prediction quality [21, 25–27, 30, 31, 34, 
35] are well documented. In sheep, Moghaddar et al. [31] 
found a correlation close to 1 between GEBV computed 
from real versus imputed genotypes with an average 
imputation accuracy of 0.96. The imputation accuracy 
depends on: (1) the characteristics of the low-density 
panel with respect to the minor allele frequency, the 
number, spacing and localization of SNPs [21–27, 30, 33, 
34]; (2) the linkage between adjacent SNPs [22, 24]; and 

(3) the characteristics of the reference population includ-
ing size, single or multi-breed population and relation-
ship with imputed animals [21, 24, 26, 27, 29–31, 34]. As 
observed with genomic prediction accuracy, imputation 
accuracy increases as close relatives are included in the 
reference population and pedigree information is used 
[21, 24, 26, 29, 30, 34].

Focusing on a breeding program applied to a small 
population of purebred sheep in which both AI and natu-
ral mating sires are used, the objectives of this study were 
to quantify the impact of (1) increasing the reference 
population size with female genotypes and (2) imput-
ing genotypes of male candidates and females from very 
low- to medium-density SNP panels. The presence of all 
sires and grand-sires of dams and male candidates in the 
reference population for imputation is expected to limit 
the detrimental effect of using a VLD panel on imputa-
tion accuracy. Various designs were compared, including 
a classical selection scheme based on progeny testing of 
AI sires as a baseline scenario, and several genomic selec-
tion schemes. Five scenarios were assessed for genomic 
selection by varying the reference population compo-
nent (with or without dams), and genotype information 
(MD or imputed MD genotypes for male candidates and 
dams).

Methods
To compare different designs of breeding programs, we 
developed a stochastic simulation model where individu-
als, including their genome, were simulated. Stochastic 
events were simulated using the NAG FORTRAN library 
[the Numerical Algorithms Group (NAG), Oxford, UK]. 
Parents were randomly mated and replacements ran-
domly selected during 20 reproductive cycles to estab-
lish a founder population. Ten years of selection for a 
maternal trait were then simulated by applying a classical 
progeny test design. At this time (Time = 10), the average 
LD  (r2) between SNPs was equal to 0.13 at 50 kb, 0.07 at 
200 kb and 0.05 at 1000 kb. These values of  r2 were within 
the range of estimated  r2 and Ne reported by Kijas et al. 
[36] for the Merino breed  (r2 ~ 0.10 at 50 kb, Ne = 900), 
the Suffolk breed  (r2 ~ 0.13, Ne = 569) and the Poll Dor-
set breed  (r2 ~ 0.19 at 50 kb, Ne = 318). The next 15 years 
were simulated by applying either a classical or a genomic 
design. The main steps of the simulation are described in 
Fig. 1.

Founder population
A total of 11,816 real genotypes of 54,241 bi-allelic SNPs 
(Illumina OvineSNP50 BeadChip-Illumina ©) from prog-
eny-tested sires of the dairy Lacaune sheep breed were 
used to initialize population genomes (initial popula-
tion). The genotypes were cleaned (call frequency ≥ 0.95, 
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Hardy–Weinberg equilibrium, Mendelian inheritance 
compatibilities) and only autosomal SNPs with a known 
position on the genome were retained: 47,706 SNPs were 
used for the genome simulations. Using genealogical 

information, phased chromosomes were obtained from 
Fimpute [37]. At Time -20, the phased genome of the 
11,816 individuals and a randomly assigned sex were 
used as a starting point for each simulation run.

Fig. 1 General overview of the simulation steps. 1SNP, single nucleotide polymorphism; 2QTL: quantitative trait locus; 3MAF: minor allele frequency; 
4VLD: very low density; 5BLUP: best linear unbiased prediction; 6ssGBLUP: single step genomic BLUP
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Accuracy of genomic predictions depends on the rela-
tionships between individuals of the reference population 
and candidate animals [31, 38]. To obtain the genomes of 
a small population of females mated to a limited number 
of males, random mating cycles were performed using 
numbers of males and females close to the replacement 
rates used in selection in the subsequent cycles. The 
number of random mating cycles has a limited effect on 
LD (differences in LD between various numbers of cycles 
were lower than 0.01 at 50 kb, 200 kb and 1000 kb within 
10  to  30 cycles). To obtain the desired demographic 
structure, 20 random mating cycles were chosen. At each 
cycle, 1200 females were randomly selected from females 
that were born in the previous two cycles and randomly 
mated to 100 males that were selected among males 
born in the previous cycle. Given the number of prog-
eny per dam allocated according to a prior distribution 
(single =  0.4, twin =  0.5, triplet =  0.1), selection from 
two cycles was required to generate a sufficient number 
of female replacements. The parental gametes were gen-
erated to produce new individual genomes: the number 
of crossovers was simulated following a Poisson distri-
bution P(�) with λ the chromosome length expressed in 
Morgan. Positions of the crossovers were allocated fol-
lowing a uniform distribution along the chromosome 
and a parental strand was randomly chosen (i.e. pater-
nal or maternal) to start the haplotype reconstruction of 
the gamete. Mutations were simulated with a mutation 
rate of 1 × 10−6 per SNP per meiosis. At Time 0, found-
ers were randomly selected according to a demographic 
structure (i.e. percentage of individuals per age-category) 
among individuals that were created in the last seven 
cycles, aged from 1 to 7 years old at Time 0.

Quantitative trait loci and phenotype simulation
One thousand quantitative trait loci (QTL) underly-
ing the maternal trait under selection were randomly 
selected among SNPs with a minor allele frequency 
higher or equal to 0.05. Following Hayes and Goddard 
[39], QTL effects were drawn from a Gamma distribu-
tion with a shape parameter of 0.4 and a scale parameter 
of 1.66. Assuming (1) no dominance effect, (2) Hardy–
Weinberg equilibrium and (3) all the additive variance is 
explained by the QTL, the additive genetic variance was 
VA = ∑ nqtli=12pi(1 − pi)qi2 [40], where pi denotes the allele 
frequency of the first allele for QTL i and qi its effect. 
The QTL effects were rescaled to make the additive vari-
ance VA equal to 1. The maternal permanent effects, pe, 
were drawn from a normal distribution with mean 0 and 
variance rep−h2

h2
 where rep = 0.5 and h2 = 0.25 denote the 

repeatability and the heritability of the trait. The residual 
effects were drawn from a normal distribution with mean 
0 and variance 1−rep

h2
. The kth phenotype yjk of a female j 

was simulated as yjk = TBVj + pej + ejk with TBVj the true 
breeding value depending on the effects of all QTL and 
the female genotype.

Estimation of breeding values
The estimation of breeding values was based on an ani-
mal best linear unbiased prediction (BLUP) model [41] 
for the classical design and genomic evaluation on an ani-
mal single-step genomic (G)BLUP [42] for the genomic 
design. Both types of evaluation were performed using 
the Blupf90 software [43] developed by Misztal et  al. 
The genomic relationship matrix was built following Van 
Raden [44]. Marker inconsistencies between parents and 
progeny were due to imputation errors. Errors detected 
by Blupf90 resulted in the removal of the corresponding 
progeny genotype before the evaluation. Coefficients of 
inbreeding based on pedigree information were com-
puted using the methodology developed by Aguilar and 
Misztal [45] and implemented in the Blupf90 software.

Very low‑density and medium‑density panels
SNPs with a minor allele frequency higher or equal to 
0.25 and not selected as a QTL were considered as candi-
dates for inclusion in the VLD panel. To select nvld evenly 
spaced SNPs (nvld = 250, 500 and 1000), the genome was 
divided into nvld windows. Each window was subdivided 
into three parts and a SNP was randomly selected from 
candidate SNPs located in the central part. If no candi-
date was available, a SNP located within the window or 
in adjacent windows was selected. The MD panel (46,706 
SNPs) included all SNPs except those selected as QTL.

Population and breeding designs
Around 5000 females divided into 10 flocks were 
recorded each year for the trait under selection. Accord-
ing to Hill [46], and neglecting the correlation between 
progeny sizes of sires to breed sires and sires to breed 
dams and between progeny sizes of dams to breed sires 
and dams to breed dams, the effective population size was 
around 180. At each reproductive cycle (length = 1 year), 
half of the breeding females were selected on EBV for 
mating by AI. Assuming a fertility rate of 55% on induced 
estrus, females that did not conceive to AI and females 
not selected for AI were then randomly mated to natural 
mating sires allocated to their flock assuming a fertility 
rate of 90%. The average number of females per naturally-
mated sire was equal to 35. To prevent inbreeding, a male 
(AI or natural mating) could not be mated to a female 
belonging to its dam’s flock. The number of progeny per 
dam depended on the reproduction mode (induced or 
natural estrus) and parity (first versus second and more). 
At each cycle, some dams were randomly culled with a 
proportion varying from 0.10 after parity 1 to 0.50 on 
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average after parity 6. The maximum parity was 7 and 
around 24% of dams were replaced per cycle. Replace-
ment females, allocated to their dam’s flock, were first 
randomly chosen among females that were born from 
an AI sire and then among females that were born from 
a natural mating sire. There is no difference between 
the classical and genomic designs, presented in Fig.  2, 
regarding how females were selected.

About  600 male candidates were preselected among 
newborn males (~ 3500) based on the parental mean EBV 
in the classical design and on the parental mean GEBV 
in the genomic design. In practice, all candidates were 
born from proven AI sires (classical design) and genomic 

AI sires (genomic design) given their genetic superior-
ity. About 10% of male candidates died within their first 
year. At 1  year of age, 50% of the male candidates were 
culled for non-genetic factors. In the classical design, the 
ten candidates with the highest parental mean EBV (out 
of 270 candidates) were selected and mated across flocks 
by AI to 1100 females (110 per male on average) for prog-
eny-testing. Two cycles later, the five AI sires with the 
highest EBV (including progeny records) were selected as 
proven AI sires and used at most for four cycles (from 4 
to 7 years old). At each cycle, 1400 females were mated to 
proven AI sires. In the genomic design, MD or imputed 
MD genotypes of candidates were available. The ten 

Fig. 2 General overview of the classical and genomic designs. Sel. on PA EBV: truncation selection on parent average estimated breeding values; 
Sel. on EBV: truncation selection on estimated breeding values; Sel. on PA GEBV: truncation selection on parent average genomic estimated breed‑
ing values; Sel. on GEBV: truncation selection on genomic estimated breeding values; prog. test: males in progeny testing using artificial insemina‑
tion (AI); Proven sires: AI sires selected on progeny testing; NM sires: natural mating sires; AI sires: artificial insemination sires
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candidates with the highest GEBV were selected as AI 
males and mated across flocks to 1100 females. Genomic 
AI sires were used at most for another cycle and mated to 
1400 females. To mimic the variation in the AI dose pro-
duction per male, the inseminated dams were randomly 
allocated to one AI sire with a maximum number of AI 
per male equal to 140 for 2-year old sires and to 250 for 
older sires. About 50 naturally-mated male replacements 
were selected among 260 candidates not selected as AI 
sires, based on their parental mean EBV in the classical 
design or on their GEBV in the genomic design. These 
naturally-mated sires were used at most for four cycles 
(from 2 to 5 years old).

Five genomic scenarios (Table 1) were assessed. Some 
scenarios included an imputation step to reconstruct the 
MD genotypes of individuals genotyped with the VLD 
panel. The imputation was performed using the software 
Fimpute developed by Sargolzaei et al. [37]. The reference 
population for imputation was based first on the histori-
cal population of AI and natural mating sires at Time 10: 
about  50 progeny tested sires (each with ~  30 daugh-
ters), 50 proven sires (~ 125 daughters) and 400 sires (~ 9 
daughters). From Time 10 to 25, new selected sires were 
added, i.e. about 10 AI and 50 natural mating sires per 
year. The scenarios differed in the choice of genotyped 
animals (including dams or not), the SNP panel used 
for the genotyping of male candidates and dams (MD or 
VLD followed by imputation to MD) and the informa-
tion used for imputation (including pedigree or not). In 
the GSsc scenario, sires and male candidates are geno-
typed using the MD panel. In the GSs_Ic scenario, sires 
are genotyped using the MD panel and male candidates 
using the VLD panel. In the GSscd scenario, sires, male 
candidates and dams are genotyped using the MD panel. 
In the GSs_Icd scenario, sires are genotyped using the 

MD panel and male candidates and dams using the VLD 
panel. To assess the importance of pedigree information 
in the genomic design, the last scenario, GSs_Icd_pop, 
was similar to GSs_Icd but an imputation method that 
ignored pedigree information (population based) was 
used.

Simulation outputs
At each cycle and for each scenario, the average TBV 
and inbreeding coefficient of females in their first parity 
were computed. The annual genetic gain and annual rate 
of inbreeding were estimated as the regression slopes of 
the average TBV and average inbreeding coefficient of 
first parity females on time between cycles 10 and 25. The 
means and standard deviations presented are based on 50 
replicates. At time 25, we computed the average Pearson 
correlation between the TBV and the (G)EBV for dams 
and male candidates as well as the average concord-
ance rate of imputed genotypes (the number of correctly 
imputed alleles divided by the number of imputed alleles) 
of dam and male imputed genotypes.

Results
Table  2 includes the annual genetic gain, the annual 
increase in inbreeding, (G)EBV accuracies, and concord-
ance rates of imputed dams and male candidates for six 
designs. Computed at time 25, we assumed that GEBV 
accuracies and concordance rates were close to the upper 
bounds of values obtained over the simulation time. We 
used a VLD panel of 1000 SNPs for designs that included 
an imputation step to the MD panel. Table 3 provides the 
same information for designs based on female imputed 
genotypes using panels of 1000, 500 or 250 SNPs.

Table 1 Information taken into account for (genomic) breeding value estimation and imputation step according to sce-
narios

a Phenotypes and pedigree were included in all scenarios
b CS = classical selection design
c GS = genomic selection design; GSsc, sires and candidates had medium-density genotypes; GSs_Ic, sires had medium-density genotypes and candidates had 
medium-density genotypes imputed from very low-density genotypes; GSscd, sires, candidates and dams had medium-density genotypes; GSs_Icd, sires had 
medium-density genotypes and candidates and dams had medium-density genotypes imputed from very low-density genotypes; GSs_Icd_pop, sires had medium-
density genotypes and candidates and dams had medium-density genotypes imputed from very low-density genotypes without using the pedigree information
d Medium-density genotypes (46 K)
e Medium-density genotypes (46 K) imputed from very low-density genotypes (≤ 1000)

Scenariosa CSb GSscc GSs_Icc GSscdc GSs_Icdc GSs_Icd_popc

Genotypes  (Gd) or imputed genotype  (IGe)

 Sires G G G G G

 Male candidates G IG G IG IG

 Dams G IG IG

Imputation methodology: population (P)/familial (F) P + F P + F P



Page 7 of 12Raoul et al. Genet Sel Evol  (2017) 49:76 

Annual genetic gain
Annual genetic gains indicated in Tables 2 and 3 corre-
spond to the slope of the average TBV of females in par-
ity 1 from year 10 to 25 for each design. Results show 
that the genetic gain for a genomic design based on a 
sire reference population (GSsc: 0.205σa) was 27% higher 
than for the classical design (CS: 0.162σa). When male 
candidates were imputed from the VLD, the genetic 
gain slightly decreased but remained significantly differ-
ent from that of the classical design (GSs_Ic: 0.197σa). 
Including dams in the reference population doubled the 
additional genetic gain of the genomic design (+ 54%) 
compared to the classical design (GSscd: 0.249σa). When 
candidates and dams were imputed, based on both fam-
ily and population information, the increase in gain was 
lower (GSs_Icd: 0.230σa) but remained higher than that 
of a genomic design based on a sire reference popula-
tion (GSs_Ic: 0.197σa). When imputation was based on 
population information, the genetic gain (GSs_Icd_pop: 
0.179σa) was close to the gain achieved in the classical 
design.

Inbreeding
The rates of inbreeding shown in Tables  2 and 3 cor-
respond to the slope of the average inbreeding coeffi-
cient of females in parity 1 from year 10 to 25 for each 
design. Apart from when the imputation method did not 

take pedigree information into account, the increase in 
inbreeding was significantly slower for the genomic sce-
narios (from 0.0028 to 0.0034 per year) than for the clas-
sical design (0.0043 per year). Within genomic scenarios, 
the increase in inbreeding per year was lower as the num-
ber and quality of genotypes increased.

GEBV accuracies and imputation concordance rate
The EBV accuracies shown in Tables  2 and 3 were cal-
culated as the average Pearson correlation between TBV 
and (G)EBV of females in parity 1–7 (dams) and young 
male candidates at time 25. Accuracies for dams were 
slightly higher in the genomic design based on a sire 
reference population (GSsc: 0.76) than in the classical 
design (CS: 0.71). Including dams in the reference popu-
lation resulted in a substantial increase in accuracy either 
when they were genotyped with MD (GSscd: 0.87) or 
genotyped with VLD and imputed to MD using popula-
tion and family information (GSs_Icd: 0.87). When pedi-
gree information was not used for imputation, the GEBV 
accuracy for dams was lower (GSs_Icd_pop: 0.74) than 
in the genomic design without dams in the reference 
population. Accuracy for male candidates was lower in 
the classical design (CS: 0.36), since they were selected 
on mid-parent EBV, compared to the genomic designs 
where their own genomic information was included. For 
these males, accuracies increased from 0.43 to 0.71 as 

Table 2 Genetic gain, inbreeding rate, (G)EBV accuracies, and imputation concordance rates for six  scenariosa with VLD 
panels of 1000 SNPs (standard deviations for 50 replicates shown in brackets)

a Scenarios based on imputation were performed with a very low-density 1000-SNP panel
b CS = classical selection design
c GS = genomic selection design; GSsc, sires and candidates had medium-density genotypes; GSs_Ic, sires had medium-density genotypes and candidates had 
medium-density genotypes imputed from very low-density genotypes; GSscd, sires, candidates and dams had medium-density genotypes; GSs_Icd, sires had 
medium-density genotypes and candidates and dams had medium-density genotypes imputed from very low-density genotypes; GSs_Icd_pop, sires had medium-
density genotypes and candidates and dams had medium-density genotypes imputed from very low-density genotypes without using the pedigree information
d Computed as the slope of the average true breeding value of females in first parity between time10 and time25
e Computed as the slope of the average inbreeding coefficient of females in first parity between time10 and time25
f Computed as the average Pearson correlation between the true breeding value and (genomic) estimated breeding values of animals at time25
g Dams mated at time 25
h Computed as the average of number of correctly imputed SNP divided by the number of imputed SNP obtained for the imputation realized at time 25
i Dams not present anymore at time 25

Scenariosa CSb GSscc GSs_Icc GSscdc GSs_Icdc GSs_Icd_popc

Genetic  gaind (σa/year) 0.162 (0.015) 0.205 (0.019) 0.197 (0.021) 0.249 (0.016) 0.230 (0.014) 0.179 (0.020)

Inbreeding rate/yeare 0.0043 (0.0011) 0.0034 (0.0006) 0.0033 (0.0006) 0.0028 (0.0005) 0.0031 (0.0006) 0.0040 (0.0008)

(G)EBV  accuracyf

 Damsg 0.71 (0.02) 0.76 (0.02) 0.75 (0.02) 0.87 (0.01) 0.83 (0.02) 0.74 (0.03)

 Male candidates 0.36 (0.07) 0.53 (0.06) 0.51 (0.06) 0.71 (0.05) 0.63 (0.05) 0.43 (0.07)

Imputation concordance  rateh

 Damsg 96.1 (0.1) 91.1 (0.2)

 Old  femalesi 93.3 (0.1) 88.3 (0.2)

 Male candidates 94.7 (0.2) 96.5 (0.1) 92.3 (0.2)
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the quality of their own genomic information (imputed 
genotypes based either on population or population and 
family information, MD genotypes) increased and by 
including dams in the reference population.

The concordance rates of imputation reported in 
Tables  2 and 3 correspond to the number of correctly 
imputed alleles divided by the number of imputed alleles 
at Time 25. Results show that dams and young male 
candidates are imputed with higher accuracy than old 
females (+ 3%). Adding pedigree information (GSs_Icd) 
resulted in a higher imputation accuracy of +  4.2% for 
male candidates and  +  5.0% for females compared to 
ignoring the pedigree in the imputation process (GSs_
Icd_pop). Adding female VLD genotypes resulted in a 
gain of + 1.8% for male candidates.

Effect of the number of SNPs in the VLD panel on the 
GSs_Icd design
Table  3 shows that the genetic gain was much affected 
by the number of VLD SNPs used for imputation. The 
additional gain obtained for 1000 SNPs (0.230σa) fell to 
0.183σa for 500 SNPs, while the gain for 250 SNPs was 
close to, but still significantly higher (0.175σa) than, the 

genetic gain obtained for the classical design (0.162σa). 
Compared to the use of 1000 SNPs, the decrease in accu-
racy was approximately 0.1 for dams irrespective of the 
number of SNPs, 500 or 250. These accuracies were close 
to the accuracy obtained when dams were not included in 
the reference population (GSsc, GSs_Ic). The same com-
parison for male candidates shows that the decrease was 
larger when 250 SNPs (− 0.25) were used than when 500 
SNPs (−  0.18) were used. Across all numbers of SNPs, 
the magnitude of the decrease in concordance rate was 
similar regardless of the category considered: from − 4.1 
to −  4.6 for 500 SNPs and from −  8.5 to −  8.8 for 250 
SNPs compared to 1000 SNPs.

Discussion
In this study, our reference scenario the classical design 
produced a rate of genetic gain of 0.162σa. This result is 
close to 0.173σa, which is the annual genetic gain from 1986 
to 1999 estimated from real data for the Red Faced Manech 
breed [47], a breeding program similar to the simulation 
design (single trait selection until 2003). Compared to the 
classical design, genomic designs generated more annual 
genetic gain and limited the increase in inbreeding. Sensi-
tivity to a lower heritability  (h2 = 0.10 instead of 0.25) and a 
higher efficiency of the classical design (proportion selected 
of 0.33 instead of 0.5 to select proven AI sires) were also 
assessed. Based on ten replicates (results not shown), dif-
ferences in genetic gain were slightly smaller for a low her-
itability or a higher efficiency of the classical design, but 
were of a similar magnitude to the results obtained with the 
classical design, GSscd and GSs_Icd in this study.

The rate of increase in inbreeding was lower in 
genomic scenarios for three main reasons: first, the 
average contribution of natural mating sires was identi-
cal across designs whereas the average contribution of 
AI sires was smaller in the genomic design (genomic AI 
sires were systematically culled after they had been used 
for two cycles); second, the selection intensity applied 
on parent average genetic value to select male candi-
dates in the genomic design was lower than that to select 
AI and natural mating sires in the classical design; and 
third, genomic information was expected to reduce the 
relative importance of pedigree information in breed-
ing value estimation through improved estimation of the 
Mendelian sampling term [17]. The latter might explain 
why within genomic scenarios, the increase in the rate of 
inbreeding was lower as the quality and quantity of the 
genomic information improved.

Performance of a genomic selection design based on a 
reference population of related sires
Compared to the classical design, a genomic design 
based on a reference population of related sires resulted 

Table 3 Genetic gain, inbreeding increase, (G)EBV accu-
racies, and  imputation concordance rates for  the GSs_Icd 
genomic design using VLD densities of 250, 500, and 1000 
SNPs (standard deviations for  50 replicates shown 
in brackets)

a GSs_Icd = genomic selection design, sires had medium-density genotypes 
and candidates and dams had medium-density genotypes imputed from very 
low-density genotypes
b Computed as the slope of the average true breeding value of females in first 
parity between time10 and time25
c Computed as the slope of the average inbreeding coefficient of females in first 
parity between time10 and time25
d Computed as the average Pearson correlation between the true breeding 
value and (genomic) estimated breeding values of animals at time 25
e Dams mated at time 25
f Computed as the average of number of correctly imputed SNP divided by the 
number of imputed SNP obtained for the imputation realized at time 25
g Dams not present anymore at time 25

Scenarios GSs  Icda GSs  Icda GSs_Icda

Number of SNPs 1000 500 250

Genetic  gainb (σa/
year)

0.230 (0.014) 0.183 (0.016) 0.175 (0.015)

Inbreedingc 0.0031 (0.0006) 0.0037 (0.0007) 0.0040 (0.0010)

GEBV  accuracyd

 Damse 0.83 (0.02) 0.74 (0.02) 0.73 (0.03)

 Male candidates 0.63 (0.05) 0.45 (0.07) 0.38 (0.02)

Imputation concordance  ratef

 Damse 96.1 (0.1) 91.8 (0.3) 87.3 (0.4)

 Old  femalesg 93.3 (0.1) 88.7 (0.2) 84.5 (0.3)

 Male candidates 96.5 (0.1) 92.4 (0.3) 88.0 (0.4)
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in an increase in genetic gain of 26.3% per year when 
candidates were genotyped with the MD panel (GSsc). 
This increase is inferior to the increase in gain of 50% 
calculated by Shumbusho et  al. [1] for the Red Faced 
Manech breed using a deterministic model. Although 
the designs were similar, Shumbusho et al. [1] computed 
the accuracy of GEBV based on a reference popula-
tion of 2000 animals with a constant number of records 
using the formula of Daetwyler et  al. [48], whereas in 
our study, the cumulated number of genotyped sires 
(included in the single-step GBLUP) increased from 
around 500 (Time 10) to 1250 (Time 25), and the num-
ber of daughters per sire was highly variable due to 
both use of AI and natural mating. For the GSsc sce-
nario, the increase in accuracy of GEBV was moderate 
for dams (7%) but considerable for young males (47%). 
When candidate male genotypes were imputed from 
genotypes based on 1000 SNPs (GSs_Ic), the increase 
in gain (+  21.6%) compared to that obtained with the 
classical design was lower than with GSsc. The average 
concordance rate, equal to 94.7%, is of the same order 
as results obtained by Wang et al. [25] and corroborates 
that an acceptable imputation quality based on a VLD 
panel could be achieved provided that sires are included 
in the training population. The GEBV accuracies for 
male candidates were slightly lower for GSs_Ic than for 
GSsc (P = 0.068) in agreement with results obtained in 
sheep by Moghaddar et  al. [31] for a similar range of 
imputation accuracies.

Sires of male candidates were selected among young 
males in the genomic design and progeny-tested males 
in the classical design. Although the accuracy of GEBV 
of young males was lower than that of progeny-tested 
males (0.71—results not shown), higher selection intensi-
ties and a shorter average generation interval resulted in 
a higher genetic gain. Regardless of the design, male can-
didates were preselected based on parent average genetic 
values. The genomic AI sires were selected on their own 
genomic value before 2  years of age with a proportion 
selected of 1/27 versus 1/2 at 4 years old after progeny-
testing for AI sires in the classical design. Since genomic 
AI sires were used for a maximum of 2  years, the aver-
age generation interval was reduced (3 years instead of 4). 
The natural sires were used and selected at the same age 
with a proportion selected close to 1/5 but on their own 
genomic value in the genomic design or on parent aver-
age genetic value in the classical design.

Value of female VLD genotypes
The comparison between scenarios with (GSscd) or 
without females (GSsc) included in the reference popu-
lation shows that adding dam genotypes, along with 
their phenotypes, resulted in a doubling of the increase 

in genetic gain of the genomic design. Genotyping dams 
led to an increase in the average accuracy of GEBV for 
both dams (14%) and male candidates (34%). The effect 
of including cow genotypes in the reference population 
on accuracy and bias of genomic prediction has been 
widely reported in dairy cattle [11–15, 49–55]. Genetic 
gain varied depending on the population and reference 
population structure. For example, Koivula [14] reported 
a small additional gain (increase in accuracy of + 2 to 
4%) when the reference population contained about 
4400 sires, whereas McNugh [11] reported that includ-
ing a large female population in the reference population 
increased the annual genetic gain by a factor of 3. In our 
study, the increase in gain was also large. Buch et al. [12] 
and Gonzalez-Recio et al. [13] showed that the increase 
in genomic prediction accuracy due to female informa-
tion was most important when phenotypes and sizes 
of  sire progeny groups were limited. Thus, this result 
was expected given the structure of our reference popu-
lation: the number of sires was limited and most sire 
progeny groups were generated by natural mating, result-
ing in small numbers of daughters and thus inaccurate 
phenotypes.

When male candidates and dams were genotyped with 
a 1000-SNP panel and imputed genotypes were included 
for genomic evaluation (GSs_Icd), the additional genetic 
gain was reduced but it remained higher (+ 41%) than 
that obtained with the classical design. With a concord-
ance rate of imputed animals of about 96%, the accuracy 
of GEBV of male candidates and dams decreased com-
pared to that in GSscd (respectively − 11.3 and − 4.6%) 
but remained higher than accuracies obtained with a ref-
erence population based on sires (respectively +  15.9% 
and +  8.4% pts). Compared to the classical design, the 
increase in accuracy with a 1000-SNP panel was + 41% 
but this decreased to + 8% with a 250-SNP panel. Lower 
imputation accuracies obtained with lower density SNP 
panels and larger numbers of genotypes discarded from 
the genomic evaluation due to parent-progeny mis-
matches (results not shown), resulted in no increase in 
GEBV accuracy of dams when they were genotyped with 
the 250- or 500-SNP panel: both panels gave the same 
accuracies as the GSsc scenario in which dams were not 
included in the reference population. For male candi-
dates, the accuracy of GEBV was lower for 500 (− 40.0%) 
and 250 (− 65.8%) SNPs than the accuracy obtained with 
1000 SNPs but the increases in gain for genomic scenar-
ios based on 250 and 500 SNPs, compared to the classi-
cal design, were highly significant (P < 0.001). Comparing 
GSs_Icd based on 250 SNPs with the classical design, 
the differences in accuracy of GEBV for dams and male 
candidates were small (+  0.02) but highly significant 
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(P  <  0.001) for dams and moderate for male candidates 
(P = 0.0565).

Importance of using pedigree information in the 
imputation of MD genotypes from VLD genotypes
In GSs_Icd_pop, we removed pedigree information in 
the imputation of male candidate and dam genotypes. 
The comparison of GSs_Icd_pop with GSs_Icd shows 
that removing pedigree information in the imputation 
step decreased the concordance rate by 5 points and 4.2 
points, respectively for dams and male candidates. A high 
proportion of genotypes (around 80%) were removed 
in GSs_Icd_pop, due to mismatches between parents 
and progeny (results not shown). In GSs_Icd_pop, the 
annual genetic gain remained higher (+  9.5%) than in 
the classical design but was substantially lower than in 
GSs_Icd (+ 45%). The contribution to the analysis of co-
segregation between VLD and MD SNPs has already been 
reported in previous studies which highlight the benefi-
cial effect of including relatives in the reference popula-
tion for imputation [21, 24, 26, 27, 29–31, 34], especially 
sires and grandsires [24]. The effect of including close 
relatives in the reference population on genomic predic-
tion accuracy was also pointed out by previous studies on 
simulated and real data [38, 56]. Habier et al. [57] showed 
that co-segregation, as well as LD and additive genetic 
relationships, all contribute to the capture of QTL effects, 
whereas Sun et al. [58] showed that explicitly modelling 
the co-segregation results in higher accuracy of genomic 
prediction when the recent effective population is small. 
Such results suggest that a small reference population 
that contains all dams and sires of candidates can result 
in substantial additional genetic gain based on a better 
genomic prediction accuracy.

Feasibility of a genomic design including imputed 
genotypes on dams in the reference population
Higher gain was obtained with a genomic design when 
including dam medium-density  genotypes in the refer-
ence population. The economic value of such a scenario 
should be assessed over the whole population, including 
both the nucleus and commercial levels. However, as dis-
cussed for Australian sheep and beef cattle industries by 
van der Werf and Banks [16], for an individual breeder or 
nucleus, the main objective is to achieve the maximum 
economic return within the company. Regarding the 
value of breeding stock, a lower genetic gain but cheaper 
design can be relevant for sheep breeding programs. For 
a French small ruminant breeding program, the cost of 
AI males including their progeny testing is assumed to be 
at least 400 euros per male per year [59]. In a genomic 
selection design, due to AI sires being used earlier and 
over a shorter period, the corresponding cost would be 

reduced, but genotyping costs have to be considered for 
building the reference population and identifying can-
didates. Implementing a GSscd design would require 
a major investment compared to the current classical 
design since all dams have to be genotyped. The invest-
ment for implementing a GSs_Icd design would be the 
same as that for the classical design, for example if VLD 
genotypes of dams were supported by breeders for par-
entage assignment purposes. However, the current price 
of the very low-density panel available for sheep (around 
20 euros) limits its use for parentage assignment by 
breeders. A combined use of a VLD panel for both par-
entage and genomic selection might be cost-effective.

Plieschke et al. [15] noted that including female geno-
types led to increased accuracy of GEBV without bias as 
long as the females chosen for genotyping were randomly 
sampled. In our study, all dams were genotyped. The 
main purpose was to assess the usefulness for genomic 
selection of VLD genotypes used for parentage assign-
ment. From a practical point of view, one can imagine 
that only a certain proportion of flocks will use parentage 
assignment based on SNPs. In that case, there could be 
variation across flocks, and potentially within a flock, of 
the average dam GEBV accuracy according to the VLD 
genotyping status of dams. This could result in a bias 
since male candidates are selected on parent mean GEBV.

Conclusions
Using a stochastic model, we compared classical and 
genomic selection designs. Five genomic scenarios were 
assessed by varying the structure of the reference popu-
lation (with or without genotyping females) and the 
genotyping panels that were used (medium density, or 
imputed to medium from very low density). Compared 
to the classical design with progeny testing, genomic 
scenarios generated more genetic gain and limited the 
increase in inbreeding. This superiority was based on 
higher selection differentials that are applied to male 
candidates to select sires for both AI and natural mating. 
The combined use of very low-density genotypes for male 
candidates and dams together with imputation resulted 
in lower genetic gain than scenarios based on medium-
density genotypes. However, the increase in gain was 
substantial compared to that in the classical design. Using 
very low-density SNP panels might be more profitable at 
the nucleus level given its lower cost relative to medium- 
or low-density SNP panels and multipurpose use (parent-
age assignment and genomic selection).
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