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Abstract 

Background: A common measure employed to evaluate the efficacy of livestock improvement schemes is the 
genetic trend, which is calculated as the means of predicted breeding values for animals born in successive time 
periods. This implies that different cohorts refer to the same base population. For genetic evaluation schemes 
integrating genomic information with records for all animals, genotyped or not, this is often not the case: expected 
means for pedigree founders are zero whereas values for genotyped animals are expected to sum to zero at the 
(mean) time corresponding to the frequencies that are used to center marker allele counts when calculating genomic 
relationships.

Methods: The paper examines estimates of genetic trends from single-step genomic evaluations. After a review of 
methods which propose to align pedigree-based and genomic relationship matrices, simulation is used to illustrate 
the effects of alignments and choice of assumed gene frequencies on trajectories of genetic trends.

Results: The results show that methods available to alleviate differences between the founder populations implied 
by the two types of relationship matrices perform well; in particular, the meta-founder approach is advantageous. An 
application to data from routine genetic evaluation of Australian sheep is shown, confirming their effectiveness for 
practical data.

Conclusions: Aligning pedigree and genomic relationship matrices for single step genetic evaluation for populations 
under selection is essential. Fitting meta-founders is an effective and simple method to avoid distortion of estimates 
of genetic trends.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genetic evaluation based on the use of genomic informa-
tion has become a routine procedure in numerous live-
stock improvement schemes. Many employ the so-called 
single-step procedure for best linear unbiased predic-
tion (SS-GBLUP) which allows for joint evaluation of 
genotyped and non-genotyped animals [1]; see Legarra 
et  al. [2] for a comprehensive review. The most widely 
used implementation involves a ‘simple’ extension of the 
pre-genomic ‘breeding value’ model, which replaces the 
pedigree-based numerator relationship matrix (NRM) 
between animals by its counterpart, which combines the 
genomic relationship matrix (GRM) between genotyped 
animals with relationships derived from the pedigree. 

Henceforth, a predicted breeding value that is obtained 
by using the GRM and SS-GBLUP will be referred to as 
GEBV while PEBV  is used to denote the corresponding 
value based on the NRM ignoring genotype information, 
and EBV alludes to both types.

A problem inherent to combining genomically-derived 
and pedigree-based relationships arises due to different 
conceptual founder populations with potentially differ-
ent means. For the NRM, the (unknown) parents of the 
first generation of pedigreed animals are considered to be 
the unrelated and non-inbred founder animals. Thus, the 
base generation is determined by the point in time where 
pedigree recording began. In contrast, genomic relation-
ships are based on ancestral founders many generations 
back. Combining the NRM and GRM without account-
ing for these differences can result in biased predictions 
of breeding values, in particular EBV for genotyped ani-
mals may be biased downwards. This is akin to problems 
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that have been encountered earlier on in genetic evalua-
tion of beef cattle when PEBV of imported, superior bulls 
without appropriate local pedigree ties were found to 
be severely underestimated because they referenced the 
wrong, lower base [3]. Several procedures have been sug-
gested to align the NRM and GRM [4–7]. Typically, such 
modifications have been found to reduce the overdisper-
sion that is often reported for GEBV. However, observed 
effects on corresponding accuracies are generally small, 
e.g. [5, 8].

A standard measure, which is routinely computed to 
demonstrate the efficacy of selection programmes in live-
stock is the genetic trend. This is usually obtained as the 
mean EBV of cohorts of animals in a generation or born 
within a given time period. To date and to our knowl-
edge, there are no studies that have examined estimates 
of genetic trend in the context of SS-GBLUP. This paper 
considers the effects of different modifications, which 
are suggested for the relationship matrices involved in 
SS-GBLUP, on the estimates of genetic trend. After a 
review of the methods proposed in the literature, we 
demonstrate by using simulated data that different ways 
of centering marker counts or aligning GRM and NRM 
can substantially affect estimates of trends, especially for 
populations that are  subject to intense selection. This is 
followed by an application to data from LAMBPLAN, the 
Australian sheep genetic improvement scheme [9], repre-
senting a typical data structure where only relatively few 
animals have been genotyped so far and where these ani-
mals were born in the most recent years.

Review: on the use of relationship matrices 
in SS‑GBLUP
Consider a SS-GBLUP analysis comprised of n1 non-
genotyped and n2 genotyped animals, with allele counts 
for m markers summarized in matrix M of size n2 ×m . 
Assume standard coding of allele counts as 0 and 2 for 
homozygotes and 1 for heterozygotes. Let A and G 
denote the NRM and GRM, respectively, and H the joint 
relationship matrix. Assume animals are ordered so that 
A can be partitioned into blocks pertaining to genotyped 
( A22 ) and non-genotyped animals ( A11 ) and the relation-
ships between them ( A12 ). The joint relationship matrix 
is then [10]

with the inverse [11]
(1)

H =

(

A11 + A12A
−1
22 (G− A22)A

−1
22 A21 A12A

−1
22 G

GA−1
22 A21 G

)

(2)H−1 = A−1 +

(

0 0

0 G−1 − A−1
22

)

.

The genomic relationship is commonly determined as 
a matrix of sums of squares and crossproducts of the 
matrix of centered marker counts, possibly with some 
differential weighting for individual markers. A popular 
form is Van Raden’s [4] method 1:

where pi is the allele frequency of the i-th marker and P 
is a matrix comprised of columns pi1 with 1 a vector of 
length n2 with all elements equal to unity. Subscript ‘M’ 
is used to denote the ‘raw’ GRM as derived from marker 
information, without any modifications. Other formula-
tions, extend Eq. (3) to weigh contributions from individ-
ual markers according to their frequencies (e.g. method 2 
of [4] or [12]).

Van Raden [4] emphasized that the frequencies pi 
should be those in the unselected base a.k.a. founder 
population. In practice, these are generally unknown and 
frequencies are commonly determined from the observed 
genotypes. Another choice is to assume that pi = 0.5 for 
all i, equivalent to coding allele counts as −1, 0 and 1. An 
argument for the latter is that, for random choice of ref-
erence alleles, the expectation of pi is 0.5 [13]. Moreover, 
this coding is obtained when integrating the likelihood 
function for the single-step model over the unknown 
allele frequencies [6].
GM is often modified in some fashion to ensure that it 

can ‘safely’ be inverted, to improve alignment between 
the GRM and NRM or to account for residual polygenic 
variation. We use G⋆ to denote the modified matrix with 
G on the right hand side of the following equations rep-
resenting the matrix to be changed. Since different pro-
cedures can be combined, the latter may represent either 
GM as given above or G⋆ from a previous step.

Weighted average of GRM and NRM
A common modification is to ‘shrink’ the GRM towards 
the corresponding part of the NRM:

Often values of � close to unity [4] are used to counter-
act the problem of GM  not being positive definite when 
observed allele frequencies are used to center M. Smaller 
values of � are used for analyses where it is deemed neces-
sary to account for residual polygenic variation, i.e. addi-
tive genetic variance not explained by the markers, or to 
limit the influence of genomic information. For instance, 
values of � = 0.5 have been chosen for SS-GBLUP genetic 
evaluation of Australian sheep [14] and beef cattle [15].

(3)

GM = (M − 2P)(M − 2P)′/s

with s = 2

m
∑

i=1

pi(1− pi),

(4)
G⋆ = �G+ (1− �)A22 with 0 ≤ � ≤ 1 .
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Adjusting the GRM to be compatible with the NRM
Suggestions for aligning G with A or A22 involve a modifi-
cation of the form:

where J denotes a matrix with all elements equal to unity. 
Factors α and β can be estimated by least-squares regres-
sion [4] or determined by equating the means of the ele-
ments of the two matrices, G and A22 , and the means of 
their diagonals [6]. The latter may seem heuristic, but can 
be thought of as enforcing equality of a sample covari-
ance matrix and its expectation for both matrices [7]. 
Legarra et al. [2] interpreted α as ‘overall relationship’ and 
β as change in scale or genetic variance due to drift or 
selection.

This gives:

where 1 is a vector with all elements equal to unity and 
‘ tr ’ denotes the matrix trace operator.

Similarly, Vitezica et al. [5] proposed values of

This yields a value of α which is equal to the mean differ-
ence between A22 and G, so that the means of elements 
of the modified GRM and the corresponding part of the 
NRM are equal.

Several studies recognized that adding a multiple of 
J to the GRM shifts GEBV for genotyped animals by a 
constant, i.e. is inconsequential for analyses which do 
not include individuals without genotypes. For instance, 
Stranden and Christensen [16] showed that allele cod-
ing did not affect relative differences between predicted 
genomic breeding values, provided the model included a 
fixed mean effect. Comparing different additions to the 
GRM, Tier et al. [17] demonstrated that adding very dif-
ferent multiples of J yielded analogous results.

Vitezica et  al. [5] emphasized that replacing G by 
G+ αJ implies fitting a mean term µ assumed to have 
variance ασ 2

g  (with σ 2
g  the additive genetic variance), 

arguing that the mean of random breeding values (of 
genotyped animals) should also be a random effect. The 
authors further showed that this is an equivalent model 
to fitting a single genetic group for genotyped animals 
explicitly with group proportion for their non-genotyped 
relatives given by ‘pedigree regression’, A12A

−1
22 1 . Simi-

larly, Fernando et al. [18] proposed to fit a (fixed) mean 
for genotyped animals in SS-GBLUP implementations 
fitting a marker effect or hybrid model (rather than the 

(5)G⋆ = βG+ αJ,

(6)α = [tr(A22)− tr(G)]/n2

(7)
β =

[

tr(A22)− 1′A221

/

n2

]/[

tr(G)− 1′G1

/

n2

]

,

(8)α =
(

1′A221− 1′G1
)/

n22 and β = 1.

breeding value model) to account for inappropriate cen-
tering of allele counts or imputation error. A simulation 
study considering such models for populations under 
selection, confirmed that estimates for µ represented the 
mean GEBV of genotyped individuals when observed 
genotypes were centered by their mean frequencies [19].

Moreover, Vitezica et al. [5] suggested that α could be 
interpreted as twice the so-called FST or fixation index, 
which gives the average relationships of gametes for a 
given base population. They pointed out that the FST 
based adjustment to change base population described 
by Powell et al. [20] translates to a modification of G with 
α as above [see Eq. (5)] and β = (1− α/2).

However, please note that, depending on the choice 
of values for α and β , G⋆ is not guaranteed to be positive 
definite. Interpretation of α as a variance implies a posi-
tive value. The adjustments of form of Eq. (5) were pro-
posed for the scenario in which  markers were centered 
using their observed frequencies—different choices for P 
could readily yield elements of GM  much larger than of 
A22  and thus a negative estimate for α or an invalid G⋆ , 
and should not be used naively.

Modifying the NRM to match the GRM
An alternative is to scale the NRM to be similar to the 
GRM, so as to account for ancestral relationships that 
are  captured by genomic information but not the pedi-
gree. This is similar to earlier attempts to account for 
prior inbreeding in genetic evaluation; see Van Raden 
[21]. Let γ represent the degree of ‘self-relationship’ 
among the base animals in the pedigree. Christensen [6] 
then proposed to replace A with:

Using the Sherman–Morrison matrix identity, gives the 
inverse:

as 1′A−1 =
(

1′F

... 0
)

 , with F denoting the number of found-
ers in the pedigree.

This modification is of the same form as the FST based 
adjustment of G [20]. Indeed, Garcia-Baccino et al. [13] 
showed that γ can also be interpreted as twice the FST 
index. Hence, it attempts to change the base population 
for pedigreed individuals.

Legarra et  al. [7] subsequently demonstrated that the 
same adjustment can be obtained by augmenting the 
pedigree with a so-called meta-founder, a conceptual 
parent which replaces the unknown parents of founder 
animals in the pedigree, acting as both sire and dam. 
This framework is attractive as it allows for computation 

(9)Aγ = (1− γ /2)A + γ J.

(10)A−γ =
2

1− γ

[

A−1 −
γ

1− γ /2+ γ F

(

JF 0

0 0

)]
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of the terms required to build H−1 , specifically A−γ and 
the submatrix of Aγ  for genotyped animals, Aγ

22 , with 
minor modifications of commonly used existing algo-
rithms for these tasks. Moreover, multiple base popula-
tions are readily accommodated by allowing for separate 
metafounders and replacing the scalar γ with a positive 
definite matrix Ŵ with diagonal elements equal to the 
individual self-relationships and off-diagonal elements 
comprised of across population relationships. This makes 
it suitable for the analysis of crossbred populations; see, 
for instance, [22] for an application. Alternatively, meta-
founders can be thought of as a generalisation of the 
‘phantom parents’ to model genetic groups for unknown 
parents for genetic evaluation using pedigree information 
[23].

Let A−Ŵ  and AŴ

22  denote the equivalents to A−γ  and 
A
γ
22  for multiple meta-founders. Both [6] and [7] pre-

sented algorithms to evaluate the terms required to set 
up H−1 , A−γ or A−Ŵ and Aγ

22 or AŴ

22 recursively, extend-
ing the procedures of Quaas [24] and Colleau [25]. Simi-
larly, both described likelihood based approaches to 
estimate γ or Ŵ . Centering marker counts by 2P = J and 
with MC = M − J denoting the centered matrix of allele 
counts, this requires maximising:

with respect to the elements of Ŵ , with

Variable s represents a measure of heterozygosity, similar 
to s = 2

∑

i pi(1− pi) above. While estimation of Ŵ from 
Eq. (11) involves numerical optimisation, Eq. (12) is of 
closed form and s can be obtained directly. Alternatively, 
Ŵ and s can be estimated based on summary statistics. 
For a single metafounder [7],

and

Subsequently, Garcia-Baccino et  al. [13] described gen-
eralised least squares estimators for γ or Ŵ . For a single 
metafounder,

(11)

log L ∝ −
m

2

(

n2 log(s)+ log
∣

∣

∣
AŴ

22

∣

∣

∣
+

1

s
tr
(

A−Ŵ

22 MCM
′
C

)

)

(12)s = tr
(

A−Ŵ

22 MCM
′
C

)/

n2 .

(13)s =
n2tr

(

MCM
′
C

)[

1− 1′A221/(2n
2
2)
]

− 1′MCM
′
C1

[

1− tr(A22)/(2n2)
]

n2tr(A22)− 1′A221

(14)γ =
1′MCM

′
C1/s − 1′A221

n22 − 1′A221/2
.

where mi denotes the vector of uncentered allele counts 
for the i-th locus ( i = 1,m ). An estimate of γ is then 
obtained as twice the variance of µ̂i across loci. Fur-
thermore, [13] outlined corresponding maximum likeli-
hood schemes, based on the assumption that the µi are 
normally and independently distributed. The authors 
presented a simulation study for a single metafounder, 
reporting that both methods estimated γ accurately while 
the summary statistics based approach tended to yield 
overestimates.

As noted by Strandén et al. [26], quantities µ̂i given in 
Eq. (15) are estimates of (twice) the founder allele fre-
quencies as proposed by McPeek et  al. [27]. These are 
readily calculated for large numbers of genotyped ani-
mals, using:

where Aij are the submatrices of A−1  corresponding to 
the partitioning of A  for genotyped and non-genotyped 
individuals. Hence, A−1

22 1 in Eq. (15) can be obtained 
by using sparse matrix calculations without the need to 
invert a large matrix, requiring the factorisation of A11 
instead [26].

‘Correction factors’ in building H−1

In addition, it has been suggested to weigh G−1 and A−1
22   

differently when constructing H−1 , i.e.

or similar. Suitable values for τ and ω were commonly 
determined experimentally by evaluating their effect 

on the inflation of genomic breeding values. Reduction 
in bias for values different from unity with little effect 
on accuracy have been reported for dairy cattle genetic 
evaluation [28, 29]. In particular, reducing the weight 
on A−1

22   appeared advantageous ( ω < 1 ) by reducing the 
effects of a high proportion of incomplete pedigrees [30]. 
Garcia-Baccino et  al. [13] emphasized that the meta-
founder approach would act in a similar fashion, albeit 
with a theoretically justified basis. Martini et  al. [31] 

(15)µ̂i =

(

1′A−1
22 1

)−1
1′A−1

22 mi,

(16)A−1
22 = A22 − A21

(

A11
)−1

A12 ,

(17)H−1 = A−1 +

(

0 0

0 τG−1 − ωA−1
22

)
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showed that weighting of G−1  and A−1
22   as in Eq. (17) is 

equivalent to replacing the diagonal block for genotyped 
animals in H [see Eq. (1) above] with:

which can be thought of as a weighted harmonic mean of 
G and A22 . Note that, depending on the choice of τ and ω , 
G⋆ again is not guaranteed to be positive definite.

Methods
Simulation
To examine the effects of different methods of aligning 
G and A , data were simulated using the software package 
QMSim  [32] adopting the scenario used by [5] and [13] to 
mimic a livestock population under selection (Parameter 
file available at http://githu b.com/alega rra/metaf ounde r); 
see their papers for details. This was modified slightly to 
consider a trait recorded on both sexes and by reducing 
the number of markers. In brief, this yielded records and 
genotypes comprised of allele counts for 46,500 loci for 
2800 unselected animals with unknown parents in gen-
eration 0 and 2600 animals in each of 10 overlapping gen-
erations, 28,800 in total. Records were sampled for a trait 
with a phenotypic variance of 10 and heritability of 0.3. 
Parents of the next generation were selected based on 
their breeding values, obtained by BLUP using the (pedi-
gree) numerator relationship matrix. Selection involved 
replacement of 80 out of 200 sires and 520 out of 2600 
dams in each generation. A total of 25 replicates were 
obtained and analysed.

Data were analysed by considering successive subsets of 
genotypes in generations i through to 10, for i = 0, 2, 4, 7 
and 10. Markers with minor allele frequencies lower than 
0.02 were disregarded. In addition, a ‘pedigree BLUP’ 
analysis was carried out, ignoring all genotypes. Records 
and pedigree information for all generations were used 
throughout. Restricted maximum likelihood analyses to 
estimate genetic and residual variances were carried out 
by fitting a linear model with an overall mean as the only 
fixed effect and animals’ genetic merit as random effects, 
obtaining predicted breeding values at convergence.

The inverse of the joint relationship matrix between 
genotyped and non-genotyped animals was built in three 
ways. First, H−1  was constructed without any attempt 
to align G  and A , referred to as model M0. Second, for 
model MG the GRM was augmented by αJ as proposed by 
Vitezica et al. [5]. Preliminary analyses had shown negli-
gible differences in results for MG to corresponding analy-
ses using the forms of adjustment suggested by [6] or 
[20], and the latter were thus not examined any further. 
Lastly for model MA, A−1  and A−1

22   in H−1  [see Eq. (2)] 

(18)G⋆ =

(

τG−1 + (1− ω)A−1
22

)−1
,

were replaced with A−γ and its submatrix for genotyped 
individuals, A−γ

22  , with G−1  as for M0. This was done by 
augmenting the mixed model with a single meta-founder. 
The degree of self-relationship, γ , for each subset of gen-
otypes considered was estimated using the generalised 
least-squares procedure described by Garcia-Baccino 
et al. [13] and A−γ and A−γ

22  were built following Legarra 
et al. [7].

In turn, GM was constructed using up to four different 
sets of allele frequencies to center M. The first, denoted 
as all, was calculated using all observed genotypes in 
the subset, as is common practice. Second, only the geno-
types for the first generation available were used, yield-
ing case 1st. For comparison, the third scheme, fou, 
considered the founder frequencies, i.e. for individuals 
in generation 0. Finally, all frequencies were assumed to 
be equal to 0.5 (half). No weighted averaging between 
G  and A  was performed, i.e. � = 1 was used. Instead, 
safely positive definite matrices G were ensured by aug-
menting their diagonal elements with a constant of 0.05.

The examined summary statistics included mean EBV 
for each generation and coefficients for the regression 
of true on predicted breeding values for individuals in 
generation 10. In addition, mean GEBV per generation 
for each genomic analysis were deviated from the cor-
responding PEBV values, after standardising the ‘loca-
tion’ of curves by subtracting the mean GEBV or PEBV 
for generation 0 from the respective means for all gen-
erations. A measure of discrepancy between estimates of 
genetic trends for different analyses was then calculated 
as the Frobenius norm of the resulting vector. Standardi-
sation ensured that this quantity reflected only differ-
ences in shape of the trajectories.

Analyses were carried out using our mixed model soft-
ware WOMBAT, building H−1 by using a recently added 
module to carry out the associated calculations [33, 34].

Application
Methods were also tested for Australian sheep data, 
using records from the LAMBPLAN [9] maternal breeds 
genetic evaluation for the trait ‘number of lambs born in 
one year old ewes’ (ynlb), defined as number of lambs 
born per ewe mated. A total of 19,564 ynlb records 
were collected on ewes born between 2007 and 2016. 
Of the ewes with records, 905 were genotyped. In addi-
tion, there were 275 animals in the pedigree with geno-
types available but no records, mostly sires. This yielded a 
total of 1180 genotypes included in the SS-GBLUP analy-
ses. Genotypes were comprised of marker allele counts 
from either 12 or 50  K ovine SNP chips (Illumina Inc., 
San Diego, CA, USA), with 12  K genotypes imputed to 
50 K. Table 1 summarizes numbers of records and num-
bers of genotyped ewes per year of birth, showing that 

http://github.com/alegarra/metafounder


Page 6 of 11Meyer et al. Genet Sel Evol  (2018) 50:39 

genotyped animals were concentrated in the more recent 
data. The pedigree records available included 34,947 ani-
mals, extending back to animals born in the late 1980’s. 
However only animals born from the year 2000 onwards 
were considered in the calculation of genetic trends.

Data for ynlb were analysed using WOMBAT which 
involved fitting single trait animal models with a fixed 
effect for contemporary group (250 levels) and an addi-
tional random effect for service sire (291 levels). The 
genetic effect was again fitted either without genotypes as 
‘pedigree BLUP’, or with genotypes as SS-GBLUP fitting 
H−1 as described above: for M0, no attempt was made to 
align G with A , for MG, G was augmented with αJ , and 
for MA, the meta-founder approach with γ estimated 
from the data  was used. To construct GM , all observed 
genotypes (all) were used to calculate allele frequen-
cies. In addition, analyses were repeated assuming fre-
quencies of 0.5 (half) for MA only. For M0, two values 
of the parameter � (see Eq. (4)) were used to compute a 
weighted average of G and A , 1 as above and 0.5 as used 
in routine SS-GBLUP evaluations for Australian sheep 
[14].

Results
Simulation
Estimates of genetic trend for different analyses and 
amounts of genotypes available are shown in Fig.  1 for 
a single replicate (results for the subset comprising gen-
erations 2  to 10 were omitted). This is representative of 
the typical pattern observed for all replicates. All panels 
show mean PEBV as a reference. The latter were virtu-
ally identical to corresponding true means, scaled to zero 
for generation 0 (not shown). Considering genotypes for 
generation 10 only, allele centering strategies all and 
1st are the same and only all is shown. For model MG 
and 1st, the estimate of α when considering all geno-
types was negative and G⋆ was not positive definite, caus-
ing the analysis to fail.

Without modifications of A  or G , using observed fre-
quencies (all) to center allele counts, mean GEBV were 
shifted downwards. The resulting trend curve was paral-
lel to the corresponding curve of pedigree means when 
all animals were genotyped, i.e. individuals were ranked 
correctly and, without the need to align GEBV for gen-
otyped and non-genotyped animals, the shift is incon-
sequential. Indeed, in practical evaluation schemes, 

estimates are often scaled to a selected, fixed base, i.e. the 
‘shape’ rather than ‘location’ of estimated trend trajecto-
ries is important.

As fewer generations of genotypes were considered, the 
discrepancy between curves increased. For this method 
of centering, the mean of the genotyped animals used to 
determine the allele frequencies is forced to be zero [4]. 
As especially evident when considering genotypes in 
generation 10 only, this can lead to a marked distortion 
of the estimated trend. Conversely, as expected, using 
founder frequencies (generation 0, fou) resulted in trend 
estimates that are indistinguishable from the pedigree 
values for all subsets of genotypes (not shown). Conse-
quently, using only the first generation of observed geno-
types (1st) to estimate allele frequencies resulted in less 
biased estimates of trends but again altered the shape of 
the trajectory by forcing the mean GEBV for that genera-
tion to be zero. Similarly, assuming gene frequencies of 
0.5 yielded mean GEBV per generation that are reason-
ably close to the pedigree values. In part, this may be 
attributable to the fact that the mean allele frequency 
(across loci and replicates) in generation 0 was 0.48, i.e 
close to 0.5. However, whereas the average proportion 
of loci with frequencies in the middle deciles (0.4–0.6) 
was 24%, 13% of markers had frequencies in the extreme 
deciles ( < 0.1 or ≥ 0.9).

Estimates of α for MG for all increased with the first 
generation number for which genotypes were consid-
ered: values were 0.027, 0.041, 0.071 and 0.111 for geno-
types in generations 2 to 10, 4 to 10, 7 to 10 and 10 only, 
respectively (if all genotypes were considered, the esti-
mate was close to zero, 0.018, i.e. there was virtually no 
modification, as for M0). This yielded mean GEBV very 
close to mean PEBV when only genotypes in the last or 
last few generations were used, but less close agreement 
otherwise. The simulation involved strong selection and 
associated sizeable changes in allele frequencies over 
generations. While α corrects for changes in mean due 
to selection or drift, it does not allow for the accompa-
nying reduction in genetic variance from the conceptual 
base population [2]. Results suggest that estimates of a 
global α for all generations may not be sufficient if many 
generations are genotyped. Centering using fou or half 
for MG was not considered as these resulted in negative 
estimates of α and thus non-positive definite matrices G⋆.

Table 1 Distribution of numbers of records and ewes with genotypes and phenotypes across years of birth

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

No. records 953 835 1273 1000 1819 1535 2490 2674 3829 3156

No. genotypes – – – – 89 147 37 118 514 –
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Finally, modifying A  to align with G  yielded paral-
lel curves for all four types of centering. Estimates of γ 
decreased slightly as fewer generations of genotypes were 
considered, 0.548, 0.543, 0.540, 0.539 and 0.537 for gen-
erations 0 to 10 to generation 10 only. As above, using all 
observed genotypes (all) to construct G resulted in the 
largest shift, with the mean GEBV for genotyped animals 
forced to zero. However, fitting a metafounder yielded 
an estimate of the shift. For instance, for all these were 
−  3.50 (0–10), −  4.34 (2–10), −  5.16 (4–10), −  6.34 
(7–10) and − 7.56 (10 only). Subtracting these estimates 
from the corresponding mean GEBV then shifted the 
trajectories to be superimposed on the curve for mean 
PEBV. This held for all types of frequencies. Assum-
ing frequencies of 0.5, GEBV for the metafounder were 
expected to be zero, i.e. GEBV should have been aligned 
correctly. In practice, there were small deviations. This 
may, at least  in part, be attributed to sampling or other 
errors in the estimate of γ . Christensen [6] emphasized 

that, strictly speaking, γ should be estimated using 
observed phenotypes as well as genotypes, and reported 
slight overestimates when ignoring phenotypes.

There was little variation in results over replicates. 
Table  2 summarises selected means of the Frobenius 
norm of the vector of differences between mean EBV 
from pedigree and genomic analyses and their stand-
ard deviations across replicates. Mean Frobenius norms 
confirm the observations on a single replicate above: if 
founder allele frequencies were known and used to con-
struct G no alignments would be needed. In the absence 
thereof, fitting a metafounder and using the resulting 
estimates of its effect to account for the shift in GEBV 
due to selection yields comparable results. We also pro-
vide the corresponding statistics for the regression of true 
on predicted breeding values for individuals in the last 
generation. Mean regression coefficients were close to 
the theoretical value of unity when all animals were geno-
typed, using founder frequencies to center allele counts 
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Fig. 1 Estimates of genetic  trend[a] for a single replicate for different scaling methods and allele  frequencies[b][c]. [a]Simulated data, [b]Allele 
frequencies: ped ignoring genotypes (pedigree analysis), 1st using observed frequencies in first generation available, all using observed 
frequencies from all genotypes, and half assuming frequencies of 0.5, [c]Considering genotypes in selected generations: 0 to 10, 4 to 10, 7 to 10 
and 10 only
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or fitting a metafounder. For M0 with frequencies half 
and MG with all, some under-dispersion of GEBV 
(regression coefficients > 1 ) was apparent when only 
individuals in the last few generations were genotyped. 
This was not reflected in the corresponding mean norm 
values. For pedigree only analyses, the mean regression 
was 0.984 with standard deviation of 0.034.

Simulations considered the scenario where all animals 
in a generation were either genotyped or not. In practice, 
this is unlikely. Simulations were thus repeated delet-
ing genotype information for every third animal (not 
shown). For case M0 using observed frequencies, either 
all or 1st, reduced regression coefficients further, the 
more so the fewer genotyped generations were consid-
ered. For instance, for all and genotypes in generation 
10 only, the regression of true on predicted breeding val-
ues dropped to 0.55. Whereas standard deviations across 
replicates increased slightly, regression coefficients for 
the other cases differed little from the values given in 
Table  2, i.e. they remained close to unity. Correspond-
ing mean Frobenius norms (not shown) were somewhat 
smaller as fewer individuals were genotyped.

Application
Estimates of genetic trend for different analyses of the 
sheep data are shown in Fig. 2. Corresponding values of 

the Frobenius norm for deviations from ‘pedigree BLUP’ 
results are summarized in Table  3, together with esti-
mates of heritabilities and phenotypic variances.

As for the simulated data, estimates of genetic trend 
for SS-GBLUP without any attempts to align G  and 
A  (top panel) differed substantially from the pedigree-
based estimates, especially for the years with genotyped 
animals. Reducing the influence of genomic informa-
tion by replacing the GRM with the average of G  and 
A22  (� = 0.5 ) reduced differences markedly. Modifying 
G as suggested by Vitezica et al. [5] yielded a GEBV tra-
jectory which was mostly parallel to that for pedigree 
only analyses (middle panel; considering � = 1 only), i.e. 
of the correct shape but with some shift in location evi-
dent (for an estimate of α = 0.0263).

Results for analyses fitting a meta-founder shown 
in Fig.  2 are mean GEBV adjusted for the estimate of 
the meta-founder effect (in contrast to corresponding 
results in Fig.  1 which are mean GEBV prior to adjust-
ment for the meta-founder). The predicted value for the 
meta-founder was −  0.077 for � = 1 and an estimate of 
γ = 0.48 . Hence, estimated trends for all analyses agreed 
well, although there was a tendency for mean GEBV in 
the last few years to be slightly lower than correspond-
ing mean PEBV. Presumably this is, at least  partially, a 

Table 2 Selected means ( x̄ ) and standard deviations (SD) across replicates for the norm of the vector of mean breeding 
values per  generation deviated from  ‘pedigree only’ values and  for  the regression coefficients of  true on  predicted 
breeding value for animals in generation 10

a Model M0: No alignment between GRM and NRM, MG: Modifying the GRM by adding αJ , and MA: Extending the NRM to include a meta-founder with self-relationship 
γ

b Frequencies used to center marker allele counts—all: using all genotypes in the subset, 1st: using only genotypes in the first generation available, fou: using 
founder frequencies (generation 0), and half: assuming frequencies of value 0.5 throughout

M.a Fr.b Genotypes in generations

0–10 2–10 4–10 7–10 10 Only

x̄ SD x̄ SD x̄ SD x̄ SD x̄ SD

Norm for vector of mean breeding values

M0 all 0.10 0.04 1.19 0.03 1.39 0.07 1.68 0.12 2.53 0.09

M0 1st 0.10 0.04 0.41 0.03 1.27 0.08 1.82 0.13 2.53 0.09

M0 fou 0.10 0.04 0.07 0.01 0.06 0.02 0.05 0.02 0.04 0.01

M0 half 0.09 0.04 0.60 0.02 0.65 0.04 0.44 0.05 0.13 0.01

MG all 0.10 0.04 0.41 0.04 0.47 0.05 0.32 0.03 0.09 0.01

MA half 0.09 0.04 0.09 0.02 0.09 0.02 0.06 0.02 0.01 0.01

Regression of true on predicted breeding values

M0 all 0.992 0.020 0.883 0.021 0.841 0.028 0.784 0.033 0.728 0.035

M0 1st 0.992 0.020 0.979 0.020 0.921 0.020 0.806 0.026 0.728 0.035

M0 fou 0.992 0.020 0.991 0.021 0.989 0.021 0.980 0.021 0.944 0.023

M0 half 0.989 0.020 1.031 0.023 1.058 0.026 1.114 0.038 1.274 0.055

MG all 0.992 0.020 0.998 0.023 1.017 0.025 1.049 0.031 1.109 0.041

MA half 0.989 0.020 0.990 0.021 0.993 0.021 0.999 0.023 1.001 0.027
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reflection of the small number of genotypes available and 
resulting sampling errors.

Estimates of heritability and phenotypic variances var-
ied little between analyses, with the estimated variance 
ratio for the service sire effect equal to 0.04 throughout. 
Values for the discrepancy in genetic trends between SS-
GBLUP and pedigree BLUP analyses reflected observa-
tions for Fig. 2, with small numerical values which are an 
artifact of low phenotypic variances.

Discussion
Joint genetic evaluation of genotyped and non-genotyped 
animals in a single-step analysis has become a standard 
procedure. Results clearly illustrate that care has to be 
taken to model different means and conceptual founder 
populations appropriately, especially for populations 
under selection. In particular, estimates of genetic trends 
are easily distorted and can differ with the assumptions 
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Fig. 2 Estimates of genetic  trend[a] for different methods of scaling relationship matrices and assumed allele  frequencies[b]. [a]Sheep data for 
trait ‘number of lambs born in one year old ewes’, [b]Allele frequencies: ped ignoring genotypes (pedigree analysis) all_0.5 using observed 
frequencies (all genotypes) for � = 0.5 , all_1 using observed frequencies (all genotypes) for � = 1 , and half assuming frequencies of 0.5

Table 3 Estimated heritabilities and  norm of  the  vector 
of  mean breeding values per  generation deviated 
from  ‘pedigree only’ values for  different SS‑GBLUP 
analyses

a M0: No alignment between GRM and NRM, MG: Modifying the GRM by adding 
αJ , and MA: Extending the NRM to include a meta-founder with self-relationship 
γ

b Frequencies to center marker allele counts – all: using all genotypes in the 
subset and half: assuming frequencies of value 0.5 throughout
c Heritability
d Phenotypic variance

Modela λ Freq.b  h2c
σ
2

P
 d Norm

M0 1.0 all 0.08 0.56 0.185

0.5 all 0.08 0.56 0.049

MG 1.0 all 0.09 0.56 0.049

MA 1.0 all 0.11 0.57 0.031

1.0 half 0.09 0.58 0.025
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on gene frequencies or the way they are estimated. As 
reviewed briefly, various methods have been suggested 
to combine or align the pedigree-based and genomically-
derived relationship matrices or scale selected compo-
nents of H−1 to improve the accuracy or reduce the bias 
in GEBV from SS-GBLUP analyses. Moreover, most of 
these are easy to apply.

Current livestock improvement schemes typically have 
genotype information for the most recent generation(s) 
of animals only, especially for the more extensive indus-
tries such as sheep and beef cattle. Results show that both 
scaling of G  to align with A   or, vice versa, scaling A  to 
match G are effective for this scenario, with estimates of 
genetic trends in good agreement with true values (simu-
lation) or results from pedigree only analyses. However, 
when more generations of genotypes are considered, esti-
mated trajectories tend to be shifted somewhat (although 
still of the correct shape), especially when centering 
marker allele counts using all observed genotypes to esti-
mate gene frequencies. In this case, the meta-founder 
approach has an immediate advantage: the GEBV for 
the meta-founder provides an estimate for the shift in 
GEBV—and adjusting for it yields the correct location for 
the curve. The expectation for the latter is a mean of zero 
for the founder generation. For practical applications 
where models of analysis include many fixed effects (as 
in our sheep example) this may differ somewhat if fixed 
effects and animals are sufficiently confounded so that 
fixed effects remove some of the trend. Analogously, the 
shift may be estimated for MG by fitting an equivalent 
model including a genetic group effect [5], but this was 
not considered.

Moreover, for the meta-founder approach coefficients 
for the regression of true on predicted breeding values 
(simulation) were essentially equal to unity, while add-
ing αJ to G   resulted in slight deflation (coefficients > 1 ) 
when only genotypes in recent generations were consid-
ered. Adjusting A to align with G makes the genomic base 
of  the reference population. The parameter γ , estimated 
from the genomic information and ranging from 0 to 2, 
can be interpreted as the degree of homozygosity among 
the pedigree founders that would yield observed relation-
ships closest to those in G , where G is obtained assuming 
allele frequencies equal to 0.5. In other words, G refers to 
a conceptual, genomic base with maximum variability for 
all loci [35].

Conclusions
Alignment of pedigree-based and genomic relationship 
matrices for single-step genetic evaluation of populations 
under selection is essential. Making the pedigree based 
relationship to be compatible with genomic information 
by fitting meta-founders is simple and effective.
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