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Abstract 

Background: This paper describes a heuristic method for allocating low‑coverage sequencing resources by target‑
ing haplotypes rather than individuals. Low‑coverage sequencing assembles high‑coverage sequence information 
for every individual by accumulating data from the genome segments that they share with many other individuals 
into consensus haplotypes. Deriving the consensus haplotypes accurately is critical for achieving a high phasing and 
imputation accuracy. In order to enable accurate phasing and imputation of sequence information for the whole 
population, we allocate the available sequencing resources among individuals with existing phased genomic data by 
targeting the sequencing coverage of their haplotypes.

Results: Our method, called AlphaSeqOpt, prioritizes haplotypes using a score function that is based on the fre‑
quency of the haplotypes in the sequencing set relative to the target coverage. AlphaSeqOpt has two steps: (1) selec‑
tion of an initial set of individuals by iteratively choosing the individuals that have the maximum score conditional 
on the current set, and (2) refinement of the set through several rounds of exchanges of individuals. AlphaSeqOpt 
is very effective for distributing a fixed amount of sequencing resources evenly across haplotypes, which results in a 
reduction of the proportion of haplotypes that are sequenced below the target coverage. AlphaSeqOpt can provide 
a greater proportion of haplotypes sequenced at the target coverage by sequencing less individuals, as compared 
with other methods that use a score function based on haplotype frequencies in the population. A refinement of 
the initially selected set can provide a larger more diverse set with more unique individuals, which is beneficial in the 
context of low‑coverage sequencing. We extend the method with an approach for filtering rare haplotypes based on 
their flanking haplotypes, so that only those that are likely to derive from a recombination event are targeted.

Conclusions: We present a method for allocating sequencing resources so that a greater proportion of haplotypes 
are sequenced at a coverage that is sufficiently high for population‑based imputation with low‑coverage sequencing. 
The haplotype score function, the refinement step, and the new approach for filtering rare haplotypes make AlphaSe‑
qOpt more effective for that purpose than previously reported methods for reducing sequencing redundancy.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
This paper describes a heuristic method for allocating 
low-coverage sequencing resources by targeting haplo-
types rather than individuals, such that haplotypes have 
coverage that is sufficiently high for population-based 
imputation.

The use of whole-genome sequencing data has great 
potential in livestock breeding programs. It may increase 
the power of discovery of causative variants [1–3] and 
enable more accurate and persistent predictions of breed-
ing values than marker array genotypes [4, 5]. To capture 
the full potential of sequence data in livestock, sequence 
and phenotype data on a large number, perhaps millions, 
of individuals may be required to accurately estimate 
the effects of the large number of causative variants that 
underlie quantitative traits [6].
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Low-cost sequencing strategies combined with impu-
tation can be used to generate the required amount of 
sequence information for a large number of individuals 
at an affordable cost [7–11]. The strategies for low-cost 
sequencing can be classified into three groups: (1) to 
sequence a certain number of key individuals at high cov-
erage, as in the 1000 Bull Genomes project (KeySires) [2, 
5]; (2) to sequence a larger number of individuals at low 
coverage (LCSeq) [6, 12, 13]; and (3) to sequence a set of 
chosen individuals at a wide range of coverages (VarCov-
erage) [14].

The LCSeq approach exploits the fact that the popu-
lation structures that are typical in livestock breeding 
result in individuals being sufficiently related to share 
large genome segments. LCSeq focuses sequencing on 
the haplotypes that are present in the population rather 
than on any individual. LCSeq sequences individuals 
at low coverage and assembles high-coverage sequence 
information for every haplotype by accumulating the 
low-coverage sequence data from the genome segments 
that are shared between many individuals to derive the 
‘consensus haplotypes’. The consensus haplotypes are 
then used to impute the sequence data of the individu-
als. Deriving the consensus haplotypes accurately is criti-
cal for achieving a high phasing and imputation accuracy 
under the LCSeq strategy.

With the LCSeq approach potentially many more indi-
viduals can be sequenced than with the KeySires or Var-
Coverage approaches. This provides three advantages to 
the LCSeq approach: (1) higher variant discovery rates, 
particularly for low-frequency variants [15]; (2) inclusion 
of rare haplotypes; and (3) a more precise capture of the 
recombination events that have occurred in the popula-
tion, which would enable better definition of the haplo-
types that are present in the population and thus better 
imputation of these haplotypes into the individuals that 
carry them.

For the three alternate sequencing approaches, there 
are methods to optimise the selection of individuals for 
sequencing. Most of these methods focus only on the 
choice of which individuals to sequence with the aim of 
imputing their sequence information into their relatives 
[5, 16–18]. Recently, Gonen et al. [14] proposed a method 
that identifies the individuals with the largest genetic 
footprint on the population and optimises the allocation 
of sequence resources across these focal individuals and 
their ancestors with the aim of maximising phasing accu-
racy of their sequenced haplotypes when using family-
based phasing methods.

Although LCSeq could be used alone, we considered 
a sequencing strategy in two stages for facilitating the 
imputation of sequence data. The first stage uses the 
method developed by Gonen et  al. [14] with the aim of 

producing a set of accurately phased haplotypes that are 
shared by a lot of individuals in the population. The sec-
ond stage seeks to complement the first stage by apply-
ing the LCSeq approach as described above to spread 
low-coverage sequence data across the population so 
that whole-genome sequence data can be imputed to the 
whole population, which in turn will be enhanced by the 
phasing of the most common haplotypes achieved in the 
first stage. To do this effectively, a method for optimising 
the allocation of sequencing resources under the LCSeq 
approach needs to be developed.

We hypothesise that such a method should maxim-
ise the sequencing coverage of the maximum possible 
number of haplotypes because this would enable popu-
lation-based phasing and imputation methods, rather 
than family-based imputation methods, to accurately 
phase and impute the data to all individuals. For such 
population-based phasing and imputation methods, a 
certain level of sequencing coverage must be accumu-
lated for accurate inference of a consensus haplotype. 
With a prototype of such a population-based phasing and 
imputation method, we observed that there is a positive 
relationship between the coverage that a particular hap-
lotype accumulates across individuals and the imputa-
tion accuracy of a consensus haplotype (for a description, 
see Additional file 1: Figure S1). A random allocation of 
sequencing resources under the LCSeq approach results 
in some haplotypes being sequenced many times, some 
rarely, and some not at all. To optimise the allocation of 
sequencing resources under LCSeq, we need to maxim-
ise the proportion of haplotypes that are sequenced at 
the target coverage and minimise the proportion of hap-
lotypes that are under- or over-sequenced. Similarly, we 
need to minimise the sequencing resources allocated to 
haplotypes that are too rare to have consensus haplotypes 
inferred or their effects estimated accurately.

The objective of this work was to develop a method that 
uses haplotypes derived from existing phased marker 
array genotypes to identify which individuals should be 
sequenced, and at what coverage, to maximize the pro-
portion of consensus haplotypes sequenced at a mini-
mum target coverage. Our method uses a score function 
to identify a set of individuals based on the coverage at 
which their haplotypes are sequenced, and then it refines 
the initial set of individuals through rounds of exchanges. 
We extend the method with an approach for filtering rare 
haplotypes so that we only target those that are likely to 
derive from the recombination of common haplotypes. 
We tested the performance of the algorithm using sim-
ulated data and the results showed that our method is 
efficient in distributing the sequencing resources evenly 
across a large proportion of the haplotypes observed in 
the population.
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Methods
Description of the AlphaSeqOpt method
Our method uses existing phased marker array genotypes 
to identify which individuals should be sequenced, and at 
what coverage, so that the maximum proportion of hap-
lotypes are sequenced at any minimum target coverage 
with a fixed sequencing budget. The method has two main 
steps. In the first step, referred to as ‘initial set selection’, 
an initial set of individuals is selected by iteratively choos-
ing the individuals that are the most complementary to 
those already in the set according to a score function. In 
the second step, referred to as ‘set refinement’, the ini-
tial set of individuals is refined through several rounds of 
exchanges. The method was implemented in a software 
package called AlphaSeqOpt, which also implements the 
method of Gonen et  al. [14]. Throughout the rest of the 
paper, AlphaSeqOpt is used when referring to our method.

Initialisation step
0a: Construct a haplotype library for the population 
using existing phased marker array genotypes. Split each 
chromosome into c cores of length m markers. A ‘core’ 
is each of the strings of m consecutive marker positions 
used to determine the haplotypes. Within a core, strings 
of alleles (previously phased) are compared to define 
which haplotype each individual carries in each parental 
chromosome. Strings of alleles that are identical between 
two individuals are defined as a unique haplotype and 
strings with multiple mismatches are defined as different 
haplotypes. A predefined number of mismatches can be 
allowed before two strings of alleles are defined as differ-
ent haplotypes to account for sequencing errors.

0b: Calculate the maximum size of the sequencing set. 
Assuming linear sequencing costs, the sequencing budget 
divided by the cost of 1× sequencing determines the total 
amount of sequencing coverage that could be produced, 
represented by the number of slots of the sequencing 
set. A ‘slot’ is each of the positions in the set, which can 
be assigned to any given individual following the steps 
below. Each slot corresponds to 1× sequencing.

Initial set selection (step 1)
1a Calculate a score for each haplotype in each core. 

We derived a score function that prioritizes the hap-
lotypes that are closer to reaching the target cover-
age. The score function is based on the frequency of a 
haplotype in the sequencing set relative to the target 
coverage. The score function is:

  

where HapCount is the number of times that a hap-
lotype appears in the current sequencing set and Tar-
getCov is the target haplotype coverage (Fig.  1). The 
score increases every time that an individual that car-
ries a given haplotype is added to the sequencing set. 
When the haplotype count in the set reaches twice the 
target coverage, which is the haplotype count required 
to produce the target coverage, assuming that for each 
× of coverage of an individual there is a probability of 
0.5 of reading either the paternal or maternal haplo-
type, the score is set to 0 to prevent over-sequencing 
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Fig. 1 Score functions a in AlphaSeqOpt; and b in the IWS method proposed by Bickhart et al. [17]. Note the different axes: in a scores range from 
1 to e based on the frequency of the haplotype in the sequencing set relative to the target coverage, which is variable across rounds; in b, scores 
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of well-covered haplotypes in favour of allocating 
sequencing resources to other haplotypes.

1b Calculate the total score for every individual as the 
sum of the scores of the haplotypes that each indi-
vidual carries at each core.

1c Add the individual with the maximum score to the 
first available slot of the initial set. If there is more 
than one individual satisfying this condition, one 
individual is selected at random among those indi-
viduals with the maximum score. Repetition of indi-
viduals in several slots of the set is allowed. The num-
ber of slots occupied by the same individual indicates 
at what coverage it should be sequenced (i.e., an 
individual that appears n times in the set should be 
sequenced at n×).

1d Calculate the total cost of sequencing the current set 
as the cost of library preparation times the number of 
individuals in the set plus the cost of 1× sequencing 
times the total sequencing coverage produced.

1e Repeat steps 1a to 1d until the initial set is complete 
(i.e., we have a set of individuals at variable coverage 
that exhausts all the sequencing resources). Because 
some resources are used for library preparation, 
some slots will be left empty.

Set refinement (step 2)
2a Choose, randomly, a predetermined number of slots 

of the set. Remove the individuals assigned to these 
slots from the set.

2b Repeat steps 1a to 1d to fill the emptied slots. Indi-
viduals removed in step 2a can go back into the set if 
they have the maximum individual score.

2c If the exchanges result in the same or a greater per-
centage of unique haplotypes sequenced at (or above) 
the target coverage, the new set is retained. Other-
wise, discard the new set in favour of the previous 
set.

2d Repeat steps 2a to 2c for a predefined number of 
exchange rounds.

If there are individuals that have been sequenced pre-
viously, AlphaSeqOpt can account for the available 
sequence data easily by adding the pre-existing coverage 
of their haplotypes to HapCount during the calculation of 
the haplotype scores in step 1a. If there are no individu-
als that were sequenced previously, all haplotypes will 
have the same starting score and the first individual will 
be selected at random among those that have more non-
missing haplotypes.

For any given target haplotype coverage, AlphaSeqOpt 
will produce a set of individuals to be sequenced from 1× 
to a maximum coverage equal to twice the target cover-
age. To ensure that all individuals are sequenced at a 

low coverage and that a larger number of individuals is 
sequenced, it is also possible to restrict the coverage for 
the individuals in the set to a desired maximum (e.g., to 
1× or 2×).

In the implementation of AlphaSeqOpt, we are mak-
ing two assumptions regarding the yield of data from 
the sequencer: (1) that sequencing coverage is uniform 
across the genome; and (2) that for each × of coverage 
of an individual, there is a probability of 0.5 of reading 
either the paternal or maternal haplotype and, therefore, 
each haplotype receives half the coverage. Although these 
assumptions contradict empirical observations [19], there 
is no straightforward way of accounting for variation of 
coverage across the genome or between alleles prior to 
performing sequencing. Regarding the sequencing costs, 
we assume that when we increase the sequencing cover-
age, we incur a linear increase of the sequencing costs. 
AlphaSeqOpt can also account for non-linear cost struc-
tures by modifying the cost equation used in step 1d.

Algorithm testing
The proposed method was tested against our implemen-
tation of the inverse weight selection (IWS) method as 
described by Bickhart et  al. [17], our adaptation of the 
IWS method to obtain more comparable results, and a 
method that selects the individuals randomly (referred to 
as Random).

The IWS method as described by Bickhart et  al. [17] 
follows the step 1 as described above but, in step 1a, it 
uses an inverted parabolic score function fi2 −  2fi +  1, 
where fi is the population frequency of the haplotype. 
Note that this function uses the population frequency, 
while the score function that we propose uses the fre-
quency of the haplotype in the sequencing set relative 
to the target coverage. The two score functions are com-
pared in Fig. 1. Another major difference with AlphaSe-
qOpt is that Bickhart et al. [17] proposed targeting only 
homozygous haplotype cores based on the marker array 
genotypes. Thus, the IWS method scores only such hap-
lotypes and it stops after the initial set is constructed, 
without a step of refinement.

Our adaptation of IWS mirrored the method that we 
propose more closely, including a step of refinement of 
the initially selected set, with the only difference being 
the score function used. This method follows both steps 
1 and 2 as described above but, in step 1a, it uses the 
inverted parabolic function fi2 − 2fi + 1. We did not fol-
low the suggestion of targeting only the haplotypes at 
cores that are predicted to be homozygous based on the 
marker array genotypes, because this would disadvantage 
the adapted IWS method.

The Random method also used the algorithm described 
but individuals were selected randomly instead of 
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according to a score function. In the refinement step, 
random exchanges of individuals were performed.

All methods were tested for a range of scenarios. 
The scenarios varied in the target haplotype coverage 
(5×, 10×, or 15×) and in the total available sequencing 
resources (£400,000, £800,000, or £1,600,000 GBP). We 
calculated the cost of each scenario assuming a cost in 
library preparation of £40 and a cost in 1× sequencing 
of £80. The tested sequencing resources would produce 
a total of 5000×, 10,000×, or 20,000× whole-genome 
reads, respectively, if cost of library preparation was 
ignored. Haplotypes observed only once or twice in 
the population were excluded from the analyses unless 
stated otherwise. Additional tests were performed with 
a restriction of maximum individual coverage of 1×, for 
different numbers of exchanges per round, ranging from 
one slot to the total size of the set, and for different costs 
of library preparation, ranging from no cost to £40. We 
performed 10 repetitions for all analyses. The percentage 
of unique haplotypes sequenced at (or above) the target 
coverage was used as the main criterion, together with 
the number of individuals sequenced.

For simplicity, in some instances, we will focus on the 
scenarios with a target haplotype coverage of 10× but the 
algorithm can be used with any desired target coverage.

Filtering of rare haplotypes based on flanking context
A new approach for filtering the rare haplotypes included 
in the analyses was also developed. In this approach, we 
filtered the rare haplotypes so that only those rare haplo-
types that are likely to derive from a recombination event 
between two common haplotypes were targeted.

The filtering was based on two assumptions: (1) rare 
haplotypes that were derived from a recombination event 
between common haplotypes will be flanked by com-
mon haplotypes; and (2) there will be no other individu-
als that carry the same combination of haplotypes at the 
cores that flank the rare recombined haplotype. The sec-
ond assumption could be false if, for example, there had 
been multiple recombination events at different positions 
of the same core that produced multiple rare recombi-
nant haplotypes from the same two common haplotypes. 
However, please note that this is a method for directing 
the sequencing resources among rare haplotypes, not 
an exact method for capturing all recombination events. 
Note also that combinations of consecutive cores with 
rare haplotypes could indicate either genomes that are 
unrelated to the population or phasing errors.

We implemented the above filtering approach accord-
ing to the population count of the haplotypes at each 
core. In any given core, haplotypes with a population 
count below a predefined threshold are included in the 
analysis only if all of the following conditions are met: (1) 

the rare haplotype is not at the first or last core of a chro-
mosome; (2) the counts of the flanking haplotypes are 
greater than a predefined threshold (FlankCount); and 
(3) there are less than a predefined number (nComb) of 
individuals carrying the same combination of haplotypes 
flanking the rare haplotype.

In our implementation of AlphaSeqOpt, we used this 
filtering approach on those rare haplotypes with a popu-
lation count less than 2 (observed only once in the popu-
lation, referred to as ‘singletons’, or twice, referred to as 
‘doubletons’) using FlankCount = 2 and nComb = 3. The 
same method could be applied for any population count. 
This approach for filtering the rare haplotypes was tested 
against the reference case with no filtering and against 
the approach in which all singletons and doubletons were 
filtered out.

Simulated dataset
To demonstrate the implementation of the algorithm, a 
testing dataset was simulated to mimic a typical livestock 
population with known structured pedigree.

Sequence data was generated for 1000 base haplotypes 
for each of 10 chromosomes using the Markovian Coa-
lescent Simulator [20] and AlphaSim [21, 22]. Chromo-
somes were simulated to be 100  cM and  108 base pairs 
in length, with a per site mutation rate of 2.5 × 10−8 and 
a per site recombination rate of 1.0 ×  10−8. The effec-
tive population size  (Ne) was set to specific values dur-
ing the simulation based on previously estimated  Ne 
values within the Holstein cattle population [23]. These 
set values were: 100 in the base generation, 1256 at 
1000  years ago, 4350 at 10,000  years ago, and 43,500 at 
100,000  years ago, with linear changes in between. The 
resulting sequence had approximately 650,000 segregat-
ing single nucleotide polymorphisms (SNPs) across the 
10 chromosomes.

To enable the selection of sires for the generation of a 
pedigree, a quantitative trait influenced by 10,000 quanti-
tative trait nucleotides (QTN) that are distributed equally 
across the 10 chromosomes was simulated. QTN posi-
tions were randomly chosen from the 650,000 segregat-
ing sequence loci and their effect sizes sampled from a 
normal distribution with a mean of 0 and standard devia-
tion of 0.01 (1.0 divided by the square root of the number 
of QTN). The QTN effects were used to compute the true 
breeding value (TBV) for each individual.

To emulate livestock breeding populations, a pedigree 
of 15 generations was simulated. Each generation com-
prised 1000 individuals in equal sex ratio (i.e., 500 males 
and 500 females). In the first generation, chromosomes 
for each individual were sampled from the 1000 sequence 
haplotypes in the base generation. In subsequent gen-
erations, chromosomes of each individual were sampled 
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from parental chromosomes, assuming recombination 
with no interference. In each generation, the 25 males 
with the highest TBV were selected as sires of the next 
generation. No selection was performed on females, and 
all 500 females were used as parents.

All individuals were assumed to be genotyped with a 
panel of 10,000 SNPs distributed equally across the 10 
chromosomes. Marker genotypes of all individuals were 
phased using AlphaPhase [24–26] as input for AlphaSe-
qOpt. The parameters used for determining the popula-
tion haplotype libraries were: (1) population haplotype 
libraries were created using individuals and SNPs with at 
least 90% phased genotype data; (2) sharing of haplotypes 
was determined as 100% identity matches; and (3) core 
lengths were set to 100 SNPs per chromosome.

In summary, the algorithm was tested using a dataset 
with 15,000 individuals. Individuals had 10 chromosomes 
and 10 cores per chromosome. The total number of hap-
lotypes in the population was 8850 (on average, 88.5 hap-
lotypes per core). Further details on the simulated dataset 
are in Gonen et al. [14].

Software availability
The method was implemented in the AlphaSeqOpt soft-
ware package. AlphaSeqOpt is available for download 
at http://www.alphagenes.roslin.ed.ac.uk/alphaseqopt/, 
along with a detailed user manual.

Results
Performance of algorithm
AlphaSeqOpt allocated sequencing resources to enable 
a higher percentage of haplotypes in the population to 
be sequenced at the target coverage than other methods 
previously reported.

Figure  2 shows the comparison of AlphaSeqOpt with 
IWS, the adapted IWS, and Random when the target 
haplotype coverage was 10×. We tested different sce-
narios in which the total available sequencing resources 
were £400,000, £800,000, or £1,600,000. Figure 2a shows 
the percentage of haplotypes that would be sequenced at 
(or above) the target coverage of 10× by sequencing the 
set of individuals selected with AlphaSeqOpt. Figure 2b 
shows the number of individuals selected for sequenc-
ing in each of the scenarios. AlphaSeqOpt delivered the 
highest percentage of haplotypes sequenced at the target 
coverage, followed by the adapted IWS method, which 
achieved a lower percentage although it sequenced a 
number of individuals similar to AlphaSeqOpt. The 
IWS method resulted in only a very small set of indi-
viduals being sequenced and these individuals captured 
only a small percentage of haplotypes sequenced at the 
target coverage. We obtained this result because, as 
done by Bickhart et al. [17], we only targeted haplotypes 

that appeared in a homozygous state in at least one ani-
mal, which represent a small proportion of the haplo-
types observed in the population, and therefore the IWS 
method did not exhaust all the available sequencing 
resources in any of the cases tested. The Random method 
sequenced a very large set of individuals but it was ineffi-
cient for obtaining the haplotypes sequenced at the target 
coverage.

The AlphaSeqOpt method was further tested to assess 
the effect of its main features on the percentage of hap-
lotypes sequenced at (or above) the target coverage, the 
number of individuals sequenced, the performance under 
restriction of the maximum coverage per individual, and 
the performance of the refinement step with different 
numbers of exchanges per round.

Percentage of haplotypes sequenced at the target coverage
The advantage provided by the AlphaSeqOpt score func-
tion and the step of refinement over the adapted IWS 
method is shown in Fig.  3. Figure  3a shows the per-
centage of the haplotypes that would be sequenced at 
(or above) the target coverage by sequencing the set of 
individuals selected with AlphaSeqOpt. We tested nine 
scenarios in which the target coverage was 5×, 10×, or 
15× and the total available sequencing resources were 
£400,000, £800,000, or £1,600,000. Each scenario was 
tested with either the AlphaSeqOpt score function or the 
IWS score function (adapted IWS method), and both the 
initial and refined sets were examined.

The AlphaSeqOpt score function provided a higher 
percentage of haplotypes sequenced at the target cov-
erage than the IWS score function in all scenarios. The 
AlphaSeqOpt score function gave 1.8 to 6.6% more haplo-
types sequenced at the target coverage than the IWS score 
function. The advantage of the AlphaSeqOpt score func-
tion was observed both in the initial and refined sets. The 
refinement step increased the percentage of haplotypes 
sequenced at the target coverage by 1.0 to 3.1% with the 
AlphaSeqOpt score function and 1.4 to 4.7% with the IWS 
score function. In total, using the AlphaSeqOpt score 
function and a refinement step delivered 6.6 to 9.3% more 
haplotypes sequenced at the target coverage than using 
the IWS score function without a refinement step.

AlphaSeqOpt performed better because it was more 
efficient at allocating the sequencing resources, so that 
there were very few haplotypes that received some, but 
insufficient, sequencing coverage.

Figure  4a shows the distribution of the population 
count of the haplotypes and Fig.  4b the distribution of 
the sequencing coverage that the haplotypes receive 
by sequencing the set of individuals selected with each 
method. Note that the x-axis in Fig. 4b is half that of Fig. 4a 
because, for each × of coverage of an individual, there is a 

http://www.alphagenes.roslin.ed.ac.uk/alphaseqopt/
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probability of 0.5 of reading either the paternal or mater-
nal haplotype in the diploid species that was simulated. 
Because the results for all scenarios were similar, for illus-
tration purposes from here onwards, we only show results 
for the scenario in which the target coverage was 10× and 
the sequencing resources were £800,000. Also note that the 
haplotypes with a population count less than 2 are in Fig. 4a 
but were excluded from the analyses shown in Fig. 4b.

As a reference, choosing individuals randomly fol-
lowed by random exchanges of individuals followed the 
distribution of the population frequencies, with a large 
percentage of haplotypes sequenced at coverages below 
the target 10× (54.0% of the haplotypes had sequencing 

coverage between 0.5× and 9.5×). The AlphaSeqOpt 
score function reduced this percentage to only 6.3% in 
the initial set and 5.6% in the refined set. This percent-
age was higher with the adapted IWS method than with 
AlphaSeqOpt in both sets (17.3% in the initial set and 
reduced to 14.7% in the refined set). The percentage of 
haplotypes that received no coverage at all in the refined 
set were 19.2% for AlphaSeqOpt, 14.9% for the adapted 
IWS, and 6.3% for Random.

Number of individuals sequenced
The initial sets that were selected by AlphaSeqOpt 
produced higher percentages of haplotypes at the 
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target coverage by sequencing less animals than the sets 
selected by the adapter IWS method. The refinement step 
with the AlphaSeqOpt score function produced sequenc-
ing sets that contained a larger number of unique indi-
viduals than with the IWS score function. The extent 
to which the size of the sequencing set was increased 

depended on the cost of library preparation and the 
amount of sequencing resources available.

Figure 3b shows the number of individuals in the sets 
selected in each of the scenarios explored in Fig. 3a. The 
initial set was smaller with the AlphaSeqOpt score func-
tion than with the IWS score function by between 122 
and 340 individuals. During the refinement step with the 
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AlphaSeqOpt score function, the set maintained approxi-
mately the same size when a small amount of sequencing 
resources was available but increased by up to 457 indi-
viduals when more sequencing resources were available. 
In contrast, during the refinement with the IWS score 
function, the size of the sequencing set decreased when 
few sequencing resources were available but remained 
more stable with a large amount of sequencing resources.

Figure  5 shows the effect of the cost of library prepa-
ration on the percentage of haplotypes sequenced at (or 
above) the target coverage (Fig.  5a) and the number of 
unique individuals (Fig.  5b) in the refined set produced 
with the AlphaSeqOpt score function or the IWS score 
function. With both score functions, the percentage of 
haplotypes sequenced at the target coverage increases 

linearly with decreasing library costs. When library cost 
is low, the AlphaSeqOpt score function produces larger 
sets with more unique individuals than the IWS score 
function, and these larger sets produce higher percent-
ages of haplotypes sequenced at the target coverage. 
When the library costs are high, the difference between 
the sizes of the sets obtained with the two score func-
tions is reduced. Figure 5c shows the distribution of the 
sequencing coverage across sequenced individuals in the 
refined set produced with the AlphaSeqOpt score func-
tion considering two extreme library costs. Low library 
costs allowed for the sequencing of more individuals at 
low coverage while high library costs resulted in a larger 
number of individuals being sequenced at twice the tar-
get coverage of the haplotypes. With a library cost of £5, 
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the number of individuals sequenced was 1307.6 (302.2 
at 1× to 124.3 at 20×) and with a library cost of £40 it 
decreased to 1036.4 (136.6 at 1× to 176.7 at 20×).

Restriction of individual coverage
The size of the sequencing set can be maximised by 
restricting the maximum coverage that each indi-
vidual can get, so that the target coverage of the hap-
lotypes is achieved by accumulating individuals that 
are sequenced only at or below a certain coverage. Fig-
ure  6 shows the comparison of AlphaSeqOpt with the 
adapted IWS when the maximum individual coverage 
is restricted to 1×. Under this restriction, only haplo-
types with a population count greater than  10, 20, and 
30 can reach the target coverages of 5×, 10×, and 15×, 
respectively, and therefore haplotypes with lower popu-
lation counts were excluded from the analyses. Figure 6a 

shows the percentage of targeted haplotypes that would 
be sequenced at (or above) the three levels of target cov-
erage by sequencing the set of individuals selected with 
AlphaSeqOpt. Figure 6b shows the number of individuals 
selected for sequencing in each of the scenarios.

With a budget of £400,000, 3333 individuals could be 
sequenced at 1×. Under this setting, AlphaSeqOpt deliv-
ered higher percentages of haplotypes sequenced at the 
target coverage than the adapted IWS method. If the 
budget was unrestricted, IWS selected a smaller set than 
AlphaSeqOpt to sequence all the targeted haplotypes at 
the desired coverage.

Effect of the number of exchanges per round 
during refinement
For the refinement of the set, there was an optimum 
number of exchanges per round that maximized the 
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percentage of haplotypes sequenced at the target cover-
age given a fixed total number of exchanges. Figure  7a 
shows the percentage of haplotypes sequenced at (or 
above) the target coverage with a fixed number of total 
exchanges but with different numbers of rounds and 
exchanges per round, considering two extreme costs 
of library preparation. Figure  7b shows the size of the 
resulting set.

Doing 1 to 100 exchanges per round improved the per-
centage of haplotypes sequenced at the target coverage 
of the refined set to similar values. In this case, the set 
that produced the maximum percentage of haplotypes 
sequenced at the target coverage was obtained by doing 
10 exchanges per round. Although this higher percent-
age was generally achieved by increasing the number of 
unique sequenced individuals, the size of the refined set 
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slightly decreased when the library cost was high and few 
exchanges per round were made. Doing more than 500 
exchanges per round did not improve the results of the 
initial set when library cost was £40 and made the algo-
rithm less robust when library cost was £5. However, 
the most extreme scenario of exchanging the whole set, 
which is equivalent to selecting a new initial set without 
any refinement in each round, provided the best improve-
ment of the initial percentage of haplotypes sequenced 
at the target coverage and the greatest reduction of the 
sequencing set.

Filtering of rare haplotypes based on flanking context
As the target haplotype coverage increases, the least fre-
quent haplotypes can be sequenced at the target cover-
age only if a large amount of resources is available. More 
sequencing resources can be focused on sequencing 
common haplotypes if the number of rare haplotypes 
included in the analyses is reduced either by exclud-
ing them all or by filtering them based on their flanking 
context.

Figure  8 shows the distribution of the sequencing 
resources depending on the population count of the 

72

73

74

75

76

77

0

-

1

5M

5

1M

10

500k

50

100k

100

50k

500

10k

1000

5000

5000

1000

All

500

Number of exchanges per round;
and Number of rounds

H
ap

lo
ty

pe
s 

se
qu

en
ce

d 
at

 1
0x

 (
%

)

Cost of library preparation
£5
£40

a

600

800

1000

1200

1400

1600

1800

0

-

1

5M

5

1M

10

500k

50

100k

100

50k

500

10k

1000

5000

5000

1000

All

500

Number of exchanges per round;
and Number of rounds

N
um

be
r 

of
 in

di
vi

du
al

s 
se

qu
en

ce
d Cost of library preparation

£5
£40

b

Fig. 7 Effect of the number of exchanges per round. a On the percentage of haplotypes sequenced at (or above) the target coverage of 10×. b On 
the number of individuals sequenced, with two costs of library preparation. The total number of exchanges is 5 millions in all cases. The sequencing 
resources were set to £800,000 and haplotypes with a population count less than 2 were excluded from the analyses



Page 13 of 17Ros‑Freixedes et al. Genet Sel Evol  (2017) 49:78 

haplotypes with the three different approaches to deal 
with the rare haplotypes: to include all singletons and dou-
bletons in the analysis, to exclude them, or to filter them 
based on their flanking context. Almost half of the haplo-
types in the test population were observed only once (sin-
gletons; 31.7%) or twice (doubletons; 13.2%), making a total 
of 3971 singletons and doubletons. Of these, 953 (19%) 
remained after filtering based on their flanking context 
and these were considered as likely to have derived from a 
recombination event of two common haplotypes. We only 
show results for the scenarios in which the target haplo-
type coverage was 10×, with the total available sequencing 
resources being £400,000, £800,000, or £1,600,000.

With £800,000, when all singletons and doubletons 
were included in the analyses 72.4% of the haplotypes 
with a population count greater than 3 were sequenced 
at (or above) 10×. This percentage increased to 75.3% 
when all singletons and doubletons were excluded. This 
percentage also increased, but a little bit less, when they 
were filtered based on their flanking context (74.8%). A 
similar trend was observed with £400,000 and £1,600,000.

When we have a large amount of sequencing resources, 
we may be interested in targeting rare haplotypes as well 
as common haplotypes. By filtering based on their flank-
ing context, we can target the rare haplotypes that are 
likely to derive from a recombination of common haplo-
types. With £1,600,000, 38.6% of the 953 target singletons 
and doubletons were sequenced at 10×. Only 33.0% of 
these 953 were sequenced at 10× when all singletons and 
doubletons were included in the analyses without any 
restriction. This benefit of filtering by flanking context 
was not observed when less sequencing resources were 
available, probably because in such scenarios sequenc-
ing resources were implicitly focused on the common 
haplotypes.

Discussion
We present a method that identifies which individuals 
need to be sequenced and at what coverage they should 
be sequenced when a given amount of sequencing 
resources are available so that the maximum percentage 
of the haplotypes present in the population are sequenced 
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at (or above) a coverage that is sufficiently high to ensure 
that the consensus haplotypes can be accurately derived. 
Deriving the consensus haplotypes accurately is a critical 
requirement for achieving high population-based impu-
tation accuracy under the LCSeq strategy, and we have 
observed with a prototype of a novel population-based 
phasing and imputation method that there is a relation-
ship between the coverage that a particular haplotype 
accumulates across individuals and the imputation accu-
racy of the consensus haplotype (see Additional file  1: 
Figure S1). We also developed and tested a new approach 
to deal with rare haplotypes by filtering them based on 
their flanking context rather than excluding them from 
the analysis. We compared AlphaSeqOpt with previously 
published methods and hereafter discuss the advantages 
and limitations of AlphaSeqOpt.

Advantages of AlphaSeqOpt over other methods
AlphaSeqOpt has two features that make it effective for 
its purpose: (1) a score function based on the frequency 
of the haplotypes in the sequencing set relative to the tar-
get coverage instead of on the population frequency of 
the haplotypes; and (2) a step of refinement of the initial 
set.

Score function
The score function that we propose allocates sequencing 
resources so that the percentage of haplotypes sequenced 
at any target coverage is higher than with other score 
functions based on the population frequency of the hap-
lotype. The score function based on the population fre-
quency of the haplotype used in the IWS method [17] 
was designed for producing the least redundant set that 
should be sequenced to have all the targeted haplotypes 
sequenced. The reduction of redundancy with the IWS 
method is achieved by giving a greater score to the least 
frequent haplotypes and, therefore, selecting the individ-
uals that carry less frequent haplotypes first. Therefore, 
if the sequencing resources are sufficient for sequencing 
all the targeted haplotypes, the IWS method does this 
by sequencing a smaller set of individuals than AlphaSe-
qOpt. However, the IWS method is not ideal for identify-
ing the set of individuals that would provide a more even 
sequencing coverage of the highest percentage of popu-
lation haplotypes when the sequencing resources are 
limited and insufficient for sequencing all the targeted 
haplotypes at the desired coverage. With a score func-
tion that uses the population frequency, the haplotype 
scores are constant until these haplotypes reach the tar-
get coverage, at which point they are set to zero. A score 
function based on the frequency of the haplotypes in the 
sequencing set relative to the target coverage like that 
used in AlphaSeqOpt performs better for this purpose 

because, in contrast, the haplotype scores change as the 
sequencing resources are allocated. With the AlphaSe-
qOpt score function, all haplotypes start with an equal 
score of 1 and their score increases exponentially as they 
approach the target coverage.

By doing this, the AlphaSeqOpt score function prior-
itizes the haplotypes that are already closer to the tar-
get coverage and, implicitly, the individuals that carry a 
larger number of these haplotypes. This reduces the per-
centage of haplotypes that are sequenced at a suboptimal 
coverage, but it increases the percentage of haplotypes 
that receive no coverage at all. With limited sequenc-
ing resources, AlphaSeqOpt selects a set for sequencing 
with a higher percentage of population haplotypes at the 
target coverage than the IWS method. These sequencing 
sets can be even smaller than those produced with IWS 
score function if the initial set is not refined.

Refinement of the initial set
The other main feature of AlphaSeqOpt is the step of 
refinement of the initial set. The step of refinement 
adjusts the allocation of resources by replacing individu-
als that have become redundant after the last additions to 
the set or by reducing the sequencing coverage of these 
individuals. A refinement step as described here further 
increases the percentage of haplotypes sequenced at the 
target coverage obtained with the AlphaSeqOpt score 
function. A side benefit in the context of LCSeq is that 
the refinement step achieves this increase by diversifying 
the set of individuals that are sequenced. While the IWS 
score function restrains the number of sequenced indi-
viduals, the AlphaSeqOpt score function benefits from 
low library costs relative to the total amount of sequenc-
ing resources available to produce larger sets with more 
unique individuals that are sequenced at lower coverage. 
This benefit is greater when the cost of library prepara-
tion represents a small fraction of the total amount of 
sequencing resources for LCSeq. Methods for reducing 
significantly the costs of library preparation for high-
throughput LCSeq have already been described [27]. 
Increasing the number of individuals sequenced would 
empower subsequent imputation for more individuals 
(i.e., these individuals and their relatives) as well as any 
downstream analyses [12].

The refinement step can be fine-tuned by adjusting 
parameters such as the number of exchange rounds and 
the number of exchanges per round. The optimal param-
eters may depend largely on the size and structure of 
each dataset, but the following general observations were 
made:

  • AlphaSeqOpt was very robust across repetitions. A 
stable solution was produced after a relatively small 
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number of exchange rounds (unpublished results). 
Further small increases in the percentage of hap-
lotypes sequenced at the target coverage could be 
obtained by using a longer chain of exchange rounds, 
but the benefit of this was small.

  • To some extent, increasing the number of exchanges 
per round enables greater mobility across possible 
sets. Consequently, the algorithm can retrieve a bet-
ter solution more easily. However, when too many 
exchanges are made per round, the benefit of this 
refinement of the existing set is diluted due to the 
drift towards solutions that are too divergent from 
each other and, thus, the final solution becomes less 
reliable. Exchanging all the individuals in the set is an 
extreme case of this that is equivalent to choosing the 
best of multiple initial sets without refinement. It can 
produce good results in terms of percentage of hap-
lotypes for small sequencing sets.

Practical implications for real populations
Provided that the cost of library preparation is sufficiently 
low or by restricting the maximum coverage of the indi-
viduals, AlphaSeqOpt will produce large sets of individu-
als with many unique individuals that are sequenced at 
low coverage.

The performance of AlphaSeqOpt will likely be influ-
enced by structure of the data, either intrinsic, like the 
number and size of the chromosomes in a species or 
the degree of relatedness between individuals, or extrin-
sic, like the core length used to define the haplotypes. 
AlphaSeqOpt assumes that coverage is uniform along 
the genome but variation in coverage at the level of the 
nucleotide should be expected, as well as variation of 
coverage between samples.

Although the criterion that is maximised in AlphaSe-
qOpt is the percentage of unique haplotypes sequenced 
at (or above) the target coverage, the method also pro-
vides good coverage in terms of total population hap-
lotypes, i.e., haplotypes weighted by their population 
frequencies. Implicitly, the scores of more frequent 
haplotypes will increase faster than the scores of less 
frequent haplotypes because they are more likely to be 
carried by the individuals that are added to the sequenc-
ing set. In all scenarios tested, both AlphaSeqOpt and the 
adapted IWS method provided total percentages of hap-
lotypes higher than 99%, but the percentage was consist-
ently higher for AlphaSeqOpt. Although both methods 
were similarly successful in covering the haplotypes of 
most of the population, AlphaSeqOpt captured a greater 
diversity of haplotypes at the desired coverage.

The resolution of the haplotype library will depend on 
the density of the SNP array used to construct it. How-
ever, after sequencing the individuals, it is possible that 

haplotypes that were considered to form a single con-
sensus haplotype when defined with marker data actu-
ally correspond to a number of true haplotypes. In such 
cases, the sequence data can be clustered into the mul-
tiple consensus haplotypes and the pedigree information 
could enhance their imputation.

Utility of filtering rare haplotypes based on flanking 
context
We proposed an approach that uses the population hap-
lotype frequencies at the cores flanking a particular core 
to identify the rare haplotypes that could have derived 
from a recombination event. Although rare haplotypes 
may contain relevant biological information, we may not 
be able to impute and estimate accurately the effect of 
most rare haplotypes. The rationale behind the filtering 
approach that we propose is that sequence data of those 
rare haplotypes, which are potentially a mosaic of com-
mon haplotypes, could enable a more precise capture of 
the recombination events that have occurred in the pop-
ulation and that this sequence data would also contrib-
ute to the consensus haplotypes of the haplotypes that 
gave rise to the mosaic. The new approach that we pro-
pose, although not ideal, may be of a particular interest 
in cases in which large amounts of sequencing resources 
are available.

In real populations, we expect to identify large num-
bers of rare haplotypes. Preliminary tests indicated that, 
in real populations, our filtering approach based on flank-
ing context can filter out around 92% of the singletons 
and doubletons observed, with the other 8% retained as 
potentially mosaic (unpublished results).

The challenge of targeting rare mosaic haplotypes is 
that the individuals that carry them must be sequenced 
at a higher coverage so that the rare haplotypes reach 
the target coverage. Another approach, for which we do 
not show results here, involves setting a lower second-
ary target coverage for less frequent haplotypes. This is 
a compromise solution where reducing the sequencing 
coverage of the rare haplotypes will reduce their imputa-
tion accuracy but will allow more rare haplotypes to be 
sequenced. In the particular case of potentially mosaic 
rare haplotypes having less coverage, it would be less 
critical because the information of the common haplo-
types from which they derive will be also available. Any 
of the approaches discussed to tackle the problem of rare 
haplotypes can be combined using multiple frequency 
thresholds.

Suitability of AlphaSeqOpt for low‑coverage sequencing 
designs
A number of optimisation methods that use haplotypes 
derived from existing phased marker array genotypes 
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have already been proposed to identify which individuals 
should be sequenced under the KeySires approach. Druet 
et al. [5] proposed a method that maximizes the propor-
tion of haplotypes observed in the population that are 
sequenced. This method was more effective in detecting 
rare variants (minor allele frequency <  5%) than meth-
ods based solely on pedigree information and it provided 
good imputation accuracies for both common and rare 
variants. Bickhart et al. [17] proposed the IWS method, 
which reduces the number of individuals that need to be 
sequenced in order to have all haplotypes above a certain 
population frequency sequenced. The method by Gusev 
et  al. [16] selects the individuals that share the larg-
est proportion of the population haplotypes with other 
individuals identical-by-descent (IBD). More recently, 
Neuditschko et  al. [18] proposed a method based on 
the eigenvalue decomposition of a genomic relation-
ship matrix that identifies individuals that maximise 
genetic diversity within complex population structures. 
These four methods identify which individuals should be 
sequenced but do not make any decision on the coverage 
at which they should be sequenced. Gonen et al. [14] pro-
posed an approach that distributes sequencing at variable 
coverage across individuals in a population. This method 
accounts for haplotype frequency and the ability to phase 
the resulting sequence data as criteria when choosing 
individuals to sequence and assigning sequencing cover-
age to those individuals and their recent ancestors. We 
have presented a method for optimizing the allocation 
of sequencing resources for the LCSeq approach so that 
the imputation accuracy of consensus haplotypes is suffi-
ciently high to enable novel population-based imputation 
methods.

In practice, it is likely that a combination of the three 
sequencing approaches discussed in this paper (Key-
Sires, LCSeq, and VarCoverage) would yield similar or 
even better imputation accuracies than LCSeq alone [28]. 
AlphaSeqOpt is flexible in that it can take into account 
the already available sequence information. Therefore, 
AlphaSeqOpt for optimizing LCSeq can be used either 
alone or complementarily to other existing methods to 
top-up the coverage of those haplotypes that are under-
sequenced after using any other method. However, in 
this later case, existing methods or newly developed 
ones should be integrated to find the right allocation of 
resources into each of the three sequencing approaches.

Conclusions
We present a method for optimizing the allocation of 
sequencing resources so that the maximum proportion of 
population haplotypes are sequenced at a coverage that 
is sufficiently high for population-based imputation with 

low-coverage sequencing. The haplotype score function 
and the refinement step make AlphaSeqOpt more effec-
tive for this purpose than methods reported previously 
for reducing sequencing redundancy. AlphaSeqOpt can 
account for sequence information already available for 
the population, which makes it a good complementary 
method to increase coverage of haplotypes that are not 
sufficiently covered when other optimisation methods are 
used. We also explored a new approach to deal with rare 
haplotypes by targeting only those that are likely derived 
by recombination of common haplotypes. Filtering rare 
haplotypes based on their flanking context enables the 
sequencing of higher proportions of distinct common 
haplotypes at the target coverage, which can be useful 
particularly when large amounts of sequencing resources 
are available.
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Additional file

Additional file 1: Figure S1. Expected haplotype imputation accuracy 
against the accumulated haplotype sequencing coverage, as estimated 
using a novel population‑based imputation method (Battagin and 
Hickey, unpublished). A description of the prototype algorithm that was 
developed for the imputation of consensus haplotypes under the LCSeq 
approach and the simulated results on which the AlphaSeqOpt method 
is based. We generated 1x sequence data for the sires from a simulated 
population. The x‑axis represents the expected accumulated coverage 
that each haplotype would receive. The y‑axis represents the percent‑
age of alleles phased and imputed for each haplotype. The imputation 
accuracy increased with the accumulated haplotype coverage until it 
plateaued. Haplotypes with a sequencing coverage of 10x accumulated 
from 20 individuals sequenced at 1x were imputed to the whole popula‑
tion with an accuracy of 0.88. Haplotypes with a sequencing coverage of 
15x or 20x accumulated from 30 or 40 individuals sequenced at 1x were 
imputed to the whole population with an accuracy of 0.93 or 0.97, respec‑
tively. For accurate inference of a consensus haplotype, a certain amount 
of sequencing coverage must be accumulated. According to the results 
above, 10x or 15x could be good target coverages for the haplotypes
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