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Abstract 

Avian influenza (AI) is a devastating poultry disease that currently can be controlled only by liquidation of affected 
flocks. In spite of typically very high mortality rates, a group of survivors was identified and genotyped on a 600K 
single nucleotide polymorphism (SNP) chip to identify genetic differences between survivors, and age‑ and genetics‑
matched controls from unaffected flocks. In a previous analysis of this dataset, a heritable component was identified 
and several regions that are associated with outcome of the infection were localized but none with a large effect. For 
complex traits that are determined by many genes, genomic prediction models using all SNPs across the genome 
simultaneously are expected to optimally exploit genomic information. In this study, we evaluated the diagnostic 
value of genomic estimated breeding values for predicting AI infection outcome within and across two highly patho‑
genic avian influenza viral strains and two genetic lines of layer chickens using receiver operating curves. We show 
that genomic prediction based on the 600K SNP chip has the potential to predict disease outcome especially within 
the same strain of virus (area under receiver operating curve above 0.7), but did not predict well across genetic varie‑
ties (area under receiver operating curve of 0.43).
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Background
Avian influenza (AI) is a devastating disease and the cur-
rent approach that is used to control it is based on isola-
tion and extermination of affected flocks in order to stop 
the spread of the virus. Alternative approaches, includ-
ing the use of vaccines, have been only 60% effective in 
chickens [1, 2] due to the high mutation rate of the virus 
and lack of cross-protection between viral strains. More-
over, most countries do not allow importation of vacci-
nated birds due to the inability to distinguish between 
antibodies originating from the vaccine versus infection. 
Even in the case of high mortality rates caused by highly 
pathogenic avian influenza (HPAI) infections, typically 
above 85% in unvaccinated birds [3], there is usually a 
limited number of birds that survive following infection. 
Factors that underlie individual survival are likely mul-
tifactorial, but probably include a strong genetic com-
ponent. Susceptibility to infectious disease (including 

influenza A virus) is highly heritable in humans [4–6] 
and there is evidence from inbred lines of chickens that 
this is also true for viral diseases in poultry, including 
AI [7–10]. A genetic approach using genotypes from the 
600K Affymetrix single nucleotide polymorphism (SNP) 
chip was undertaken by Drobik-Czwarno et  al. [11] to 
identify differences between survivors of two HPAI out-
breaks (H5N2 in the US and H7N3 in Mexico) and their 
genetics- and age-matched controls from unaffected 
flocks. Heritability of survival to HPAI was estimated to 
be between 0.18 and 0.24, which indicated that almost 
20% of the differences in survival could be attributed to 
genetics [11]. In addition, several of the genomic regions 
identified were associated with survival but none with a 
major effect, indicating a complex polygenic nature of 
resistance to the disease.

An alternative to searching for causal mutations, is to 
use high-density SNP genotypes for genetic improve-
ment of disease resistance by using all genetic markers 
across the genome to predict breeding values of selec-
tion candidates through the concept of genomic predic-
tion and selection [12]. Genomic prediction involves the 
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estimation of the effects of all genetic markers on the 
phenotype in a training dataset, followed by the use of 
these estimates to predict the genetic or breeding value 
of selection candidates based only on their SNP geno-
types across the genome. If there is a significant genetic 
component to resistance, this prediction and selec-
tion method can be effective even if no clear signals are 
obtained from genome-wide association studies (GWAS).

In clinical epidemiology, the receiver operating charac-
teristic (ROC) curve is often used to evaluate diagnostic 
methods in terms of their ability to distinguish between 
healthy and sick subjects. This method has several advan-
tages, including independence of prevalence of disease 
or choice of the decision criterion [13]. In this study, 
we used ROC curves to evaluate the diagnostic value of 
genomic breeding values for predicting AI infection out-
come within and across different viral strains and genetic 
lines of layer chickens.

Methods
Three sets of samples were used for this study (see [11] 
for a more detailed description): Hy-Line US commer-
cial samples (205 survivors and 397 controls) from the 
2015 H5N2 outbreak, Hy-Line Mexico commercial sam-
ples (480 survivors and 176 controls) from a 2012 H7N3 
outbreak, and non-Hy-Line US commercial samples (47 
survivors and 45 controls) from the same 2015 H5N2 
outbreak in the US. All birds were from White Leghorn 
varieties. Blood samples from HPAI survivors and their 
age- and genetics-matched unaffected controls were 
collected on FTA Elute Microcards (GE Healthcare, 
Piscataway, NJ). Controls were selected from contem-
porary Midwest flocks that were not affected by HPAI 
because it was impossible to collect samples from dead 
birds on the affected farms for biosecurity and practi-
cal reasons. Because mortality in the H5N2 outbreak 
was higher than 99%, it was assumed that age-matched 
random birds from the same genetic varieties would be 
susceptible. DNA was extracted and genotyped on the 
600K Affymetrix Axiom chicken SNP panel [14]. After 
quality control, 420,458 SNPs were retained for analysis, 
including some that were fixed within some subsets of 
samples. In case-control studies, population stratification 
is always a concern because it can lead to spurious asso-
ciations. However, using multidimensional scaling analy-
sis, Drobik-Czwarno et  al. [11] showed that there were 
no structural differences between survivors and controls 
within the analysed populations.

The phenotype of survivor/control (0/1) was analysed 
using the BayesB method by fitting all SNPs simultane-
ously, in GenSel [15], separately for each dataset. The 
proportion of SNPs assumed to have no effect on survival 
was set to 0.999 in order to keep the number of SNPs in 

the model on the same scale as the number of available 
phenotypic observations. A mixed linear model with 
the fixed effect of an overall mean and random additive 
effects of SNPs was fitted. The length of the chain was 
52,000 iterations with the first 2000 discarded as burn-in. 
Priors for variance components were 0.05 for genetic var-
iance and 0.15 for residual variance, which is equivalent 
to a heritability of 0.25, with 4.2 degrees of freedom for 
residual variance to reflect the high level of uncertainty. 
Posterior estimates of SNP effects were used to compute 
genomic breeding values for survival to HPAI of geno-
typed birds that were not in the training data.

To verify the potential of genomic prediction for 
genetic improvement of AI resistance, random fivefold 
cross-validation was performed within Hy-Line US and 
Mexico commercial samples, as well as prediction of the 
Hy-Line US commercial samples from the Hy-Line Mex-
ico commercial samples, to represent prediction across 
different virus strains, and prediction of non-Hy-Line 
US commercial samples from Hy-Line US commercial 
samples, to represent prediction across different genetic 
varieties of layer chickens. The usefulness of the genomic 
estimated breeding values (GEBV) for predicting disease 
outcome was summarized by ROC curves. Sensitivity 
(true positive rate) and specificity (true negative rate) 
were calculated across the whole range of thresholds to 
classify birds as survivors versus controls based on their 
GEBV, i.e., for a given GEBV threshold, sensitivity is the 
proportion of survivors among birds with GEBV above 
this threshold and specificity is the proportion of con-
trols among birds with GEBV below the threshold. Sen-
sitivity was plotted against (1-specifity) (= false positive 
rate) to create the ROC curves, together with a 45° line 
that represents random assignment of survivors and con-
trols. Summary statistics of area under the curve (AUC) 
and significance test for AUC = 0.5 (or breeding values 
being equivalent in predictive ability to random assign-
ment) were performed using the program easyROC [16].

Results and discussion
Windows explaining more than 1% of the genetic vari-
ance within each dataset are included in Table  1. A 
1-Mb window on chromosome 1 at 126 Mb consistently 
explained the largest amount of genetic variance in Hy-
Line Mexico commercial samples (27 to 32%). This is in 
agreement with the strongest association signal identified 
by Drobik-Czwarno et  al. [11] on chromosome 1, using 
different GWAS on the complete dataset. In the Hy-Line 
US commercial samples, the windows explaining the 
largest proportion of genetic variance differed between 
the folds (Table 1) and the estimates of variance explained 
were smaller than in the Hy-Line Mexico commercial 
samples. This suggests a more polygenic determination 
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of survival of infection with the H7N3 virus than with 
H5N2. The use of birds from unaffected flocks as controls 
instead of dead birds from the respective affected flocks 
could have reduced power of the analysis and decreased 
the accuracy of genomic prediction. However, because 
mortality was very high (> 99%), the risk of including 

some potential survivors in the control group is expected 
to be limited.

The ROC curves are in Fig.  1 and AUC results are in 
Table 2.

The ROC curves show significant improvement 
(Table  2) in accuracy of prediction compared to ran-
dom assignment for all tested scenarios, except when 
predicting across different genetic varieties of chickens. 
The best diagnostic performance of GEBV was observed 
when training and validation were within the same virus 
strain and the same genetic variety (Table  2). In spite 
of differences in the windows that explained the larg-
est proportion of genetic variance between the differ-
ent virus strains, prediction from Mexico to US Hy-Line 
samples was significantly better than random assignment 
(AUC = 0.58, P = 0.02). These results show that genomic 
predictions based on the 600K SNP chip have potential 
to predict disease outcome, especially within the same 
strain of virus, but do not predict well across genetic vari-
eties. Methods to implement this type of crossbred per-
formance for pure line selection using genomic data was 
discussed by Ibánẽz-Escriche et al. [17].

Poor performance of genomic prediction across layer 
lines for egg production was previously reported by 
Calus et  al. [18] using genotypes from a 60K SNP chip 
and interpreted as evidence of low consistency of linkage 
disequilibrium between SNPs and QTL between chicken 
lines. This limitation is expected to be overcome by the 
use of high-density genomic data (up to the sequence 
level) but so far sequencing costs have been prohibitive 
for generating large-scale training populations based on 
sequence data in chickens and the gains in accuracy for 
within-line predictions using sequence data have been 
limited [19]. In addition, if the SNP chip density is higher, 
a larger number of samples is required to estimate geno-
type effects accurately, which with the extremely high 
mortality in HPAI outbreaks may make it very difficult to 
collect sufficient numbers of survivor samples. Thus, at 
this point, the use of sequence data appears more prom-
ising for the identification of causal mutations than a 
practical application for genomic prediction.

Conclusion
Genomic predictions based on the 600K SNP chip have 
potential to predict avian influenza infection outcomes, 
especially within the same strain of virus but do not pre-
dict well across genetic varieties.

Table 1 Location of the 1-Mb regions that explained more 
than  1% of  genetic variance (%Var) for  different datasets 
and the probability of that region having a nonzero effect 
(P > 0)

a The number at the end of the dataset name refers to the fold number of the 
fivefold cross-validation
b P > 0 was calculated as the proportion of MCMC iterations in which at least 
one SNP from that window was fitted in the model with nonzero effect

Data set Chromo-
some

Position 
(Mb)

Number 
of SNPs

%Var P > 0b

Mexico Hy‑Line1a 1 126 306 32.1 1.0

Mexico Hy‑Line2 1 126 306 28.1 1.0

Mexico Hy‑Line2 29 0 5583 1.0 1.0

Mexico Hy‑Line3 1 126 306 27.1 1.0

Mexico Hy‑Line3 12 12 608 2.9 0.7

Mexico Hy‑Line3 29 0 5583 1.2 1.0

Mexico Hy‑Line4 1 126 306 28.8 1.0

Mexico Hy‑Line4 4 69 340 1.4 0.6

Mexico Hy‑Line5 1 126 306 26.0 1.0

US Hy‑Line1 1 167 438 3.0 0.5

US Hy‑Line1 20 3 615 1.1 0.5

US Hy‑Line1 13 11 561 1.0 0.5

US Hy‑Line1 1 166 352 1.0 0.4

US Hy‑Line2 15 1 659 1.7 0.6

US Hy‑Line2 15 0 422 1.1 0.5

US Hy‑Line2 29 0 5583 1.0 1.0

US Hy‑Line3 1 32 283 2.0 0.4

US Hy‑Line3 15 1 659 1.9 0.6

US Hy‑Line3 15 0 422 1.1 0.5

US Hy‑Line4 1 71 364 1.0 0.4

US Hy‑Line4 29 0 5583 1.0 1.0

US Hy‑Line5 4 84 433 3.4 0.4

US Hy‑Line5 1 167 438 2.3 0.5

US Hy‑Line5 9 16 629 1.2 0.5

US Hy‑Line All 7 28 497 3.0 0.4

US Hy‑Line All 1 32 283 1.7 0.4

US Hy‑Line All 9 16 629 1.1 0.5

US Hy‑Line All 1 167 438 1.1 0.4
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Fig. 1 ROC curves for predicting AI resistance. Top left panel: within Mexico commercial (H7N3) data; top right panel: within US commercial (H5N2) 
data; bottom left panel: between virus strains; bottom right panel: across genetic lines

Table 2 Summary statistics of  the  area under  the  ROC curve including  confidence interval and  statistical test 
for differences from the value of 0.5 expected under random classifier

Training-validation scenario Area under the ROC curve z P value

Mean SE Minimum Maximum

Within US Hy‑Line 0.76 0.03 0.70 0.82 8.41 4.0E−17

Within Mexico 0.71 0.03 0.64 0.77 6.20 5.7E−10

Across virus strains 0.58 0.04 0.51 0.66 2.25 0.02

Across genetics 0.43 0.06 0.31 0.55 − 1.14 0.25
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