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Weighted single‑step genomic BLUP 
improves accuracy of genomic breeding values 
for protein content in French dairy goats: 
a quantitative trait influenced by a major gene
Marc Teissier*  , Hélène Larroque and Christèle Robert‑Granié

Abstract 

Background:  In 2017, genomic selection was implemented in French dairy goats using the single-step genomic 
best linear unbiased prediction (ssGBLUP) method, which assumes that all single nucleotide polymorphisms explain 
the same fraction of genetic variance. However, ssGBLUP is not suitable for protein content, which is controlled by a 
major gene, i.e. αs1 casein. This gene explains about 40% of the genetic variation in protein content. In this study, we 
evaluated the accuracy of genomic prediction using different genomic methods to include the effect of the αs1 casein 
gene.

Methods:  Genomic evaluation for protein content was performed with data from the official genetic evaluation 
on 2955 animals genotyped with the Illumina goat SNP50 BeadChip, 7202 animals genotyped at the αs1 casein gene 
and 6,767,490 phenotyped females. Pedigree-based BLUP was compared with regular unweighted ssGBLUP and with 
three weighted ssGBLUP methods (WssGBLUP, WssGBLUPMax and WssGBLUPSum), which give weights to SNPs accord‑
ing to their effect on protein content. Two other methods were also used: trait-specific marker-derived relationship 
matrix (TABLUP) using pre-selected SNPs associated with protein content and gene content based on a multiple-trait 
genomic model that includes αs1 casein genotypes. We estimated accuracies of predicted genomic estimated breed‑
ing values (GEBV) in two populations of goats (Alpine and Saanen).

Results:  Accuracies of GEBV with ssGBLUP improved by + 5 to + 7 percent points over accuracies from the pedigree-
based BLUP model. With the WssGBLUP methods, SNPs that are located close to the αs1 casein gene had the biggest 
weights and contributed substantially to the capture of signals from quantitative trait loci. Improvement in accuracy 
of genomic predictions using the three weighted ssGBLUP methods delivered up to + 6 percent points of accuracy 
over ssGBLUP. A similar accuracy was obtained for ssGBLUP and TABLUP considering the 20,000 most important SNPs. 
Incorporating information on the αs1 casein genotypes based on the gene content method gave similar results as 
ssGBLUP.

Conclusions:  The three weighted ssGBLUP methods were efficient for detecting SNPs associated with protein 
content and for a better prediction of genomic breeding values than ssGBLUP. They also combined fast computing, 
simplicity and required ssGBLUP to be run only twice.
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Background
The availability of molecular data has enabled the devel-
opment and commercial application of genomic selection 
in various livestock species, such as dairy cattle [1, 2], 
dairy sheep [3, 4], meat sheep [5, 6] and dairy goats [7–9]. 
Meuwissen et  al. [10] proposed genomic prediction of 
animals based on dense single nucleotide polymorphism 
(SNP) maps, by deriving the effects of SNPs from a refer-
ence population, for which animals are both phenotyped 
and genotyped. Genomic estimated breeding values 
(GEBV) of selection candidates (i.e., usually young indi-
viduals with genotypes but without phenotypes) can be 
estimated by summing up the effects of the SNP alleles 
carried by each animal.

Methods such as genomic best linear unbiased pre-
diction (GBLUP) [11–15], are used to predict GEBV 
by replacing the pedigree relationship matrix used for 
pedigree-based BLUP with a realized genomic relation-
ship matrix. The GBLUP method was further improved 
with single-step GBLUP (ssGBLUP) [12], which uses 
simultaneously all phenotypic, pedigree and genotypic 
information, including phenotypic information on non-
genotyped individuals. Therefore, in ssGBLUP, the rela-
tionship between each pair of animals (genotyped and 
non-genotyped) is estimated with a relationship matrix 
that combines pedigree and genotype information. Sev-
eral studies have reported that the accuracy of genomic 
prediction obtained with these methods is higher than 
with genetic evaluation using pedigree-based BLUP 
[16–18]. However, the accuracy obtained from genomic 
information depends on several parameters including 
reference population size [19, 20], extent of linkage dis-
equilibrium (LD), heritability of the trait [20, 21], rela-
tionship between training and validation populations [10] 
and the genetic architecture of the trait, which relates to 
the relative size of allele substitution effects at quantita-
tive trait loci (QTL) [10, 22].

The GBLUP and ssGBLUP methods usually assume 
that each SNP follows the same distribution [11, 12, 
16, 23–25], thus, all SNPs have the same variance and 
the same weight for SNP variance. However, different 
genomic evaluation methods have been developed to 
allow the variance of the effect of SNPs to differ between 
SNPs. A priori information can be used to modify the 
distribution of SNP effects. Giving more variance to 
some SNPs allows these methods to take the presence of 
major genes or QTL that affect the trait of interest into 
account. For instance, various Bayesian methods, which 
estimate the effect of SNPs from animals that are both 
genotyped and phenotyped, have been proposed [10, 
26–28]. The main difference between these Bayesian 
methods lies in the definition of an a priori distribution 
of the effects of SNPs. SNPs can be attributed to different 

distribution classes, which explain different parts of the 
total genetic variance, with one class possibly containing 
the SNPs that have no effect on the trait. Because animals 
need to be phenotyped and genotyped to apply Bayesian 
methods, phenotypes from non-genotyped animals can-
not be included. In dairy breeding programs, genotypes 
are mainly determined on the males whereas phenotypes 
come from the females. Thus, daughter yield deviations 
(DYD) or de-regressed proofs are calculated to obtain 
pseudo-phenotypes for the males. However, multi-step 
methods may create bias in genomic predictions [29].

Other methods based on the ssGBLUP framework 
such as weighted ssGBLUP (WssGBLUP) or on the trait-
specific marker-derived relationship matrix (TABLUP) 
have been proposed [30]. WssGBLUP is an extension of 
ssGBLUP in which weights for SNP variances are used 
when forming the genomic relationship matrix [12]. Wss-
GBLUP can set more weight to SNPs that are in high LD 
with a causal mutation or associated with QTL with a rel-
atively large effect. These weights are estimated from the 
variance explained by each SNP as presented by Wang 
et al. [23]. The weighting of SNP variances was also inves-
tigated by Zhang et al. [24] who proposed to use the same 
weight for SNPs that are within a defined window along 
the genome. The TABLUP method proposes to construct 
the genomic relationship matrix based on genotypes 
from a subset of pre-selected SNPs. Selection of SNPs can 
be performed after GWAS analysis or based on weights 
that are estimated with WssGBLUP. The selected SNPs 
are then equally weighted for the analyses [30]. Further-
more, an alternative to the previous methods is the gene 
content method proposed by Gengler et al. [31], which is 
based on a multiple trait model and considers the gene 
content for specific genotypes as a new trait. This method 
can combine information from SNPs and genotypes for a 
causal mutation [31, 32]. The number of alleles carried by 
each animal is considered as a second trait correlated to 
the quantitative trait. Then, the causal mutation is inte-
grated directly in the ssGBLUP multiple-trait model. Its 
advantage is that it can be extended to multi-allelic genes 
and used when genotypes for a causal mutation are miss-
ing [33].

In French dairy goats, the first step towards genomic 
selection for milk production traits, udder type traits and 
somatic cell score was taken by Carillier-Jacquin et  al. 
[8, 9] for French Alpine and Saanen dairy goat breeds. 
Carillier-Jacquin et  al. [8, 9] compared ssGBLUP and 
other methods of genomic evaluation that require sev-
eral steps (GBLUP or Bayesian methods). GBLUP and 
Bayesian methods usually use performances based on 
pseudo-phenotypes (DYD) whereas ssGBLUP is based 
on female performance. These authors found that ssGB-
LUP gave more accurate predictions of the genetic merit 
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of selection candidates than the previous official genetic 
evaluation that did not use genomic information, or 
the use of multi-step genomic methods. However, the 
increase in accuracy due to using genomic information 
was not expected to be high because the reference popu-
lation was small.

Currently, the next step in the genomic evaluation 
of French dairy goats is to investigate better ways to 
use genotyping information to improve the accuracy 
of genomic evaluation. One possibility is to take prior 
knowledge about major genes into account. Several 
major genes have been identified, such as DGAT1 for 
fat content [34] and αs1 casein for protein content [35]. 
For protein content, Carillier-Jacquin et al. [33] reported 
that the genetic variance explained by the αs1 casein gene 
reached 38% in the Saanen and 43% in the Alpine breed. 
The caprine αs1 casein gene has six alleles ( A , B , C , E , F  
and O ) that have been identified in the French dairy goat 
population. Allele A is predominant in the Alpine breed, 
whereas alleles A , E and F  are the most frequent in the 
Saanen breed [33]. Carillier-Jacquin et  al. [33] showed 
that integrating the αs1 casein gene for protein content 
with the gene content method improved the accuracy of 
genomic evaluation (+ 8 to 14% for Alpine and Saanen 
populations) compared with ssGBLUP.

In this study, our aim was to investigate different meth-
ods of genomic prediction that estimate and integrate the 
fact that chromosomal regions are strongly associated 
with a trait. Protein content in French dairy goats was 
analyzed by applying WssGBLUP, two alternatives of the 
WssGBLUP method, the TABLUP method and the gene 
content method. These methods were compared with 
pedigree-based BLUP and ssGBLUP based on the accura-
cies of predicted breeding values.

Methods
Animals, phenotypes and genotypes
The dataset used in this study was provided by the French 
national milk records system and included animals from 
the two main French dairy goat breeds, Alpine and 
Saanen. Phenotypes for protein content, pedigree data, 
genotypes and environmental fixed effects used in the 
ssGBLUP method were obtained from the official genetic 
evaluation of January 2016 [36]. Analyses were performed 

with a multi-breed dataset (Alpine and Saanen animals 
combined) and in two separate within-breed analyses.

The trait analyzed was protein content (g/kg) with 
measurements from 6,767,490 lactations and 2,458,453 
females recorded between 1980 and 2010. Descriptive 
statistics (animal and record numbers, minimum, mean, 
maximum, coefficient of variation) for each breed are in 
Table 1.

The pedigree consisted of 2,543,789 animals (1,449,991 
Alpine and 1,093,798 Saanen). In addition, it was com-
pleted with 36 unknown parent groups. Unknown parent 
groups were defined for each breed and for animals born 
before 1975, and then for cohorts born in 2-year win-
dows up to 2010.

Animals that were genotyped with the Illumina goat 
SNP50 BeadChip (50K SNP) [37] were also used in the 
analysis. Quality control (QC) for a dataset of 3347 geno-
typed animals (2020 Alpine and 1278 Saanen) and 53,347 
SNPs was performed independently for each breed. SNPs 
with a minor allele frequency (MAF) lower than 1% and 
a call rate lower than 95% were removed. Hardy–Wein-
berg equilibrium was also tested and the associated Chi 
squared statistic was calculated for each SNP. SNPs with 
a Chi squared statistic higher than 24 were removed. 
Finally, animals with a SNP call rate lower than 99% were 
discarded from the analyses. After QC, 2955 (1749 Alpine 
and 1206 Saanen) animals and 46,849 SNPs remained for 
further analyses. Some SNPs within the αs1 casein gene 
were present on the 50 K SNP but since they did not pass 
QC, they were removed [33].

Genotypes for the αs1 casein gene were available for 
3696 Alpine individuals (2154 males and 1542 females), 
and 3506 Saanen individuals (2049 males and 1457 
females) born between 1982 and 2012. The αs1 casein 
gene is located on caprine chromosome 6 at 82 Mb and is 
multi-allelic in the French dairy goat population, with six 
different alleles ( A , B , C , E , F  and O ) and 19 genotypes 
detected among the 21 possibilities ( FO and OO geno-
types have never been detected in the French dairy goat 
population) [33]. Genotypes of animals with one miss-
ing allele were removed from the analysis. The estimated 
effects of the 19 αs1 casein genotypes on protein content 
were computed and reported previously [33]. Table  2 
includes the number of animals (males and females for 

Table 1  Summary statistics on protein content (g/kg) in Alpine and Saanen breeds

CV coefficient of variation
a  Minimum, mean, maximum protein content

Breed Number 
of lactations

Number of females 
with phenotypes

Minimuma (g/kg) Meana (g/kg) Maximuma (g/kg) CV

Alpine 3,844,071 1,392,399 10.47 30.42 54.81 0.11

Saanen 2,923,419 1,066,054 10.00 29.67 54.63 0.09
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Alpine and Saanen breeds) used in this study with infor-
mation on their αs1 casein and/or 50 K SNP genotypes.

Genomic prediction with and without considering 
information on the αs1 casein genotypes
ssGBLUP was implemented in 2017 in the official genetic 
evaluations for the two main French dairy goats. This 
method and pedigree-based BLUP were used as the ref-
erence method in our study and compared with Wss-
GBLUP, two alternatives of the WssGBLUP method, 
TABLUP and the gene content method. Analyses were 
performed using the blupf90 software [38].

Single‑step GBLUP (ssGBLUP) method
For both multi-breed and within-breed scenarios, the fol-
lowing model was applied:

where y is a vector of performances (female phenotypes) 
for protein content (phenotypes are based on standard-
ized 250-day lactation records). β is a vector of fixed 
effects including herd within year (32 years from 1980 to 
2012) and within parity (1, 2 and ≥ 3) (188,933 levels in 
total); age at delivery within year and within region (four 
regions in France depending on goat breeding manage-
ment) (3224 levels in total); month at delivery within year 
and region (1448 levels in total); and length of dry period 
within year and region (1107 levels in total); a fifth fixed 
effect for breed (two levels) was added for multi-breed 
analyses. u is a vector of random additive genetic effects 
assumed to be normally distributed N

(

0,Hσ 2
u

)

 , p is a 
vector of random permanent environmental effects 
assumed to be normally distributed N

(

0, Iσ 2
p

)

 , e is a vec-

tor of random residuals that is normally distributed 
N
(

0, Iσ 2
e

)

 . X is the incidence matrix relating phenotypes 
to the fixed effects ( β). Z is the design matrix allocating 
phenotypes to breeding values ( u ) and W is the incidence 
matrix relating phenotypes to permanent environmental 
effects ( p).

(1)y = Xβ+ Zu +Wp+ e,

Matrix H is the genetic relationship matrix combining 
SNP information and pedigree data, implemented as in 
Legarra et al. [12]:

where A is a pedigree-based relationship matrix with 
indices 1 for ungenotyped animals and 2 for genotyped 
animals, and G is the genomic relationship matrix derived 
as in Christensen and Lund [11]:

where m is the number of SNPs, pi is the estimated allele 
frequency at locus i and M is a centered matrix of SNP 
genotypes.

Variance components were estimated by using the 
restricted maximum likelihood (REML) method in the 
remlf90 software [38].

Weighted ssGBLUP (WssGBLUP) method
Model 1 was also used for WssGBLUP but G was con-
structed differently. Solutions of genomic breeding values 
from ssGBLUP (Model 1) can be decomposed into SNP 
effects as modeled in Wang et al. [23]:

where â is a vector of SNP effects, D is a diagonal matrix 
of weights (initially diagonal of 1 for the ssGBLUP), M is 
the centered matrix of SNP genotypes and ûg the vector 
of GEBV from genotyped animals only. Variances of the 
effect of SNP i were estimated as:

where pi is the allele frequency of SNP i . The vector of 
variances of SNP effects was normalized (the normali-
zation process ensured that the sum of the variances 
remained constant and was equal to the number of 
SNPs) and used as weights in matrix D to construct the 
weighted matrix G ( G∗ ) as described in Wang et al. [23]:

H =

(

A11 + A12A
−1
22 (G− A22)A

−1
22

A21 A12A
−1
22

G

GA−1
22

A21 G

)

,

G = 0.95
M′M

2
∑m

i=1 pi(1− pi)
+ 0.05A22,

â = DM′
[

MDM′
]−1

ûg ,

σ 2
u,i = 2â2i pi(1− pi),

Table 2  Number of animals with information on the αs1 casein genotype and/or 50 K SNP genotypes

Breed Gender Animals with 50 K SNP 
genotype

Animals with αs1 casein 
genotype

Animals with both 50K SNP 
and αs1 casein genotype

Alpine Males 512 2154 510

Females 1237 1542 0

Saanen Males 393 2049 393

Females 813 1457 0
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GEBV were estimated again with Model 1 by considering 
weights for each SNP via the G∗ matrix included in the 
H matrix. This process was carried out iteratively with 
weights estimated at each iteration as described in Wang 
et  al. [23]. Wang et  al. [23] have shown that WssGLUP 
with only very few iterations may be sufficient to reach 
a maximum accuracy of GEBV and SNP effects. In this 
study, we analyzed the influence of the number of itera-
tions (1–10) on the accuracy of genomic predictions.

As proposed by Zhang et  al. [24], other methods can 
be considered to calculate the weight for SNPs in the D 
matrix. These methods assign the same weight to several 
consecutive SNPs within a chromosomal region. Modi-
fications of the WssGBLUP method were considered in 
this study and the individual weights were computed as 
follows: (1) the maximum weight of SNPs included in 
the chromosomal region, or (2) the sum of the weights 
of the SNPs included in the chromosomal region. These 
weights were calculated based on the weights estimated 
with the WssGBLUP. In the end, the vector of the weights 
was normalized in such a way that the sum of all weights 
remained constant and equal to the number of SNPs. 
Chromosomal regions of various lengths were tested: 2, 
5, 10, 20, 40, 80, 100, 150, 200 and 250 consecutive SNPs 
with non-overlapping windows. Hereafter, these methods 
are named WssGBLUPi where i denotes the method used 
to calculate the weights (Max or Sum).

Trait‑specific marker‑derived relationship matrix (TABLUP) 
method
Only a subset of SNPs that are more or less associ-
ated with protein content was selected to build the G 
matrix. One of our objectives was to investigate how the 
genetic architecture of protein content could be taken 
into account in the ssGBLUP method. Thus, TABLUP 
was applied by selecting a subset of SNPs according to 
their effect on the trait (estimated from the WssGBLUP 
method described previously). A total of 5000, 10,000, 
15,000, 20,000, 25,000, 30,000, 35,000 or 40,000 SNPs 
were selected to construct G . Two scenarios were tested 
in which either the most or the least strongly associated 
SNPs were selected. GEBV were estimated with Model 
1 and the G matrix that was built based on the selected 
SNPs without weights ( D = I).

Gene content method
The gene content method estimates the GEBV for each 
animal by taking information on the αs1 casein genotype, 
genotypes from the 50K SNP and pedigree into account 

G∗ = 0.95
M′DM

2
∑m

i=1 pi(1− pi)
+ 0.05A22.

through a multiple-trait model. The model used here was 
the same as in [33]:

where y is a vector of female performances for protein 
content. Fixed effects ( β ), random effects ( u , p and e ) and 
incidence matrices X , Z and W are the same as in Model 
1. yA , yB , yC , yE , yF , and yO are vectors of gene content 
for alleles A , B , C , E , F  and O . This corresponds to the 
number of copies carried by each animal (i.e., 0, 1 or 2). 
For ungenotyped animals, the value was set to missing. 
µA , µB , µC , µE , µF , and µO are the mean fixed effects for 
alleles A , B , C , E , F  and O , ZA , ZB , ZC , ZE , ZF , and ZO 
are the incidence matrices relating observations to the 
random genetic effect ( uA , uB , uC , uE , uF and uO ) of gene 
content for each allele and eA , eB , eC , eE and eO are the 
random residual errors for each of the six alleles. For 
i ∈ {A,B,C ,E, F ,O} , ui are normally distributed such 
that Var(ui) = Hσ 2

ui
 and σ 2

ui
= 2pi(1− pi) , where pi is 

the frequency of allele i at the αs1 casein locus. Covari-
ances between genetic values ( u ) and genetic effects of 
gene content ( uA , uB , uC , uE , uF and uO ) were modeled 
as in Carillier-Jacquin et al. [33]. Variance and covariance 
parameters from this model were estimated using the 
restricted maximum likelihood (REML) algorithm imple-
mented in the remlf90 software.

Accuracy of genomic predictions
Genomic evaluations were performed from all pheno-
types recorded until January 2010, but we were also 
interested in the prediction of genotyped animals that 
constituted our reference population. This reference pop-
ulation was composed of 905 sires born between 1993 
and 2012 and genotyped with the 50K SNP chip (Table 2) 
and was split into a training population of 554 sires born 
from 1993 to 2007 (307 Alpine and 247 Saanen) with 
phenotypes of their daughters recorded until January 
2010), and 351 validation sires born from 2008 to 2012 
(205 Alpine and 146 Saanen) with no daughters in Janu-
ary 2013 (daughters of these animals were removed from 
the dataset). Then, GEBV and DYD computed from the 
official genetic evaluation of January 2016 were com-
pared for the 351 animals in the validation set. DYD were 
average performance values for the daughters corrected 

(2)

y = Xβ+ Zu +Wp+ e

yA = µA + ZAuA + eA

yB = µB + ZBuB + eB

yC = µC + ZCuC + eC

yE = µE + ZEuE + eE

yF = µF + ZFuF + eF

yO = µO + ZOuO + eO

,
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for environmental effects and merit of the dam, and they 
were weighted by effective daughter contributions as 
described in VanRaden and Wiggans [39]. Accuracy of 
genomic predictions was assessed as the Pearson cor-
relation between GEBV estimated with each model and 
DYD. Pearson correlations obtained with different meth-
ods were tested using the Hotelling-Williams test [40].

Results and discussion
The most frequent αs1 casein genotypes are AA for the 
males and AE for the females in the Alpine breed, and 
AE for the females and EE for the males in the Saanen 
breed (present in more than 50% of the animals). Allele 
C is rather rare (less than 5% of the animals carry this 
allele) in the two breeds. The largest differences in geno-
type frequency between Alpine and Saanen populations 
were observed for genotypes AA (49% in Alpine vs. 7% 
in Saanen), EE (3% in Alpine vs. 32% in Saanen) and AE 
(49% in Saanen vs. 30% in Alpine). These results were 
consistent with the previous work of Carillier-Jacquin 
et al. [33] in which fewer genotypes were available. Pro-
tein content was analyzed knowing that this trait is highly 

heritable in both Alpine and Saanen populations (0.5) 
[41].

Estimation of weights for SNPs with the WssGBLUP method
We compared different genomic methods. First, we used 
WssGBLUP because we wanted to identify the weights 
given to SNPs with this method, in order to determine 
if the chromosomal region including the αs1 casein gene 
was considered in the analyses. WssGBLUP is an itera-
tive method, and 10 iterations were performed for multi-
breed analyses and within-breed analyses. Accuracy 
of genomic predictions was evaluated at each iteration 
(results not shown). The highest accuracies were obtained 
at the second iteration as reported by Wang et al. [23] and 
then decreased slightly. Thus, all the results presented for 
the WssGBLUP multi-breed and within-breed analyses 
are those obtained for the second iteration (see Fig.  1). 
The top 50 SNPs (with the biggest weights) were com-
pared between the three analyses and were all located 
on chromosome 6 i.e. the multi-breed (between 71 and 
86  Mb), Alpine (between 64 and 101  Mb) and Saanen 
analyses (between 71 and 92  Mb), and their weights 
ranged from 24 to 115 for multi-breed, from 23 to 45 for 

Fig. 1  Estimated weights of SNPs included in the second iteration of the WssGBLUP approach for multi-breed, Alpine and Saanen populations. 
WssGBLUP used GEBV of genotyped animals and genotypes to estimate weights for each SNP. The estimated weight of each SNP is represented 
along the genome
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Alpine and from 30  to 108 for Saanen analyses. Among 
these SNPs, 16 were common to the three analyses and 
located between 78 and 82 Mb; 11 SNPs were common 
to the Saanen and multi-breed analyses and located 
between 79 and 83  Mb; 16 SNPs were common to the 
Alpine and multi-breed analyses and located between 77 
and 86 Mb; and only one SNP was common to both the 
Alpine and Saanen analyses and located at 76 Mb.

WssGBLUP can be used not only for genomic predic-
tion but also for QTL detection as in GWAS [23, 24]. 
In French dairy goat data, the chromosomal regions 
detected with WssGBLUP were on caprine chromosome 
6, which includes a well-known region that was pre-
viously located and described by Martin et  al. [34] in a 
GWAS study. They performed linkage analyses (LA) and 
linkage disequilibrium (LD) analyses on 1941 dairy goats 
distributed in 20 half-sib families using all females and 
their 20 sire genotypes and detected a large QTL between 
82.5 and 82.8 Mb on chromosome 6. In our study, SNPs 
with the biggest weights for SNP variances were located 
within this region.

The WssGBLUP method developed by Wang et  al. 
[23] has some limitations. Weights for SNP variances 
are estimated by using a whole-genome regression, 
which can result in their unstable prediction due to 

multi-collinearity between SNPs because of LD between 
SNPs. In our study, we tested common weights for sev-
eral SNPs instead of individual weights for SNP vari-
ances, using WssGBLUPMax or WssGBLUPSum. These 
methods are expected to limit the large variation in 
prediction of weights for SNP variances by smooth-
ing weights of SNPs that are in the same window. In our 
study, WssGBLUPMax and WssGBLUPSum gave higher 
accuracies of genomic prediction than the classical Wss-
GBLUP. With WssGBLUPMax or WssGBLUPSum, window 
sizes were used to allocate the same weights to consecu-
tive SNPs. Another approach would be to use the LD 
between SNPs, which could limit the multi-collinearity 
between the SNPs used in the genomic evaluation. Since 
the weight of SNPs is included through the D matrix, this 
matrix can be replaced by the weights derived from the 
GWAS approach.

Including the effect of the αS1 casein gene in WssGBLUP 
or gene content methods
Figure 2 presents accuracies of genomic evaluation for 
pedigree-based BLUP, ssGBLUP, gene content and Wss-
GBLUP in a multi-breed population and in the Alpine 
and Saanen breeds. Accuracies with pedigree-based 
BLUP (0.72 in multi-breed, 0.71 in Alpine and 0.66 

Fig. 2  Validation correlations for validation males in multi-breed, Alpine and Saanen populations for pedigree-based BLUP, ssGBLUP, gene 
content and WssGBLUP approaches. Differences in accuracy between ssGBLUP and other approaches were tested with the Hotelling-Williams test 
(threshold: *5%, **3%, ***1%, NS non-significant)
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in Saanen) were lower than accuracies with ssGBLUP 
(0.77 in multi-breed, 0.76 in Alpine and 0.73 in Saanen), 
gene content (0.76 in multi-breed, 0.76 in Alpine and 
0.72 in Saanen) or WssGBLUP (0.79 for multi-breed, 
0.78 for Alpine and 0.77 for Saanen). The gene content 
method did not improve accuracy of genomic predic-
tions for the three populations compared to ssGBLUP 
(accuracy was 1 percent point lower for gene content 
in the multi-breed and Saanen analyses and identi-
cal in the Alpine analysis). In addition, accuracies with 
WssGBLUP were significantly higher than with ssG-
BLUP for the Saanen population (+ 4 percent points). 
We did not observe any significant difference between 
ssGBLUP and WssGBLUP for multi-breed and Alpine 
populations.

Previously, Carillier-Jacquin et  al. [33] used the gene 
content and ssGBLUP methods to analyze protein con-
tent in French dairy goats. Accuracies obtained with ssG-
BLUP were higher in our study than in Carillier-Jacquin 
et  al. [33] for the multi-breed (+ 5 percent points) and 
Alpine (+ 8 percent points) analyses, and slightly lower 
for the Saanen analysis (− 2 percent points). A similar 
trend was observed with the gene content method, with 
+ 1 percent point for multi-breed, + 8 percent points for 
Alpine and − 14 percent points for Saanen in our study 
compared to Carillier-Jacquin et  al. [33]. The main dif-
ference between our study and that of Carillier-Jacquin 
et al. [33] was the number of animals genotyped with the 
50 K SNP chip, number of αs1 casein genotypes, and the 
size and composition of the training and validation sets. 
In our study, 82 males and 2050 females genotyped with 
the 50 K SNP chip and 50 females and 878 males geno-
typed for the αs1 casein gene were added. In Carillier-
Jacquin et al. [33], the reference population consisted of 
a training set with 677 animals born between 1993 and 
2009 (384 Alpine and 293 Saanen), and a validation set 
with 146 animals born between 2010 and 2011 (86 Alpine 
and 60 Saanen). In our study, we had 554 animals born 
between 1993 and 2007 (307 Alpine and 247 Saanen) in 
the training set and 351 animals born between 2008 and 
2012 (205 Alpine and 146 Saanen) in the validation set. 
The main difference between the Carillier-Jacquin et  al. 
study and that reported here was the size of the validation 
population (2 versus 5  years in our study). The slightly 
improved results that we obtained may be explained by 
the larger reference population (823 animals in Carillier-
Jacquin et al. [33] compared to 905 in our study), a well-
known factor in the literature on genomic selection. For 
instance, VanRaden et al. [42] report a gain of + 5 percent 
points between genomic prediction and parent average 
by adding 1000 animals in the training population. These 
results were consistent with the higher accuracy obtained 
in the multi-breed analysis compared to the within-breed 

analyses, especially if the trait has the same genetic deter-
minism in the two breeds that are combined (which is 
the case for protein content). Accuracy is expected to 
improve even more the size of the reference population 
continues to grow over the years.

Carillier-Jacquin et al. [33] showed that the gene con-
tent method was more accurate than ssGBLUP (+ 3 per-
cent points for multi-breed, + 5 percent points for Alpine 
and + 11 percent points for Saanen). However, in our 
study, accuracies of genomic prediction were the same 
for the gene content method and ssGBLUP. The goat αs1 
casein gene has six alleles in the two main French dairy 
goats and genotype frequencies vary considerably with 
some being rare. Predicting αs1 casein genotypes with 
the gene content method for non-genotyped animals 
remains difficult in this case, especially in French dairy 
goats, for which the number of non-genotyped animals 
is large compared with that of genotyped animals (only 
0.3% of the population is genotyped for the αs1 casein 
gene), and 40% of females have unknown parents. This 
may explain why the gene content method did not out-
perform ssGBLUP.

The genetic architecture of protein content is similar 
between the Alpine and Saanen breeds. However, the 
gain in accuracy with the genomic evaluation methods 
(ssGBLUP, gene content and WssGBLUP) compared to 
pedigree-based BLUP was greater for the Saanen than 
the Alpine breed. As discussed by Carillier-Jacquin 
et al. [9], the greater gain observed for the Saanen breed 
between pedigree-based BLUP and genomic evaluation 
may be explained by a higher level of inbreeding (2.3% in 
Saanen and 1.8% in Alpine), and a higher kinship coef-
ficient between the training and validation sets (2.4% in 
Saanen and 1.1% in Alpine using genomic data).

For prediction of GEBV, WssGBLUP was more effi-
cient than gene content, which may be due to the con-
struction of the 50K SNP chip. The region around the αs1 
casein gene was enriched in SNPs in the 1-Mb region at 
82  Mb on chromosome 6 (the region that contains the 
αs1 casein gene). Overall, 40 SNPs are present within this 
1-Mb region, whereas on average only 20 SNPs per Mb 
are located outside of this region on chromosome 6 or 
on other chromosomes. Moreover, the Chi squared test 
between αs1 casein genotypes and each SNP on chromo-
some 6 revealed a very strong correlation between αs1 
casein genotypes and SNPs on the 50K SNP chip in this 
region (results not shown). Giving more weight to SNPs 
that are more strongly associated with protein content 
seems to be more efficient to capture the effect of the αs1 
casein gene than using genotype data for this gene. Vallejo 
et  al. [18] investigated the efficiency of WssGBLUP for 
bacterial cold water disease resistance, for which several 
QTL are identified. They observed an improvement of 4 
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percent points with WssGBLUP compared to ssGBLUP. 
In our study, we observed similar gains with WssGBLUP. 
Su et al. [43] also observed a superiority of the WssGB-
LUP over ssGBLUP in dairy cattle for milk traits.

Use of common weights on consecutive SNPs 
with WssGBLUP
WssGBLUP was significantly more predictive than other 
genomic evaluation methods for protein content in 
the Saanen breed but not in multi-breed or the Alpine 
breed. Zhang et al. [24] reported that WssGBLUPMax and 
WssGBLUPSum increase the accuracy of genomic evalu-
ation more efficiently than WssGBLUP. We evaluated 
these methods and Tables  3, 4 and 5 show the results 
on the validation population in the multi-breed, Alpine 
and Saanen populations, respectively using WssGBLUP 
and the two modified WssGBLUP methods (Max, Sum) 
according to the size of SNP windows. If identical results 
were obtained for different window sizes, they were 
merged in the same column. For the multi-breed popu-
lation, accuracies of the analyses with WssGBLUPMax 
and WssGBLUPSum were very similar and differed only 
with non-overlapping SNP windows of 40, 80, 100, 150, 
200 and 250 SNPs, the accuracy (0.81) of WssGBLUPSum 
being slightly higher than that of WssGBLUPMax (0.80). 
Otherwise, accuracies were equal to 0.79 with a window 
size of two SNPs and 0.80 for window sizes of five, 10 
and 20 SNPs. Finally, accuracies of WssGBLUPMax and 
WssGBLUPSum were slightly higher than that of WssGB-
LUP (0.79) and higher than that of ssGBLUP (0.77).

For both within-breed analyses, increasing the win-
dow size barely influenced accuracies. In the Alpine 
within-breed analysis, a maximum accuracy of 0.79 was 
reached with the WssGBLUPSum method and a window 
size of 40 SNPs and thus, it outperformed WssGBLUP 
(0.78). For other window sizes (larger or smaller), accu-
racies with WssGBLUPSum were equal to 0.78. With the 
WssGBLUPMax method, accuracies ranged from 0.77 
for a window of two consecutive SNPs to 0.78 for win-
dows of 5, 10, 20, 40, 80, 100, 150, 200 and 250 consecu-
tive SNPs. In comparison, genomic evaluations with 

WssGBLUPMax and WssGBLUPSum were more accu-
rate than with ssGBLUP (0.76). In the Saanen within-
breed analysis, accuracies of 0.78 were reached with 
WssGBLUPSum for windows of 40, 80, 100, 150, 200 and 
250 consecutive SNPs, and with WssGBLUPMax for win-
dows of 80 and 100 consecutive SNPs. WssGBLUPMax 
and WssGBLUPSum outperformed WssGBLUP (0.77) or 
even ssGBLUP (0.73). Accuracies of 0.77 were obtained 
with WssGBLUPSum for windows of 2, 5, 10 and 20 con-
secutive SNPs and with WssGBLUPMax for windows of 2, 
5, 10, 20, 40, 150, 200 and 250 consecutive SNPs.

WssGBLUPMax and WssGBLUPSum slightly improved 
the accuracy of genomic predictions for protein con-
tent in French dairy goats compared to WssGBLUP. 
Similar results were observed by Zhang et  al. [24] with 
WssGBLUPMax and WssGBLUPSum compared to WssG-
BLUP on simulated data for five QTL. Zhang et al. [27] 
presented their results for a window size of 20 consecu-
tive SNPs because when they used windows with more 
than 20 SNPs, accuracies decreased when many QTL 
affected a trait. This is due to most of the weight being 
assigned to the windows with large SNP effects and less 
weight to those with small SNP effects, which may intro-
duce bias in the estimates. For the populations in our 
study, accuracies varied little with window size. How-
ever, 20 consecutive SNPs were not sufficient to reach 
the highest accuracies and 40 consecutive SNPs were 
more appropriate. Thus, for a trait that is influenced by 
few QTL, WssGBLUPMax or WssGBLUPSum were more 

Table 3  Validation correlations for  351 validation males 
in  the  multi-breed population using different WssGBLUP 
and different window sizes of non-overlapping SNPs

a  Each SNP has its own weight (WssGBLUP standard)

Method Size of non-overlapping SNP windows

1 2 5/10/20 40/80/100/150/200/250

WssGBLUPa 0.79

WSSGBLUPSum 0.79 0.80 0.81

WSSGBLUPMax 0.79 0.80 0.80

Table 4  Validation correlations for  205 validation 
males in  the  Alpine breed using different WssGBLUP 
and different window sizes of non-overlapping SNPs

a  Each SNP has its own weight (WssGBLUP standard)

Method Size of non-overlapping SNP windows

1 2 5/10/20 40 80/100/150/200/250

WssGBLUPa 0.78

WSSGBLUPSum 0.78 0.78 0.79 0.78

WSSGBLUPMax 0.77 0.78 0.78 0.78

Table 5  Validation correlations for  146 validation 
males in  the  Saanen breed using different WssGBLUP 
and different windows size of non-overlapping SNPs

a  Each SNP has its own weight (WssGBLUP standard)

Method Size of non-overlapping SNP window

1 2/5/10/20 40 80/100 150/200/250

WssGBLUPa 0.77

WSSGBLUPSum 0.77 0.78 0.78 0.78

WSSGBLUPMax 0.77 0.77 0.78 0.77



Page 10 of 12Teissier et al. Genet Sel Evol  (2018) 50:31 

efficient to capture clear signals from QTL compared to 
WssGBLUP with one weight per SNP.

TABLUP method
To validate that ssGBLUP does capture the αs1 casein 
gene information, we used TABLUP that consists in 
selecting a subset of SNPs for constructing the G matrix, 
i.e. we selected the SNPs that were the most or the least 
strongly associated with protein content. Figure 3 shows 
the accuracies obtained with ssGBLUP and TABLUP for 
the multi-breed population according to the number of 
SNPs conserved (5000 to 40,000 SNPs) to construct the G 
matrix. Since results for both Alpine and Saanen breeds 
were similar to those for the multi-breed population, they 
are not shown.

First, for the SNPs that were the most strongly asso-
ciated with protein content, TABLUP with only 5000 
such SNPs led to a high accuracy of genomic prediction 
(0.74), which is close to that obtained with ssGBLUP 
(0.77). TABLUP reached the 0.77 accuracy of ssGBLUP 
with 20,000 such SNPs, which were distributed across the 

whole genome with on average 42% of the SNPs on each 
chromosome being retained and 54% on chromosome 
6. This indicates that SNPs around the αs1 casein gene 
have been more selected than the others. Increasing the 
number of SNPs from 20,000 to 40,000, did not increase 
the accuracy furthermore. Conversely, for the SNPs that 
were the least strongly associated with protein content, 
TABLUP with 5000 such SNPs led to a very low accuracy 
(0.47) and increasing their number to 40,000 led to an 
increase in accuracy of 24 percent points (0.47 with 5000 
SNPs and 0.71 with 40,000 SNPs) but accuracy remained 
significantly lower than that obtained by using the whole 
50K SNP BeadChip (0.71 against 0.77).

Using different subsets of SNPs and the BayesA model, 
VanRaden et  al. [44] compared accuracies of genomic 
predictions in Holstein breed cattle for 33 traits. They 
used 60K and high-density (HD) SNP panels, and added 
specific SNPs selected from whole-genome sequence 
data, which were SNPs based on their annotation 
(located on exons, splicing sites, indels, 2  kb upstream, 
1 kb downstream, untranslated regions, SNPs with large 
effects). They showed that the highest accuracies were 

Fig. 3  Validation correlations for 351 validation males in the multi-breed population using the TABLUP approach. TABLUP consists in selecting a 
subset of the genotypes from the 50K SNPs according to their association with protein content (either the most strongly associated or the least 
strongly associated with protein content), which is done by selecting SNPs according to their weights estimated with the WssGBLUP approach
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obtained with the scenario that used 60K SNPs plus the 
top 1000 SNPs for all 33 traits. Increasing the number 
of SNPs (using the HD SNP panel for example) did not 
increase the accuracy of genomic predictions. However, 
adding selected SNPs from whole-genome sequence to a 
medium-density SNP BeadChip improved GEBV accu-
racies. These results agree with those that we obtained 
with the TABLUP method. In the near future, when 
whole-genome caprine sequence data become available, 
it will be possible to select sequence-based variants and 
add them to the 50K SNP data in the genomic evaluation 
model, which will improve the accuracy of genomic pre-
dictions in these species.

We undertook additional analyses (results not shown) 
in which SNPs were removed chromosome-wise with 
the ssGBLUP, WssGBLUP and gene content meth-
ods. The same accuracies were observed, regardless of 
the chromosome from which the SNPs were removed, 
except for chromosome 6 for ssGBLUP (0.77), WssG-
BLUP (0.79) and gene content (0.76). When SNPs from 
chromosome 6 were removed, accuracies dropped to 
0.70 for ssGBLUP, 0.66 for WssGBLUP and 0.74 for gene 
content. However, the loss in accuracy with gene con-
tent was smaller than with ssGBLUP and WssGBLUP, 
i.e. using genotypes for the αs1 casein gene and SNPs 
from 28 chromosomes (except chromosome 6) is quite 
similar to using the 50K SNP chip. The missing geno-
types from the 50K SNP chip (i.e. the SNPs on chro-
mosome 6) did not add much information compared 
to the information contained by the genotypes for the 
αs1 casein. Results of TABLUP and chromosome-wise 
removal of SNPs showed that a part of the effect of the 
αs1 casein gene was retained by the ssGBLUP method, 
which basically does not include information on causal 
mutations. These results can be explained by the high 
coverage of SNPs on chromosome 6 around the αs1 
casein gene.

Conclusions
Our aim was to investigate different genomic evaluation 
methods (using αs1 casein genotypes and/or 50K SNP 
information) to integrate information on the αs1 casein 
gene in genomic evaluations of dairy goats. Using the 
trait-specific marker-derived relationship matrix did not 
improve accuracy of genomic evaluation, which was the 
same as that obtained by ssGBLUP with a selection of the 
20,000 most important SNPs for protein content. With 
the gene content method, accuracies of genomic evalua-
tion were not improved compared to ssGBLUP, which is 
probably due to the αs1 casein gene having many alleles 
and to the small number of genotyped animals. Put-
ting more weight on SNPs with larger effects improved 

accuracies of genomic evaluation using WssGBLUP, 
WssGBLUPMax and WssGBLUPSum. For WssGBLUPMax 
and WssGBLUPSum, accuracies were highest when a com-
mon weight was applied to non-overlapping windows of 
40 SNPs. Gains in accuracies reached + 12 percent points 
for the Saanen, + 9 percent points for the multi-breed 
and + 8 percent points for the Alpine populations com-
pared to a pedigree-based BLUP evaluation. WssGBLUP 
using common weights for SNPs within non-overlap-
ping windows is efficient if the trait is influenced by few 
QTL and the true number of QTL is not known. WssG-
BLUP also combines fast computing and simplicity, and 
requires ssGBLUP to be run only twice.
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