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Abstract 

Background: Genomic models that link phenotypes to dense genotype information are increasingly being used 
for infering variance parameters in genetics studies. The variance parameters of these models can be inferred using 
restricted maximum likelihood, which produces consistent, asymptotically normal estimates of variance components 
under the true model. These properties are not guaranteed to hold when the covariance structure of the data speci-
fied by the genomic model differs substantially from the covariance structure specified by the true model, and in 
this case, the likelihood of the model is said to be misspecified. If the covariance structure specified by the genomic 
model provides a poor description of that specified by the true model, the likelihood misspecification may lead to 
incorrect inferences.

Results: This work provides a theoretical analysis of the genomic models based on splitting the misspecified likeli-
hood equations into components, which isolate those that contribute to incorrect inferences, providing an informa-
tive measure, defined as κ , to compare the covariance structure of the data specified by the genomic and the true 
models. This comparison of the covariance structures allows us to determine whether or not bias in the variance 
components estimates is expected to occur.

Conclusions: The theory presented can be used to provide an explanation for the success of a number of recently 
reported approaches that are suggested to remove sources of bias of heritability estimates. Furthermore, however 
complex is the quantification of this bias, we can determine that, in genomic models that consider a single genomic 
component to estimate heritability (assuming SNP effects are all i.i.d.), the bias of the estimator tends to be down-
ward, when it exists.
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provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic models that incorporate dense genotype infor-
mation are increasingly being used and studied to infer 
variance parameters [1–4]. We define a genomic model 
as any linear mixed model (LMM) that links a phenotype 
to multiple genotypes without knowledge of those that 
are associated with the phenotype. We refer to a gen-
eral set of genotypes as single nucleotide polymorphisms 
(SNPs) and to the set of genotypes associated with the 
phenotype as quantitative trait loci (QTL). The variance 

parameters of the LMM can be inferred using restricted 
maximum likelihood (REML) [5], which produces con-
sistent, asymptotically normal estimators of variance 
components, even if normality does not hold and the 
number of QTL increases dramatically, tending to infin-
ity [6]. These asymptotic properties of the REML estima-
tors are not guaranteed to hold when the likelihood of the 
genomic model used for inference differs substantially 
from the likelihood of the true model that conceptually 
generated the data. In such a situation, the likelihood is 
said to be misspecified. In a Gaussian setup, given the 
fixed effects, this will be the case when the covariance 
structures of the data specified by the genomic and the 
true models differ.
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The correct covariance structure (referred to in our 
work as GQ ) requires knowledge of the QTL. Since these 
are typically unknown, in practice, the genomic model 
makes use of the available SNP genotypes instead in 
order to compute a covariance structure (referred to in 
our work as G ), leading to misspecification of the likeli-
hood. The patterns of realized relationships at different 
sets of loci vary across the genome [7]. Because of this, G 
may provide a poor description of GQ , and the likelihood 
misspecification may lead to biased estimators of vari-
ance parameters.

REML was first implemented with a genomic model in 
[1], where the focus of inference was the proportion of 
the variance of a quantitative trait explained by the LMM, 
including all genotyped SNPs simultaneously. In more 
recent years, concerns have been raised about the quality 
of the inferred variance parameters when genomic mod-
els are used without directly addressing the problem of 
likelihood misspecification. Speed et  al. [4] argued that 
uneven linkage disequilibrium (LD) between SNPs can 
lead to upward or downward bias of variance param-
eters estimators. The consequences of using G instead of 
GQ on the likelihood were also investigated by [8]. These 
authors used the singular value decomposition of G and 
expressed the likelihood function of the genomic model 
as a function of these decomposition, concluding that the 
likelihood-based estimators are unreliable because they 
are sensitive to small perturbations on the eigen-values. 
This work generated back-and-forth discussions [9, 10].

The problem of misspecification of the likelihood of the 
genomic model was first raised by [11] and was studied 
using simulation by [12]. However, in [12] the authors 
addressed the problem by redefining the variance param-
eters according to the genomic models. In our work, 
we compare the variance parameters estimators to the 
parameters defined by the true model, as previously stud-
ied by [13]. The assumptions posed by [13] on the true 
model, however, differ substantially from those posed by 
our study, which can lead to different conclusions. Jiang 
et  al. [13] assumed that the number of QTL associated 
with a phenotype are large enough to be considered infi-
nite, an assumption which we consider rather unrealistic, 
and therefore our study assumes that the number of QTL 
is finite, although possibly very large.

This work provides a theoretical analysis based on split-
ting the likelihood equations into components, isolating 
those that contribute to incorrect inferences. We describe 
a true model that associates a phenotype with QTL, and 
we use its likelihood as a basis for comparison with the 
likelihood of the genomic models. This theory was used 
to understand the potential bias of REML estimators of 
variance components under different scenarios, each 

with different assumptions on the true model, that are of 
interest in quantitative genetics studies.

Methods
True and genomic models
We start this section by describing a general model that 
links phenotypes of a complex trait to genotype data:

where µ is the overall mean, W is a n× s standardized SNP 
genotypes matrix (with Wij = (Zij − 2θj)/

√

2θj(1− θj) , 
E(Wij) = 0 , and Var(Wij) = 1 ; Zij ∈ {0, 1, 2} is the count 
of the minor allele at the j-th SNP with minor allele fre-
quency (MAF) θj , of the i-th individual, for all i = 1, . . . , n 
and j = 1, . . . , s ), b ∼ N(0, Isσ

2
b ) is an s× 1 vector of ran-

dom SNP effects and ε ∼ N(Inσ
2
εQ
) is an n× 1 vector 

of the model’s residuals. In the true model, W .= WQ is 
a n× q ( q ≤ s ) matrix containing only the QTL, and all 
the elements and parameters that describe the model are 
sub-indexed with Q . In the genomic model, W contains 
s = m+ q SNPs, with m = 0, . . . , s the number of mark-
ers (non causative mutations). When m = 0 , we are in 
fact in the case of the true model, and when m = s the 
genomic model contains no QTL in the SNP data.

Variance components and REML estimation
The covariance structure specified by the true and 
genomic models are GQ = q−1WQW

′
Q and G = s−1WW′,  

respectively, which also define the relationships between 
individuals at the genotype level [14]. Let σ 2

T = sσ 2
b  (total 

variance due to the genotypes), and γ = σ 2
T/σ

2
ε  , and 

define the matrix V(γ ) .= V = γG+ In , we then have that  
Var(y | W) = Var(Wb)+ Var(ε) = σ 2

b
WW′ + σ 2

ε In = 
 σ 2
T
G+ σ 2

ε In = σ 2
ε V .

In genetics studies, the interest lies in estimat-
ing the narrow-sense heritability, i. e. the pro-
portion of phenotypic variance explained by the 
genotypes. Under the true model, the heritability is 
defined as h2 = σ 2

TQ
/(σ 2

TQ
+ σ 2

εQ
) = γQ/(γQ + 1) . 

Analogously, under the genomic model we have 
h2gen = γ /(γ + 1) . When we fit the true model 
(QTL only), limn→∞ γ̂Q = γQ and consequently 
limn→∞ ĥ2 = limn→∞ γ̂Q/(γ̂Q + 1) = h2 , for any num-
ber of QTL [5], even if normality does not hold, as 
demonstrated by [6] using large-sample theory. We 
also used large-sample theory to evaluate the likeli-
hood of the genomic model, which is misspecified to 
the likelihood of the model that conceptually gener-
ated the phenotypes. Intuitively, if when we fit the 
genomic model, we obtain limn→∞ γ̂ = γQ , then 
limn→∞ ĥ

2

gen = limn→∞ γ̂ /(γ̂ + 1) = h2 . This means 
that if limn→∞ E(γ̂ ) = γQ , then limn→∞ E(ĥ

2

gen) = h2 . 

(1)y =1nµ+Wb+ ε,
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Therefore, because REML will yield the estimator γ̂ , we 
focus our analysis on E(γ̂ ).

Define P(γ ) .= P = V−1 − V−11n
(

1′nV
−11n

)−1
1′nV

−1 . 
The REML log-likelihood of the genomic model is [15]:

and by equating its gradient to zero at the point of maxi-
mum, γ̂ is the root of the REML equation [16]:

Using the eigen-decomposition G = U�U′ , the REML 
Eq. (3) can be written as a function of γ (see “Appendix 
1”):

such that γ̂ is the root of g(γ ) . Now, since 
(y′Ui)

2 −→ µ2(1′nUi)
2 + (b′QW

′
QUi)

2 for 
n sufficiently large (see “Appendix 2”), with 
(b′QW

′
QUi)

2 ∝
∑n

k=1(U
′
iUQk)

2
�Qk , we can write the 

non-observable REML function at the root as the follow-
ing (see “Appendix 3”):

We refer to Eq. (5) as non-observable because it is written 
as a function of UQ and �Q , which cannot be observed 
directly when only phenotype and genomic data are 
available, and we have no knowledge about the QTL. 
The use of such function is purely theoretical as an aid to 
obtaining deeper understanding of REML mechanisms. 
In practical implementations, we find the root of Eq. (4) 
to obtain γ̂.

Genomic models for scenarios of interest in quantitative 
genetics
We evaluated genomic models for SNP data consist-
ing of QTL and markers that can be either uncorre-
lated or correlated, considering two configurations: (i) 
QTL plus markers and (ii) markers only. The covariance 
structure specified by these configurations, as well as 
their eigen-decomposition are denoted respectively by 
GQM = UQM�QMU′

QM and GM = UM�MU′
M.

Before we proceed to define our scenarios of interest 
and evaluate κi for each of them, we provide a brief 

(2)

ℓ

(

γ , σ 2
ε | W

)

∝ − log
(

σ 2n
ε | V |

)

− log
(

σ−2
ε | 1′nV−11n |

)

− σ−2
ε y′Py,

(3)
y′PGPy

tr(PG)
− y′P2y

tr(P)
= 0.

(4)

g(γ ) =
n−1
∑

i=1

n−1
∑

j=1

(y′Ui)
2

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

+ nȳ2
n−1
∑

j=1

�j

1+ γ �j
,

(5)
n−1
∑

i=1

n−1
∑

j=1

∑n
k=1(U

′
iUQk)

2
�Qk

(1+ γ̂ �i)2

(

�i − �j

1+ γ̂ �j

)

= 0.

discussion about our assumptions for the true model. In 
the study by Jiang et  al. [13], the authors assumed that 
both the number of QTL ( q ) and the number of markers 
( m ) increase simultaneously with increasing SNP data 
density ( q,m → ∞ ). Define A as the matrix of expected 
relationships between individuals, such that 
E(GQ) = E(G) = A [17]. Then 
limq,m→∞G = limq→∞GQ = A , and using the eigen-
decompositions A = UA�AU

′
A , GQ = UQ�QU

′
Q and 

G = U�U′ , we can state that limq,m→∞U =
limq→∞UQ = UA and limq,m→∞� = limq→∞�Q = �A . 
Therefore, limq,m→∞ g(γ ) = limq→∞ g

Q
(γ ) = g

A
(γ ) =

∑

n−1

i=1

∑

n−1

j=1
(y′UAi)

2(�Ai − �Aj)/[(1+ γ �Ai)
2(1+ γ �Aj)]

+nȳ
2
∑

n−1

j=1
�Aj/(1+ γ �Aj) , meaning that the REML 

functions of the true and genomic models become equal 
with increasing SNP data density. Because 
limn→∞ E(γ̂Q ) = γQ [6], if limq,m→∞ g(γ ) = limq→∞
g
Q
(γ ) , it is straightforward that limn→∞ E(γ̂ ) = γQ.
We consider that the assumption that both q and m 

increase simultaneously with increasing SNP data den-
sity is too strong. Unless we consider the true model to 
be the infinitesimal model (in which a phenotype is gen-
erated by a countable infinite number of QTL, each with 
very small effect), it is most likely that the number of 
QTL will be finite (it may still be large, but finite). Thus 
we assumed a fixed and finite number of QTL for the 
true model, and therefore GQ �= A . Our main objective 
was to evaluate how much of the variability in the pheno-
types can be captured by G , potentially leading to γ̂ being 
biased to γQ.

We used simulations to support the theoretical analysis 
of the REML estimators of h2 = γQ/(γQ + 1) when using 
genomic models. A preliminary study indicated that 
2000 individuals were enough to ensure the asymptotic 
properties of REML under the true model. The simula-
tions were performed for eight scenarios that differed 
in population structure (completely unrelated or related 
individuals) and genetic architecture, in the linkage dis-
equilibrium between QTL and markers, and the MAF of 
the QTL. We assumed independence between MAF and 
effect sizes when simulating QTL effects, and phenotypes 
were simulated using scaled genotypes, with a heritabil-
ity parameter h2 = 0.05, 0.15, . . . , 0.95 . 20,000 SNPs were 
simulated and for each scenario we estimated the herit-
ability for 500 replicates that assigned 100 SNPs as QTL, 
and for 500 replicates that assigned 3000 SNPs as QTL. 
The algorithms used for the simulations can be found 
in appendices G to J. For each scenario, the heritability 
was estimated using the true model (QTL only), and two 
genomic models, one containing the QTL plus the mark-
ers, and one containing the markers only.
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Results
Conditions for unbiased or biased REML estimators
The key to evaluating the bias of γ̂ to the true parameter 
γQ is the term 

∑n
k=1(U

′
iUQk)

2
�Qk for every i = 1, . . . , n , 

in Eq. (5). This term corresponds to the diagonal of 
U′UQ�QU

′
QU . The off-diagonals of this matrix do not 

feature in the likelihood of the genomic models, as can 
be seen in Eq. (5), and thus, are not relevant to the bias of 
γ̂ . Nonetheless, we performed a brief analysis of the off-
diagonal elements in our simulations, and verified that 
their values are centered at zero and within the inter-
val (−  0.15,0.15), regardless of the scenario. To simplify 
notation, we define:

Here, we set out the conditions for asymptotically unbi-
ased or biased γ̂ , and in the following subsections we give 
details on how we arrived at these conditions:

(1) κi = �i , ∀ i = 1, . . . , n =⇒ limn→∞ E(γ̂ ) = γ
Q
 

(unbiased)
(2) κi = c, ∀ i = 1, . . . , n =⇒ limn→∞ E(γ̂ ) = 0 

    (γQ cannot be estimated)
(3) κi < �i , for most i = 1, . . . , n =⇒ limn→∞ E(γ̂ ) < γ

Q
 

    (biased: downwards)
(4) κi > �i , for most i = 1, . . . , n =⇒ limn→∞ E(γ̂ ) > γ

Q
    

(biased: upwards)

Note that h2 and h2gen are monotone increasing to γQ and γ 
respectively, meaning that if we have 0 < γ− < γQ < γ+ , 
such that h2− = γ−/(γ− + 1) and h2− = γ+/(γ+ + 1) , then 
h2− < h2 < h2+ . Thus, the direction of the bias of ĥ

2

gen for 
h2 is the same as that of the bias of γ̂ for γQ.

Unbiased estimators
We know that limn→∞ E(γ̂Q ) = γQ [6]. This holds for 
any number q of QTL, regardless of their MAF and cor-
relation between them. Moreover, in the non-observa-
ble REML equation, κQi = �Qi . This means that for any 
set of eigen-values from any G , for n sufficiently large, 
limn→∞ E(γ̂ ) = γQ if, and only if, the structure of the 
non-observable REML equation is as:

meaning that γ̂ is unbiased for γQ if, and only if, κi = �i , 
for all i = 1, . . . , n.

(6)
n

∑

k=1

(U′
iUQk)

2
�Qk = κi, ∀ i = 1, . . . , n.

(7)
n−1
∑

i=1

n−1
∑

j=1

�i

(1+ γ̂ �i)2

(

�i − �j

1+ γ̂ �j

)

= 0,

Biased estimators
There are two cases in which γ̂ is biased to γQ : (1) κi = c 
for i = 1, . . . , n− 1 , such that c is a positive constant; 
(2) κi = ai �= �i for i = 1, . . . , n− 1 , such that ai > 0 . 
Note that because the G matrix is built with centered 
and scaled genotypes, its eigen-decomposition has n− 1 
degrees of freedom, and κn = �n = 0 always.

In the first case that γ̂ is biased to γQ , where κi = c for 
i = 1, . . . , n− 1 , we have:

Only γ̂ = 0 guarantees the identity in Eq. (8). Therefore, 
when κi = c for i = 1, . . . , n− 1 , no variance from the 
genomic data can be captured by REML.

We now analyze the second case where κi = ai for 
i = 1, . . . , n− 1 . If the relationship between ai and �i is lin-
ear, i.e. ai = b�i , then Eq. (7) ensures limn→∞ E(γ̂ ) = γQ . 
However, because 

∑n
i=1 κi =

∑n
i=1 �i = n − 1 , ai and �i 

cannot be linearly related, and γ̂ will be biased to γQ . We 
have now:

To understand the bias in this case, we will go through 
some details about ai > 0 . Let ai = �i + bi , with bi ≥ −�i 
and 

∑n
i=1 bi = 0 (because 

∑n
i=1 κi =

∑n
i=1 �i ). Thus, γ̂ 

satisfies

From the unbiased case, we know that 
∑n−1

i=1

∑n−1
j=1 �i(�i − �j)/[(1+ γ̂ �i)

2(1+ γ̂ �j)] |γ̂=γQ= 0  . 

This means that if 
∑n−1

i=1

∑n−1
j=1 bi(�i − �j)/

[(1+ γ̂ �i)
2(1+ γ̂ �j)] < 0 , (10) will hold only if 

∑

n−1

i=1

∑

n−1

j=1
�i(�i − �j)/[(1+ γ̂ �i)

2(1+ γ̂ �j)] > 0 . Because the  
latter is monotone decreasing on γ̂ , only an estimator  

γ̂ < γQ will result in 
∑n−1

i=1

∑n−1
j=1

�i

(1+γ̂ �i)
2

(

�i−�j

1+γ̂ �j

)

 > 0.  

Now, if 
∑n−1

i=1

∑n−1
j=1 bi(�i − �j)/[(1+ γ̂ �i)

2(1+ γ̂ �j)] 
> 0 , then we have analogously that γ̂ > γQ.

(8)
n−1
∑

i=1

n−1
∑

j=1

c

(1+ γ̂ �i)2

(

�i − �j

1+ γ̂ �j

)

= 0.

(9)
n−1
∑

i=1

n−1
∑

j=1

ai

(1+ γ̂ �i)2

(

�i − �j

1+ γ̂ �j

)

= 0.

(10)

n−1
∑

i=1

n−1
∑

j=1

�i

(1+ γ̂ �i)2

(

�i − �j

1+ γ̂ �j

)

+
n−1
∑

i=1

n−1
∑

j=1

bi

(1+ γ̂ �i)2

(

�i − �j

1+ γ̂ �j

)

= 0.
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Genomic models for scenarios of interest in quantitative 
genetics
QTL uncorrelated to markers
In “Appendix 5”, we show that for genomic models that 
include the QTL plus markers, in which markers are 
uncorrelated to the QTL,

Assuming that the number of SNPs is always much 
larger than the number of individuals ( q+m >>> n ), 
�QM1 > · · · > �QM,n−1 > �QMn = 0 . Since 
∑n

i=1 �QMi = n− 1 and because �QM1, . . . , �QMn follow 
the Marc̆enko-Pastur distribution when n is sufficiently 
large [18], we have:

Note in Eq. (12) that increasing the number m of markers 
will concentrate the eigen-values more strongly around 1. 
Hence, for m very large, 

(

�QMi − 1
)

→ 0 at a faster rate 
than m/q increases, and κQMi → �QMi − (m/q)δi . Since 
E(δi) = 0 , the ratio m/q determines only the variance of 
κQMi around �QMi . Therefore, a genomic model that con-
tains QTL plus markers that are uncorrelated to the QTL 
will yield γ̂QM such that limn→∞ E(γ̂QM) = γQ.

We also show in “Appendix 5” that for genomic models 
that include markers only,

Therefore, κi is a constant, and a genomic model that only 
contains markers that are uncorrelated to the QTL in the 
SNP data will always obtain γ̂M = 0 , when REML is used.

QTL correlated to markers
In “Appendix 6”, we show that for genomic models that 
include the QTL plus markers, in which markers are cor-
related to the QTL,

where σijl,Qjl = Cov(UQMijUQMil, GQjl) and 
σijl,jl = Cov(UQMijUQMil, GQMjl) . It is intuitive 
that σijl,jl ≥ σijl,Qjl , and therefore E(δi) ≤ 0 . Thus, a 
genomic model that contains all QTL and markers 
that are correlated to the QTL will yield γ̂QM such that 

(11)

κQMi = �QMi +
m

q

(

�QMi − 1− δi
)

,

∀ i = 1, . . . , n − 1, with E(δi) = 0.

(12)

(

1−
√

n

q+m

)2

< �QM,n−1 < · · · <

�QM1 <

(

1+
√

n

q+m

)2

.

(13)
κMi = 1+ δi, ∀ i = 1, . . . , n − 1, with E(δi) = 0.

(14)

κQMi = �QMi + δi, ∀ i = 1, . . . , n − 1,

with E(δi) =
n

∑

j=1

n
∑

l=1

(σijl,Qjl − σijl,jl),

limn→∞ E(γ̂QM) = γQ , only when σijl,jl ≈ σijl,Qjl , resulting 
in E(δi) ≈ 0.
E(δi) depends greatly on the distributions of the 

minor allele frequencies of the QTL and mark-
ers, fMAF(QTL) and fMAF(markers) , respectively. When 
fMAF(QTL) = fMAF(markers) , unless the number of QTL 
is very small (say q ≤ 10 ), we find that GQ and GQM 
are very similar. It is intuitively obvious that in this 
case σijl,jl ≈ σijl,Qjl . Hence, E(δi) ≈ 0 , and consequently 
limn→∞ E(γ̂QM) = γQ . When fMAF(QTL) �= fMAF(markers) , 
the larger the number m of markers, the more 
different GQ and GQM will be. Moreover, 
limm→∞GQM = limm→∞GM . This difference between 
GQ and GQM will ensure the inequality σijl,jl ≥ σijl,Qjl . 
Hence, E(δi) < 0 , and consequently E(γ̂QM) < γQ.

We show in “Appendix 4” that GQ = A +�Q , with the 
number of QTL q being fixed, GQM = A +�QM , and 
GM = A +�M . The relationship between individuals 
increases the speed of convergence of �QM → 0 (when 
fMAF(QTL) �= fMAF(markers) ) and of �M → 0 , when m 
increases. Therefore, Var

(

δQMij

)

 and Var
(

δMij

)

 decreases 
when the number of generations increases. Finally, we 
find that G and GQ are more similar when the number 
of generations increases. Thus, the choice of populations 
with increasing relationship between individuals tends 
to reduce the bias of heritability estimators (when these 
are biased). However, when fMAF(QTL) �= fMAF(markers) , 
stronger relationships are necessary, so the downward-
bias becomes less perceptible. The explanation for this 
is related to the range of the MAF. For any G = A +� , 
Var

(

δij
)

 for SNPs with low MAF is lower than Var
(

δij
)

 for 
SNPs with high MAF, and populations with more closely 
related individuals are necessary to compensate for this 
difference in Var

(

δij
)

 across different MAF ranges.
We also show in “Appendix 6” that for genomic models 

that include the markers only,

Equation (15) is not so straightforward to under-
stand analytically. Assume that we randomly pick just 
a few markers. These markers will most likely be in 
low LD with the QTL and κMi ≈ 0 , as shown in the 
previous section. When the density of marker data 
increases, we obtain Eq. (15). We show in “Appendix 
6” that limm→∞ κMi = limm→∞ κQMi . This means that 
limn→∞ E(γ̂M) ≤ limn→∞ E(γ̂QM) , with equality only 
when m → ∞.

(15)

κMi = 1+
n

∑

j=1

U2
MijδQjj +

n
∑

j=1

∑

l �=j

UMijUMil

(

ajl + δQjl

)

,

∀ i = 1, . . . , n − 1.
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Simulations
Table 1 summarizes what is expected regarding the esti-
mation of the heritability for a set of scenarios that are 
relevant in quantitative genetics studies, based on the 
theory detailed in the section Conditions for unbiased 
REML estimators. The REML estimation of γ was per-
formed on data containing QTL plus markers ( ̂γQM ) and 
markers only ( ̂γM ). It is known that γ̂M < γ̂QM , since the 
markers alone cannot capture more genetic variability 
than SNP data that contains both QTL and markers [12]. 
However, for scenarios in which markers are in LD with 
the QTL limm→∞ γ̂M = limm→∞ γ̂QM . When individu-
als are completely unrelated, such convergence is most 
probably unrealistic even with sequence data (although 
γ̂M approaches γ̂QM ). In populations with strongly related 
individuals γ̂M −→ γ̂QM for m finite and sufficiently large.

Figure  1 presents the simulation results for scenarios 1 
and 2, Fig. 2 presents the simulation results for scenarios 3, 
4 and 5, and Fig. 3 presents the simulation results for sce-
narios 6, 7 and 8. All three figures show the results for simu-
lations that assigned 3000 SNPs as QTL. The results for the 
simulations that assigned 100 SNPs as QTL differed from 
those presented in Figs. 1, 2 and 3 only by a larger variance 
around the same means. In all three figures, panel (a) shows 
the relationship between �i and κi , for the true model (QTL 
only) and for both genomic models evaluated (QTL plus 
markers and markers only); the relationship in the simu-
lated data agreed with the theory in the section Genomic 

models for scenarios of interest in quantitative genetics, for 
QTL uncorrelated and correlated to markers, respectively. 
In all three figures, panel (b) presents the confidence ellip-
ses for the simulated heritabilities ( h2sim = γsim/(1+ γsim) ), 
with a simulation parameter h2 = 0.05, 0.15, . . . , 0.95 , 
and the heritabilities estimated using REML 
( h2REML = γREML/(1+ γREML) ), for the true model (QTL 
only) and for both genomic models evaluated (QTL plus 
markers and markers only); h2sim was very stable around the 
simulation parameters, and h2REML had confidence intervals 
that agreed with the results in Table 1. Note that when QTL 
were correlated with markers, in scenarios 3 to 8, the vari-
ability of h2REML was smaller than that of h2REML when QTL 
were uncorrelated with markers, in scenarios 1 and 2. In all 
three figures, panel (c) presents the confidence ellipses for 
the simulated heritabilities ( h2sim = γsim/(1+ γsim) ), with a 
simulation parameter h2 = 0.05, 0.15, . . . , 0.95 , and the rel-
ative bias of h2REML ( RB(h2REML) = (h2REML − h2sim)/h

2
sim ). 

Note that when QTL were correlated with markers, in sce-
narios 3 to 8, the variability of RB(h2REML) was smaller than 
that of RB(h2REML) when QTL were uncorrelated with mark-
ers, in scenarios 1 and 2. Note as well, that the variability of 
RB(h2REML) decreases when h2sim increases. For scenarios 6, 
7 and 8, in which QTL were correlated with markers and 
fMAF(QTL) �= fMAF(makers) , we found that increasing the 
number of generations (thus, increasing the relationship 
between simulated individuals) decreases the bias of estima-
tion and the variability of h2REML and RB(h2REML).

(See figure on next page) 
Fig. 1 Simulation results for scenarios 1 and 2, consisting of one generation of completely unrelated individuals, with QTL and markers in complete 
linkage equilibrium (LE), for both fMAF

QTL
= fMAF

markers
 and fMAF

QTL
�= fMAF

markers
 . Simulations were performed with 3000 QTL generating the phe-

notypes, replicated 500 times. a shows the relationship between �i and κi , for the true model (QTL only) and for both genomic models evaluated 
(QTL plus markers and markers only);  b presents the confidence ellipses for the simulated heritabilities ( h2sim = γ

sim
/(1+ γ

sim
) ), with a simula-

tion parameter h2 = 0.05, 0.15, . . . , 0.95 , and the heritabilities estimated using REML ( h2REML = γ
REML

/(1+ γ
REML

) ), for the true model (QTL only) 
and for both genomic models evaluated (QTL plus markers and markers only); c presents the confidence ellipses for the simulated heritabilities 
( h2sim = γ

sim
/(1+ γ

sim
) ), with a simulation parameter h2 = 0.05, 0.15, . . . , 0.95 , and the relative bias of h2REML ( RB(h

2
REML) = (h2REML − h

2
sim)/h

2
sim)

Table 1 Relationship between γ and the REML estimators obtained from data with QTL plus markers ( γ̂QM ) and markers 
only ( γ̂M ), assuming q fixed and finite, m very large, m > q , and q+m >>> n

*Completely unrelated individuals
† limg↑ h2M = limg↑ h2QM = h2 for a large number g of generations (strongly related individuals)

Scenario Population MAF QTL/markers limn→∞

E(γ̂QM) E(γ̂M)

1 1 generation∗ fMAF
QTL

= fMAF
makers

Complete LE γ 0

2 1 generation∗ fMAF
QTL

�= fMAFmakers
Complete LE γ 0

3 1 generation∗ fMAF
QTL

= fMAFmakers
LD γ <<< E(γ̂QM)

4 2 generations fMAF
QTL

= fMAFmakers
LD γ << E(γ̂QM)

5 10 generations fMAF
QTL

= fMAFmakers
LD γ < E(γ̂QM)

†

6 1 generation∗ fMAF
QTL

�= fMAFmakers
LD <<< γ <<< E(γ̂QM)

7 2 generations fMAF
QTL

�= fMAFmakers
LD << γ << E(γ̂QM)

8 10 generations fMAF
QTL

�= fMAFmakers
LD < γ † < E(γ̂QM)

†



Page 7 of 21Cuyabano et al. Genet Sel Evol  (2018) 50:41 



Page 8 of 21Cuyabano et al. Genet Sel Evol  (2018) 50:41 

Fig. 2 Simulation results for scenarios 3, 4 and 5, consisting of one generation of completely unrelated individuals and two and 10 generations 
of related individuals, with QTL and markers in LD, for fMAF

QTL
= fMAF

markers
 . Simulations were performed with 3000 QTL generating the pheno-

types, replicated 500 times. a shows the relationship between �i and κi , for the true model (QTL only) and for both genomic models evaluated 
(QTL plus markers and markers only); b presents the confidence ellipses for the simulated heritabilities ( h2sim = γ

sim
/(1+ γ

sim
) ), with a simula-

tion parameter h2 = 0.05, 0.15, . . . , 0.95 , and the heritabilities estimated using REML ( h2REML = γ
REML

/(1+ γ
REML

) ), for the true model (QTL only) 
and for both genomic models evaluated (QTL plus markers and markers only); c presents the confidence ellipses for the simulated heritabilities 
( h2sim = γ

sim
/(1+ γ

sim
) ), with a simulation parameter h2 = 0.05, 0.15, . . . , 0.95 , and the relative bias of h2REML ( RB(h

2
REML) = (h2REML − h

2
sim)/h

2
sim)
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Fig. 3 Simulation results for scenarios 6, 7 and 8, consisting of one generation of completely unrelated individuals and two and 10 generations of 
related individuals, with QTL and markers in LD, for fMAF

QTL
�= fMAF

markers
 . Simulations were performed with 3000 QTL generating the phenotypes, 

replicated 500 times. Panel (a) shows the relationship between �i and κi , for the true model (QTL only) and for both genomic models evaluated (QTL 
plus markers and markers only); panel (b) presents the confidence ellipses for the simulated heritabilities ( h2sim = γ

sim
/(1+ γ

sim
) ), with a simulation 

parameter h2 = 0.05, 0.15, . . . , 0.95 , and the heritabilities estimated using REML ( h2REML = γ
REML

/(1+ γ
REML

) ), for the true model (QTL only) and for 
both genomic models evaluated (QTL plus markers and markers only); panel (c) presents the confidence ellipses for the simulated heritabilities 
( h2sim = γ

sim
/(1+ γ

sim
) ), with a simulation parameter h2 = 0.05, 0.15, . . . , 0.95 , and the relative bias of h2REML ( RB(h

2
REML) = (h2REML − h

2
sim)/h

2
sim)
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Discussion
We have performed a theoretical analysis of the likeli-
hood equations of genomic models based on splitting 
these equations into components in order to isolate and 
identify those that contribute to incorrect inferences. We 
have shown that the term in the likelihood equations that 
is responsible for producing potentially biased heritabil-
ity estimators ( ̂h

2

gen ) is in fact a measure that evaluates 
whether G provides a proper description of GQ or not.

The key measure to evaluate whether bias 
will arise in the REML heritability estimators is 
κi =

∑n
k=1(U

′
iUQk)

2
�Qk , for every i = 1, . . . , n , as we 

have shown in the section Conditions for unbiased 
REML estimators. Elements κ1, . . . , κn correspond to the 
diagonal of U′UQ�QU

′
QU , and the condition for unbi-

ased ĥ
2

gen is that the portion of variance explained by the 
i-th component of G (defined by �i ) is equivalent to the 
sum of weighted correlations between its correspond-
ing eigen-vector and the eigen-vectors of GQ , i.e. κi = �i . 
This identity is equivalent to saying that �Q and � are 
similar matrices in the general linear group of U′

QU . 
Evaluation of this similarity of �Q and � is much more 
informative than a direct comparison of the elements of 
GQ with those of G , or a comparison of their eigen-values 
(see Additional file 1, which presents the distribution of �i 
and κi , Additional files 2, 3 and 4, which present the scat-
terplots of �i versus (y′Ui)

2 , and Additional files 5 and 6, 
which present respectively a scenario where �QMi �= �Qi 
and κQMi = �QMi with E(ĥ

2

QM) = h2 , and a scenario 
where �Mi = �Qi and κMi �= �Mi with E(ĥ

2

M) �= h2 ). 
Hence, in the scenarios studied here, we can detect when 
a genomic relationship estimated by the SNPs correctly 
represents the true genetic relationships by verifying 
whether �Q and � are similar matrices in the general lin-
ear group of U′

QU , by comparing κi with �i . This compari-
son allows us to determine the presence and direction of 
the bias, as described in the section Conditions for unbi-
ased REML estimators.

Scenarios in which QTL and markers are in LE have 
been explored theoretically in other studies, with particu-
lar emphasis on the effect of the eigen-values of G on the 
likelihood of the (misspecified) genomic model [8, 13]. 
Although Kumar et al. [8] discussed the relevance of the 
difference between the eigen-vectors of G and GQ , they 
did not relate this difference expressed by the correlation 
between the eigen-vectors, implicit in κi , to the portion of 
variance explained by each �i and �Qk . The performance 
of genomic models in estimating heritability was assessed 
mainly by describing the sensitivity of the likelihood to 
changes in the eigen-values, under the Marc̆enko–Pas-
tur distribution [18]. Indeed, the likelihood depends 
sensitively on all the eigen-values, but evaluating the 
likelihood given a change in each eigen-value separately 

is not as informative as evaluating the REML equation 
given a change in the distribution of all eigen-values 
simultaneously.

Assuming that the number of individuals ( n ) is suf-
ficiently large, and that the numbers of QTL and mark-
ers ( q and m ) both increase with increasing density of 
SNP data such that limn,q,m→∞ n/(q +m) = c1 ∈ (0, 1) 
and limq,m→∞ q/m = c2 ∈ (0, 1) , Jiang et  al. [13] 
used the Marc̆enko–Pastur distribution of the eigen-
values to evaluate the limiting behavior of the term 
PGP/tr(PG)− P2/tr(P) in the REML Eq. (3) of the 
genomic model, proving that under these assump-
tions, ĥ

2

gen is unbiased and consistent. Although Jiang 
et  al. [13] stated that ĥ

2

gen still remains unbiased and 
consistent when QTL and markers are in LD, we have 
raised a particular concern about inferences of h2 in 
the case when MAF(QTL) �= MAF(markers), such as 
when QTL are rare mutations, for which the estimate 
of heritability are empirically known to be biased [1, 4, 
8, 19]. Two remarks about the approach used in [13] 
must be made at this stage. First, the limiting behavior 
of PGP/tr(PG)− P2/tr(P) relies strongly on the Marc̆
enko–Pastur distribution, which holds only when the 
SNPs are in complete LE (and thus individuals are unre-
lated, since family relationships would induce LD). The 
second remark is that LD between markers and QTL 
and the distribution of their MAFs may alter correla-
tions between phenotypes and genotypes, implied in 
y′PGPy and y′Py , and this was not evaluated by Jiang 
et al. [13], whereas in our study the correlations between 
phenotypes and genotypes are implied in κi (see "Appen-
dix 2 and 3"). Using our approach and the result that 
limq,m→∞G = limq→∞GQ = A [17], we demonstrated 
in section Genomic models for scenarios of interest in 
quantitative genetics, that the conclusions from Jiang 
et al. [13] about ĥ

2

gen are mathematically true, even when 
QTL and markers are in LD. However, in populations 
of unrelated individuals with QTL as rare mutations, 
an unrealistically large number (tending to infinity) of 
QTL would be necessary to ensure limq→∞GQ = A , 
and when we assume that the number of QTL is finite, 
limm→∞G �= GQ.

With the knowledge that the method proposed by Yang 
et  al. [1] may yield a biased ĥ

2

gen under some scenarios, 
several approaches have been proposed for solving the 
problem of biased estimates, exploring different genetic 
architectures of the trait and population structure. The 
theory presented in our study can be adapted to provide 
an explanation for the success of those approaches, and 
we offer an overview on how that can be done for five 
approaches.

First, addressing the different MAF of the SNPs, Speed 
et al. [4] suggests a weighting of the SNPs by their MAF, 
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which would give the same weighting to terms involving 
γ in the non-observable REML functions, owing to the 
change in the definition of the heritability. A G-matrix 
obtained using the SNPs suitably weighted according 
to the scenario will improve the relationship between 
κi and �i , reducing the bias of ĥ

2

gen . The definition of a 
suitable weight must be explored further, and the the-
ory provided in this study provides a tool that can be 
used for such investigations. The genomic model in (1) 
can be generalized to assume different weights to the 
SNPs by simply changing the assumption for the distri-
bution of b to b ∼ N(0,Dσ 2

b ) , such that D is a diagonal 
matrix of weights. The G-matrix must then be defined as 
G = WDW′/tr(D) to ensure that properties indicated in 
“Appendix 1” and theoretical evaluations in the Results 
section hold.

Second, and with the same objective of distinguishing 
SNPs by their MAF, Yang et al. [19] suggested a method 
that is analogous to that proposed in [1] by fitting the 
model with several genomic variance components, each 
of them relative to groups of SNPs with MAF values 
within the same range. In this approach, assuming the 
components to be independent, we can obtain a non-
observable REML equation for each genomic variance 
component to be estimated, and the analysis then follows 
exactly as we have presented here. This approach also 
generalizes the genomic model in Eq. (1) by assuming 
b ∼ N(0,Dσ 2

b ) , as described in the previous paragraph, 
with the difference that the values on the diagonal of 
D are to be estimated. Indeed the method is capable of 
removing the bias of ĥ

2

gen . However, as observed by [19], 
the increase in the number of variance components may 
increase the variance of ĥ

2

gen , especially when independ-
ence between the components cannot be ensured, and, 
depending on the scenario evaluated, the estimates may 
be less reliable than those obtained by fitting a single 
genomic variance component.

Edwards et  al. [20] suggested a third approach, which 
fits genomic models by including a variance component 
for SNPs grouped based on genomic features (i.e. genes 
and their gene ontology) to the model, which requires 
the use of prior information about the genomic data. The 
results of their study showed that a relevant amount of 
variance was attributed to the significant feature, and ĥ

2

gen 
in this approach can be evaluated with a non-observable 
REML equation for each component (SNPs grouped 
based on genomic features and SNPs not grouped based 
on genomic features), just as we suggest for evaluating 
ĥ
2

gen obtained with the approach proposed by [19]. It is 
important to note that the genomic feature model works 
better than a single component when the feature com-
ponent is enriched for the QTL; otherwise, this model 
can also lead to problems in the estimation of h2 . The 

advantage of grouping SNPs based on genomic features 
instead of MAF is that there are fewer variance com-
ponents, reducing the variance of ĥ

2

gen . The use of prior 
genomic information to fit genomic models with mutiple 
genomic variance components was previously suggested 
by Speed and Balding [21], who included a dynamic pro-
cedure to define a suitable partition of SNPs.

A fourth approach considers the situation where prior 
genomic feature information is absent and Bayesian mix-
ture models, such as BayesB [22] or BayesR [23], are rea-
sonable solutions for assigning different distributions to 
groups of SNP effects [20]. Again, non-observable REML 
equations for each component can be used to evaluate 
ĥ
2

gen based on the assumptions posed by the Bayesian 
mixture models, and the assumptions can be tuned using 
the information from our suggested theoretical analysis.

A fifth approach includes related individuals to study 
populations, which can greatly reduce the bias of ĥ

2

gen , 
when it exists. This is because rare QTL induce genetic 
relationships between individuals. In populations of nomi-
nally unrelated individuals the common markers will 
disguise those induced genetic relationships at the QTL 
( limm→∞GQM = A = In �= GQ ), drastically reducing 
the correlations between eigen-vectors (1/n)U′

iUQk and 
resulting in κi < �i . Conversely, in populations of related 
individuals, assuming no selection, the induced genetic 
relationships at the QTL will better reflect the kinship 
matrix ( GQ ≈ A ), improving the correlation between 
eigen-vectors (1/n)U′

iUQk and resulting in less biased ĥ
2

gen.
A last point to be raised in this discussion, concerns 

the direction of the bias of ĥ
2

gen . We show in the sec-
tion Genomic models for scenarios of interest in quan-
titative genetics, with our theoretical analysis, that 
when we consider a single genomic component in the 
model to estimate heritability (assuming SNP effects are 
all i.i.d.), when it exists, the bias of the estimator will 
tend to be downward. An exception is observed when 
fMAF

QTL
�= fMAF

markers
 and the number of QTL is smaller 

than the number of individuals. If genomic models are 
fitted including the QTL and markers, such that the 
total number of SNPs in the genomic data is smaller 
than the number of individuals, the heritability estima-
tor will present an upwards bias. This fact is related to 
rank(GQM) < n− 1 , as eigen-values that are zero are 
overestimated by κi . Increasing the number of markers 
will make rank(GQM) approach n− 1 , forcing only the 
last eigen-value to zero and the overestimation will no 
longer be present (see Additional file 7).

When multiple genomic components are consid-
ered in the model, overestimation of heritability may be 
observed even when the total number of SNPs is larger 
than the number of individuals. When different vari-
ance parameters are estimated for each component, the 
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multiple components approach is explicit, and overes-
timation of heritability will relate to components with a 
rank lower than n− 1 . When a single variance parameter 
is estimated for SNPs associated with pre-determined 
weights, the multiple component approach is implicit, 
and overestimation of heritability as observed in [24] may 
relate to κi overestimating the largest �i . Associating pre-
determined weights to the SNPs in the genomic model 
may inflate correlations U′

iUQk for eigen-vectors Ui that 
are associated with the highest eigen-values, resulting 
in κi > �i , while correlations U′

iUQk for eigen-vectors Ui 
that are associated with the lowest eigen-values will be 
deflated, resulting in κi < �i (see Additional file 8).

Conclusions
In a Gaussian setup, the likelihood of a genomic model is 
misspecified with respect to that of the true model that 
conceptually generated the data. When used for inferring 
variance parameters the misspecified likelihood may yield 
biased estimators of those parameters, and inferences 
must be interpreted with caution. Misspecification of the 
likelihood is due to the difference between the covari-
ance structures of the data specified by the misspeci-
fied and true models ( G and GQ ), and our study shows 
that the bias of REML estimators of variance param-
eters is linked to the relationship between the eigen-val-
ues and eigen-vectors of both models, occurring when 
κi =

∑n
k=1(U

′
iUQk)

2
�Qk �= �i . Moreover, comparison of 

κi with the eigen-value �i not only identifies the potential 
bias of variance components estimators, but is also a very 
informative method for comparing G with GQ . The eigen-
vectors reflect how each individual contributes to the pro-
portion of variance explained by the components of G and 
GQ (defined by �i and �Qk ), and if the contributions are 
similar, then κi ≈ �i , meaning that the covariance struc-
tures of the data specified by the genomic and the true 
models are equivalent. In mathematical terms, κi = �i is 
the same as stating that �Q and � are similar matrices in 
the general linear group of U′

QU . We have evaluated the 
similarity of �Q and � in a set of scenarios of interest to 
quantitative genetics studies, identifying those for which 
inferences must be interpreted with caution. Because of 
the many factors related to the genetic architecture that 
influence the similarity of �Q and � (LD between QTL 
and markers, presence and number of QTL in the SNP 
data, MAF, relationship between individuals) and the lack 
of information about the QTL, quantifying the bias (when 
it exists) of the estimators of variance parameters, is not 
trivial. Although the quantification of this bias is com-
plex, we can determine that in genomic models that con-
sider a single genomic component to estimate heritability 
(assuming SNP effects are all i.i.d.), the bias of the estima-
tor will tend to be downward, when it exists.
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Appendix 1: REML equation to REML function
Given any SNP genotypes matrix W with s SNPs, we 
define G = s−1WW′ = U�U′ where U and � are the 
eigen-decomposition matrices of G , the variance matrix 
V = γG+ In , such that n is the number of individuals in the 
population, and P = V−1 − V−11n

(

1′nV
−11n

)−1
1′nV

−1 . 
Using the eigen-decomposition of G , it is straightforward 
that V−1 = U(γ�+ In)

−1U′ . Thus,

and since (γ�+ In)
−1U′1n1′nU(γ�+ In)

−1 has ele-
ments n2ŪiŪj/

[

(1+ γ �i)(1+ γ �j)
]

 , and the scalar 
1′nU(γ�+ In)

−1U′1n = n2
∑n

i=1 Ū
2
i /(1+ γ �i),

We use the following properties of the eigen-decompo-
sition, when n is sufficiently large, to go through the next 
steps:
ED1.    �1 ≥ · · · ≥ �n−1 ≥ �n = 0;
ED2.    s < n =⇒ �i = 0 , ∀ i > s;
ED3.    

∑n
i=1 �i = n − 1;

ED4.       U = [U1 · · ·Un] : U′
i = [Ui1 · · ·Uin] , ∀ 

i = 1, . . . , n;
ED5.    �i > 0 =⇒ 1′nUi =

∑n
j=1 Uij = nŪi = 0;

ED6.    
∑

n

i=1

(

∑

n

j=1
Uij

)2

= n =⇒
∑

n

i=1
Ū

2
i
= n

−2
∑

n

i=1

(

∑

n

j=1
Uij

)2

= n
−1

 .

Thus, we have now that

where Ŵ = (γ�+ In)
−1 − n

[

ŪiŪk

]n

i,k=1
 . Therefore,

where,

(1) Ŵ�Ŵ = diag
(

�1

(γ �1+1)2
, . . . , �n

(γ �n+1)2

)

=⇒ y′UŴ�ŴU′y =
∑

n

i=1

(

y′Ui

γ �i+1

)2

�i

 ,

(16)P = U

[

(γ�+ In)
−1 − (γ�+ In)

−1
U

′
1n1

′
nU(γ�+ In)

−1

1′nU(γ�+ In)
−1

U′1n

]

U
′
,

(17)

P = U







(γ�+ In)
−1 −

�

n
�

i=1

Ū
2
i

1+ γ �i

�−1�

ŪiŪj

(1+ γ �i)(1+ γ �j)

�n

i,j=1







U
′
.

(18)

P = U







(γ�+ In)
−1 −

�

n
�

i=1

Ū
2

i I{�i=0}

�−1
�

ŪiŪj

�n

i,j=1







U
′ = UŴU

′
,

(19)

y′
[

PGP

tr(PG)
− P2

tr(P)

]

y = y′
[

UŴ�ŴU′

tr(Ŵ�)
− UŴ

2U′

tr(Ŵ)

]

y = y′UŴ�ŴU′y

tr(Ŵ�)
− y′UŴ

2U′y

tr(Ŵ)
,

(2) Ŵ
2 = (γ�+ In)

−2 − n
[

ŪiŪk

]n

i,k=1
=⇒

y′UŴ
2U′y =

∑n
i=1

(

y′Ui
γ �i+1

)2
− nȳ2

 ,

(3) tr(Ŵ�) =
∑n

i=1
�i

γ �i+1 =
∑n−1

i=1
�i

γ �i+1,
(4) tr(Ŵ) =

∑n
i=1

1
γ �i+1 − 1 =

∑n−1
i=1

1
γ �i+1.

Now, being γ̂ the solution of 
y′UŴ�ŴU′y/tr(Ŵ�)− y′UŴ

2U′y/tr(Ŵ) = 0 , then,

multiplying the identity by 
[

∑n−1
j=1 �j/(γ �j + 1)

][

∑n−1
j=1 1/(γ �j + 1)

]

,

rewriting with 
∑n−1

i=1 (y
′Ui)

2/(γ �i + 1)2 in evidence,

and symplifying further,

Finally, γ̂ is the root of what we now refer to as REML 
function,

(20)





n−1
�

j=1

�j

γ �j + 1





−1
n−1
�

i=1

�

y′Ui

γ �i + 1

�2

�i

−





n−1
�

j=1

1

γ �j + 1





−1�
n−1
�

i=1

�

y′Ui

γ �i + 1

�2

− nȳ
2

�

= 0,

(21)

n−1
�

i=1

�

y′Ui

γ �i + 1

�2

�i





n−1
�

j=1

1

γ �j + 1





−





n−1
�

j=1

�j

γ �j + 1





�

n−1
�

i=1

�

y′Ui

γ �i + 1

�2

− nȳ
2

�

= 0,

(22)

n−1
�

i=1

�

y′Ui

γ �i + 1

�2





n−1
�

j=1

�i

γ �j + 1
−

n−1
�

j=1

�j

γ �j + 1





+ nȳ
2

n−1
�

j=1

�j

γ �j + 1
= 0,

(23)

n−1
�

i=1

�

y′Ui

γ �i + 1

�2




n−1
�

j=1

�i − �j

γ �j + 1



+ nȳ2
n−1
�

j=1

�j

γ �j + 1
= 0.

(24)

g(γ ) =
n−1
∑

i=1

n−1
∑

j=1

(y′Ui)
2

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

+ nȳ2
n−1
∑

j=1

�j

1+ γ �j
.
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Appendix 2: Correlations between phenotypes 
and eigen‑vectors
As defined by the true model, the phenotypes are 
y = 1nµ+WQbQ + εQ . Since εQ is assumed (and sim-
ulated) to be independent from all the other elements, 
ε
′
QUi = nĈov(εQ ,Ui) → 0 for n sufficiently large. Thus,

and the squared term,

Assuming the true model, Ui = UQi =⇒ ŪQi = 0 , 
∀ �Qi > 0 and b′QW

′
QUi = 0 , ∀ �Qi = 0 . There-

fore, 2nµŪQib
′
QW

′
QUQi = 0 , ∀ i = 1, . . . , n . Assum-

ing the genomic model, we will assume that the 
number of SNPs is greater than the number of individu-
als, i.e. s > n , meaning that �1 ≥ · · · ≥ �n−1 > �n = 0 , 
Ū1 = · · · = Ūn−1 = 0 , and b′QW

′
QUn = 0 . Therefore, 

2nµŪQib
′
QW

′
QUQi = 0 , ∀ i = 1, . . . , n . Finally,

Appendix 3: Non‑observable REML function
When we use the result from (27) into the REML func-
tion (24), we obtain the following:

in which we rewrite the elements of the first term as

Now, since Ūi = 0 , ∀ �i > 0 =⇒ (Ūi)
2
�i = 0 , ∀ 

i = 1, . . . , n . Thus,

(25)
y′Ui = 1′nUiµ+ b′QW

′
QUi + ε

′
QUi −→ 1′nUiµ+ b′QW

′
QUi,

(26)

(

y′Ui

)2 −→
(

nµŪi

)2 + 2nµŪib
′
QW

′
QUQi +

(

b′QW
′
QUi

)2

.

(27)
(

y′Ui

)2 −→
(

nµŪi

)2 +
(

b′QW
′
QUi

)2
.

(28)

g(γ ) =
n−1
∑

i=1

n−1
∑

j=1

(

nµŪi

1+ γ �i

)2(
�i − �j

1+ γ �j

)

+
n−1
∑

i=1

n−1
∑

j=1

(

b′
Q
W′

Q
Ui

)2

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

+ nȳ
2

n−1
∑

j=1

�j

1+ γ �j
,

(29)

�

nµŪi

1+ γ �i

�2�
�i − �j

1+ γ �j

�

= n
2µ2





�

Ūi

1+ γ �i

�2

�i

1+ γ �j
−

�

Ūi

1+ γ �i

�2

�j

1+ γ �j



.

Because Ūi �= 0 only when �i = 0 and 
∑n

i=1 Ū
2
i = n−1,

When n is sufficiently large, ȳ −→ µ , and 
nȳ2

∑n−1
j=1 �j/(1+ γ �j)− nµ2

∑n−1
j=1 �j/(1+ γ �j) −→ 0  . 

Therefore:

We now move to understand some properties of 
b′QW

′
QUi , keeping in mind that in the assumptions (and 

simulations) we make in our study the QTL are inde-
pendent from each other, and the QTL effects are inde-
pendent from all the other elements. Another important 
assumption used here is that W′

Q1Ui, . . . ,W
′
QqUi are iid , 

which allows us to define

(1) E
(

b′QW
′
QUi

)

= 0,

(2) Var
(

b′
Q
W′

Q
Ui

)

= σ 2
TQ

Var

(

W′
Qj
Ui

)

  

= E

(

[

b′
Q
W′

Q
Ui

]2
)

 .

Thus, we have 
(

b′QW
′
QUi

)2
 as an estimator,

And finally, the non-observable REML function:

Replacing V̂ar
(

W′
QjUi

)

 with an estimator 

V̂ar

(

W
′
Qj
Ui

)

= q
−1

U
′
i
WQW

′
Q
Ui − q

−2(1′qW
′
Q
Ui)

2

= U
′
i
UQ�QU

′
Q
Ui − q

−2(1′qW
′
Q
Ui)

2

 ,

(30)

(

nµŪi

1+ γ �i

)2(
�i − �j

1+ γ �j

)

= −n2µ2

(

Ūi

1+ γ �i

)2
�j

1+ γ �j
.

(31)

n−1
∑

i=1

n−1
∑

j=1

(

nµŪi

1+ γ �i

)2(
�i − �j

1+ γ �j

)

= −nµ2
n−1
∑

j=1

�j

1+ γ �j
.

(32)g(γ ) −→
n−1
∑

i=1

n−1
∑

j=1

(

b′QW
′
QUi

)2

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

.

(33)

(

b′QW
′
QUi

)2

= Ê

(

[

b′QW
′
QUi

]2
)

= V̂ar

(

b′QW
′
QUi

)

= σ̂ 2
TQ

V̂ar

(

W′
QjUi

)

.

(34)

g(γ ) −→ σ̂ 2
TQ

n−1
∑

i=1

n−1
∑

j=1

V̂ar
(

W′
QjUi

)

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

.
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(35)g(γ ) −→ σ̂ 2
TQ

n−1
∑

i=1

n−1
∑

j=1

[

U′
iUQ�QU

′
QUi − q−2(1′qW

′
QUi)

2
]

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

,

and

such that ajl ∈ [0, 0.5] is the expected relationship 
between the j-th and l-th individuals (in a non-inbred 
population), ajj = 1 (the expected relationship of and 
individual to itself, in a non-inbred population). Because 
of the way we defined the G-matrices, and G1,G2 → A 
when the number of SNPs is sufficiently large [17], it is 
intuitive that E

(

δ∗jj
)

= E
(

δ∗jl
)

= 0 , with Var
(

δ∗jj
)

 and 
Var

(

δ∗jl
)

 proportionally inverse to the number of SNPs.

Appendix 5: QTL and markers in complete linkage 
equilibrium
E.1 QTL + markers
We will use the following identities relating GQM , GQ and 
GM to understand the properties of the REML estimators 
for the scenarios we simulated. Using the eigen-decom-
positions, we have:

Now, because GQM = UQM�QMU′
QM , using that identity 

in Eq. (40) we have:

(39)

n
∑

k=1

U
′
1iU2kU

′
2kU1r�2k

=
n

∑

j=1

U1ijU1rj

n
∑

k=1

U2
2kj�2k +

n
∑

j=1

∑

l �=j

U1ijU1rl

n
∑

k=1

U2kjU2kl�2k

=
n

∑

j=1

U1ijU1rjG2jj +
n

∑

j=1

∑

l �=j

U1ijU1rlG2jl

=
n

∑

j=1

U1ijU1rj

(

ajj + δ2jj
)

+
n

∑

j=1

∑

l �=j

U1ijU1rl

(

ajl + δ2jl
)

=
n

∑

j=1

U1ijU1rj

(

1+ δ2jj
)

+
n

∑

j=1

∑

l �=j

U1ijU1rl

(

ajl + δ2jl
)

=
n

∑

j=1

U1ijU1rj +
n

∑

j=1

U1ijU1rjδ2jj +
n

∑

j=1

∑

l �=j

U1ijU1rl

(

ajl + δ2jl
)

=
n

∑

j=1

U1ijU1rjδ2jj +
n

∑

j=1

∑

l �=j

U1ijU1rl

(

ajl + δ2jl
)

,

(40)

GQM = q

q+m
GQ + m

q+m
GM

= UQ

(

q

q+m
�Q + m

q+m
U

′
QUM�MU

′
MUQ

)

U
′
Q.

and for n sufficiently large, 
q−2(1′qW

′
QUi)

2 <<< U′
iUQ�QU

′
QUi =

∑n
k=1(U

′
iUQk)

2
�Qk , 

with 
∑n

k=1(U
′
nUQk)

2
�Qk = 0 due to properties of the 

eigen-decomposition. So we can approximate the non-
observable REML function,

and since our interest in evaluating g(γ̂ ) = 0 , it is equiva-
lent to evaluate σ̂−2

TQ
g(γ̂ ) = 0 , thus:

We call this function non-observable because we have 
now written it as a function of UQ and �Q , that cannot 
be observed directly from phenotypes and genomic data.

Appendix 4: Summations as deviations from the 
A‑matrix
Let G1 = U1�1U1 = A +�1 and 
G2 = U2�2U2 = A +�2 be two G-matrices based 
on any set of SNPs, such that �1 and �2 are how much 
G1 and G2 respectively, deviate from A , the matrix 
of expected relationships between the individuals, 
expressed as correlations. We have then the following:

(36)

g(γ ) −→ σ̂ 2
TQ

n−1
∑

i=1

n−1
∑

j=1

∑n
k=1(U

′
iUQk)

2
�Qk

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

,

(37)
n−1
∑

i=1

n−1
∑

j=1

∑n
k=1(U

′
iUQk)

2
�Qk

(1+ γ �i)2

(

�i − �j

1+ γ �j

)

= 0.

(38)

n
∑

k=1

(

U
′
1iU2k

)2
�2k

=
n

∑

j=1

U2
1ij

n
∑

k=1

U2
2kj�2k +

n
∑

j=1

∑

l �=j

U1ijU1il

n
∑

k=1

U2kjU2kl�2k

=
n

∑

j=1

U2
1ijG2jj +

n
∑

j=1

∑

l �=j

U1ijU1ilG2jl

=
n

∑

j=1

U2
1ij

(

ajj + δ2jj
)

+
n

∑

j=1

∑

l �=j

U1ijU1il

(

ajl + δ2jl
)

=
n

∑

j=1

U2
1ij

(

1+ δ2jj
)

+
n

∑

j=1

∑

l �=j

U1ijU1il

(

ajl + δ2jl
)

=
n

∑

j=1

U2
1ij +

n
∑

j=1

U2
1ijδ2jj +

n
∑

j=1

∑

l �=j

U1ijU1il

(

ajl + δ2jl
)

= 1+
n

∑

j=1

U2
1ijδ2jj +

n
∑

j=1

∑

l �=j

U1ijU1il

(

ajl + δ2jl
)

,
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hence,

We must now understand what happens to the term 
U′
QUM�MU′

MUQ in Eq. (42), in order to understand what 
will happen the REML estimator of heritability. Applying 
the results from Eqs. (38) and (39), and because in these 
scenarios we only considered completely unrelated indi-
viduals (implying that ajl = 0 ), we have that the elements 
in the diagonal and off-diagonal of U′

QUM�MU′
MUQ are 

respectively,

and

Because the markers are in complete LE with the QTL, 
and remembering that E

(

δMjj

)

= E
(

δMjl

)

= 0 , we have:

and

(41)

UQM�QMU
′
QM

= UQ

(

q

q+m
�Q + m

q+m
U

′
QUM�MU

′
MUQ

)

U
′
Q,

(42)

�QM = U
′
QMUQ

(

q

q+m
�Q + m

q+m
U

′
QUM�MU

′
MUQ

)

× U
′
QUQM.

(43)

n
∑

k=1

(

U
′
QiUMk

)2
�Mk

= 1+
n

∑

j=1

U2
QijδMjj +

n
∑

j=1

∑

l �=j

UQijUQilδMjl,

(44)

n
∑

k=1

U
′
QiUMkU

′
MkUQr�Mk

=
n

∑

j=1

UQijUQrjδMjj +
n

∑

j=1

∑

l �=j

UQijUQrlδMjl.

(45)

E

(

n
∑

k=1

[

U
′
QiUMk

]2
�Mk

)

= 1+
n

∑

j=1

E

(

U2
QijδMjj

)

+
n

∑

j=1

∑

l �=j

E
(

UQijUQilδMjl

)

= 1,

(46)

E

(

n
∑

k=1

U
′
QiUMkU

′
MkUQr�Mk

)

=
n

∑

j=1

E
(

UQijUQrjδMjj

)

+
n

∑

j=1

∑

l �=j

E
(

UQijUQrlδMjl

)

= 0.

Therefore, E

(

U′
QUM�MU′

MUQ

)

= In , meaning that 

we can write U′
QUM�MU′

MUQ = In + δ , such that δ is a 
matrix of random errors around In , with E(δ) = 0 . Back 
to Eq. (42), we have now:

Therefore the elements in the diagonal of �QM obey the 
following identity,

with δi =
∑n

j=1 U
2
QijδMjj +

∑n
j=1

∑

l �=j UQijUQilδMjl , from 

Eq. (43), such that E(δi) = 0 , from Eq. (45). Finally, isolat-

ing 
∑n

k=1

(

U′
QMiUQk

)2
�Qk in Eq. (48):

E.2 Markers only
The genomic model containing the markers only is sim-
pler than the genomic model containing the QTL and 
markers. Applying the result from Eq. (38), and because 
in these scenarios we only considered completely unre-
lated individuals (implying that ajl = 0 ), we have:

with δi =
∑n

j=1 U
2
MijδQjj +

∑n
j=1

∑

l �=j UMijUMilδQjl . 
Because the markers are in complete LE with the QTL, 
and remembering that E

(

δQjj

)

= E
(

δQjl

)

= 0 , we have:

(47)

�QM = U′
QMUQ

[

q

q+m
�Q + m

q+m
(In + δ)

]

U′
QUQM,

(48)

�QMi =
q

q+m

n
∑

k=1

(

U′
QMiUQk

)2
�Qk +

m

q+m
(1+ δi),

(49)

n
∑

k=1

(

U′
QMiUQk

)2
�Qk = �QMi +

m

q

(

�QMi − 1− δi
)

.

(50)

n
∑

k=1

(

U
′
MiUQk

)2
�Qk = 1+

n
∑

j=1

U2
MijδQjj

+
n

∑

j=1

∑

l �=j

UMijUMilδQjl = 1+ δi,

(51)

E(δi) =
n

∑

j=1

E

(

U2
MijδQjj

)

+
n

∑

j=1

∑

l �=j

E
(

UMijUMilδQjl

)

= 0.
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Appendix 6: QTL and markers in linkage 
disequilibrium
F.1 QTL + markers
We will use the following identities relating GQM , GQ and 
GM to understand the properties of the REML estimators 
for the scenarios we simulated. Using the eigen-decom-
positions, we have:

Now, because GQM = UQM�QMU′
QM , using that identity 

in Eq. (52) we have:

hence,

Therefore the elements in the diagonal of �QM obey the 
following identity,

Isolating 
∑n

k=1

(

U′
QMiUQk

)2
�Qk in Eq. (55) gives us the 

following:

(52)

GQM = q

q+m
GQ + m

q+m
GM

=
(

1− m

q+m

)

UQ�QU
′
Q + m

q+m
UM�MU

′
M.

(53)

UQM�QMU
′
QM =

(

1− m

q+m

)

UQ�QU
′
Q

+ m

q+m
UM�MU

′
M,

(54)

�QM =
(

1− m

q+m

)

U
′
QMUQ�QU

′
QUQM

+ m

q+m
U

′
QMUM�MU

′
MUQM.

(55)

�QMi =
(

1− m

q+m

) n
∑

k=1

(

U
′
QMiUQk

)2
�Qk

+ m

q+m

n
∑

k=1

(

U
′
QMiUMk

)2
�Mk.

Applying Eq. (38) to 
∑n

k=1

(

U′
QMiUQk

)2
�Qk and 

∑n
k=1

(

U′
QMiUMk

)2
�Mk , we have:

and

Finally, using the identities from Eqs. (57) and (58) in Eq. 
(56):

with δi = m
q+m

∑n
j=1

∑n
l=1 UQMijUQMil

(

δQjl − δMjl

)

.
To understand how δi will affect the relationship 

between 
∑n

k=1

(

U′
QMiUQk

)2
�Qk and �QMi , it is funda-

mental to understand E(δi).

(56)

n
∑

k=1

(

U
′
QMiUQk

)2
�Qk = �QMi

+ m

q+m

[

n
∑

k=1

(

U
′
QMiUQk

)2
�Qk −

n
∑

k=1

(

U
′
QMiUMk

)2
�Mk

]

.

(57)

n
∑

k=1

(

U
′
QMiUQk

)2
�Qk = 1+

n
∑

j=1

U2
QMijδQjj

+
n

∑

j=1

∑

l �=j

UQMijUQMil

(

ajl + δQjl

)

,

(58)

n
∑

k=1

(

U
′
QMiUMk

)2
�Mk = 1+

n
∑

j=1

U2
QMijδMjj

+
n

∑

j=1

∑

l �=j

UQMijUQMil

(

ajl + δMjl

)

.

(59)
n

∑

k=1

(

U′
QMiUQk

)2
�Qk = �QMi + δi,
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Thus, E(δi) =
∑n

j=1

∑n
l=1

(

σijl,Qlj − σijl,jl
)

 . It is intuitive 
that Cov

(

UQMijUQMil, GQMjl

)

≥ Cov
(

UQMijUQMil, GQjl

)

 , 
therefore E(δi) ≤ 0.

F.2 Markers only
When we use the genomic model containing the markers 
only, from Eq. (38) it is straightforward that:

If we randomly pick just a few markers, they will most 
likely be in low LD with the QTL ( U′

MiUQk ≈ 0 for any 
i, k = 1, . . . , n ) and 

∑n
k=1

(

U′
MiUQk

)2
�Qk ≈ 0 . When the 

(60)

E(δi) =
m

q+m

n
∑

j=1

n
∑

l=1

E
(

UQMijUQMil

[

δQjl − δMjl

])

= m

q+m

n
∑

j=1

n
∑

l=1

[

E
(

UQMijUQMilδQjj

)

− E
(

UQMijUQMilδMjj

)]

= m

q+m

n
∑

j=1

n
∑

l=1

[

Cov
(

UQMijUQMil, δQjj

)

− Cov
(

UQMijUQMil, δMjj

)]

= m

q+m

n
∑

j=1

n
∑

l=1

[

Cov
(

UQMijUQMil, GQjj − ajj
)

− Cov
(

UQMijUQMil, GMjj − ajj
)]

= m

q+m

n
∑

j=1

n
∑

l=1

[

Cov
(

UQMijUQMil, GQjj

)

− Cov
(

UQMijUQMil, GMjj

)]

= m

q+m

n
∑

j=1

n
∑

l=1

Cov
(

UQMijUQMil, GQjj

)

− m

q+m

n
∑

j=1

n
∑

l=1

Cov
(

UQMijUQMil,
[

1+ q

m

]

GQMjj −
q

m
GQjj

)

= m

q+m

(

1+ q

m

)

n
∑

j=1

n
∑

l=1

Cov
(

UQMijUQMil, GQjj

)

− m

q+m

(

1+ q

m

)

n
∑

j=1

n
∑

l=1

Cov
(

UQMijUQMil, GQMjj

)

=
n

∑

j=1

n
∑

l=1

[

Cov
(

UQMijUQMil, GQjl

)

− Cov
(

UQMijUQMil, GQMjl

)]

=
n

∑

j=1

n
∑

l=1

(

σijl,Qlj − σijl,jl
)

(61)

n
∑

k=1

(

U
′
MiUQk

)2
�Qk = 1+

n
∑

j=1

U2
MijδQjj

+
n

∑

j=1

∑

l �=j

UMijUMil

(

ajl + δQjl

)

.

density of marker data increases, 
∑n

k=1

(

U′
MiUQk

)2
�Qk 

also increases, but Eq. (61) is not so straightforward to 
understand analytically. Therefore, we use the identity 
GQM = q(q+m)−1GQ +m(q+m)−1GM to help us 
understand what happens when we use a genomic model 
that contains only markers in LD with the QTL in the 
SNP data. When the number of markers is sufficiently 
large, limm→∞GM = limm→∞GQM , and consequently 

limm→∞
∑

n

k=1

(

U
′
Mi
UQk

)2
�Qk = limm→∞

∑

n

k=1
(

U
′
QMi

UQk

)2

�Qk

 . 
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This means that when we have a genomic model with 
markers only, GM will be able to explain, at most, the 
same amount of variability that GQM can explain.

Appendix 7: Algorithm used to simulate genotype 
data
Given a sample size n , a number of markers m and a 
number of QTL q:

(1) Generate θ (m)×1 =
[

θQ θM

]

 a vector of MAF for 
all the m markers, such that:

(a) if QTL/marker are common vari-
ants: θQj

iid∼U(0.05, 0.5)∀j = 1, . . . , q , 
θMj

iid∼U(0.05, 0.5)∀j = 1, . . . , m;
(b) if QTL/marker are rare vari-

ants: θQj
iid∼U(0.01, 0.03)∀j = 1, . . . , q , 

θMj
iid∼U(0.01, 0.03)∀j = 1, . . . , m;

(2) Generate n× (q+m) genotype matrix Z contain-
ing both QTL and markers:

(a) if the SNPs are independent: 
Z1j, . . . , Znj

iid∼B(2, θj) , ∀j = 1, . . . , q+m;
(b) if the SNPs are correlated, use a routine to gen-

erate the correlated binomial data (details in 
next algorithm), such that:

 • (Z1j, . . . , Znj) | θ
iid∼B(2, θj);

 • Cor(Zij, Zil) = ρjl∀i = 1, . . . , n;
(3) Obtain the standardized genotype matrix W,

(a) θ̂j = (1/2n)
∑n

i=1 Zij∀j = 1, . . . , q+m,
(b) wij = zij−2θ̂j

√

2θ̂j(1−θ̂j)
∀i = 1, . . . , n , j = 1, . . . , q +m,

(4) Use the group of q simulated QTL to create WQ,
(5) Use the group of m simulated markers to create 

WM.

Appendix 8: Algorithm used to simulate correlated 
SNP data
In order to simulate correlated binary data, we have 
looked into approaches such as the Bahadur’s representa-
tion [25], and the algorithms of [26–28] and [29]. Finally, 
we have opted for the use of a method that involves the 
multivariate normal distribution, as proposed by [30].

(1) Given the vector θ (q+m)×1 of MAF, calculate 
µj = �−1(θj)∀j = 1, . . . , q +m,

(2) For a matrix � = [ξkj]q+m
k,j=1 , simulate 

X
(1)
n×(p+m),X

(2)
n×(q+m)

iid∼N(µ,�),
(3) ∀i = 1, . . . , n , j = 1, . . . , q+m:

(a) Z(1)
ij = I{X(1)

ij > 0} : P(X(1)
ij > 0) = θj;

(b) Z(2)
ij = I{X(2)

ij > 0} : P(X(2)
ij > 0) = θj;

(3) Zij = Z
(1)
ij + Z

(2)
ij  , such that:

(a) ρkj = Cor(Zik, Zij) = Cor(Z
(1)
ik , Z

(1)
ij )

=
E

(

Z(1)
ik Z

(1)
ij

)

−θkθj√
θk(1−θk)θj(1−θj)

 , 

∀k �= j;
(b) E

(

Z
(1)
ik Z

(1)
ij

)

= P

(

X
(1)
ik > 0, X

(1)
ij > 0

)

= P

(

X
(1)
ik < 0, X

(1)
ij < 0

)

+ θj + θk − 1

 .

Details about how to relate input matrix � to the output 
correlation matrix � between SNPs are in “Appendix 10”.

Appendix 9: Algorithm used to simulate phenotype 
data
Setting σ 2

bQ
= (1/q)h2 and σ 2

εQ
= 1− h2:

(1) Generate bQ
iid∼N(0, Iqσ

2
bQ
),

(2) Generate εQ
iid∼N(0, Inσ

2
εQ
),

(3) Define a value to µ,
(4) Calculate y = 1µ+WQbQ + εQ.

Appendix 10: Correlation structure between the 
SNPs
Our aim was to simulate genotypes according to a par-
ticular correlation structure between the SNPs, defined 
by � . It is very important to note that � �= � . Thus, 
we need to describe here how we defined the elements 
in matrix � , so that after the data was simulated, we 
obtained the desired � . Without loss of generality, we can 
define straight away that the diagonal elements of � are 
all 1s.

Keeping in mind that θj
indep.
∼ U(aj, bj) , µj = �−1(tj) and 

the joint cumulative normal distribution 

P

(

X
(1)
ik < 0, X

(1)
ij < 0

)

= �2(−µj,−µk, ξkj)

=
∫ −µj

−∞
∫ −µk
−∞

1

2π
√

1−ξ2jk

exp

[

−(u2−2ξkjuv+v2)
2(1−ξ2jk)

]

dudv

 

, which 

has to be evaluated numerically [31], and defining 
� = [Eθ (ρjk)]p+m

k,j=1 , such that Eθ (ρjk) = ρ|k−j| , for all j �= k:



Page 20 of 21Cuyabano et al. Genet Sel Evol  (2018) 50:41 

(62)

ρ|j−k| =Eθ

�

Cor(Zik, Zij)
�

=
� bj

aj

� bk

ak

Cor(Zik, Zij)fθj(tj)fθk (tk)dtkdtj

=
� bj

aj

� bk

ak

�

P(X
(1)
ik > 0, X

(1)
ij > 0)− tktj

�

�

tk(1− tk)tj(1− tj)
fθj(tj)fθk (tk)dtkdtj

=
� bj

aj

� bk

ak

�

�2(−µj,−µk, ξkj)+ tj + tk − tjtk − 1
�

�

tk(1− tk)tj(1− tj)
fθj(tj)fθk (tk)dtkdtj

=
� bj

aj

� bk

ak

�

�2(−µj,−µk, ξkj)
�

tk(1− tk)tj(1− tj)
−

�

(1− tj)(1− tk)

tjtk

�

fθj(tj)fθk (tk)dtkdtj

= 1

(bj − aj)(bk − ak)

� bj

aj

� bk

ak

�2(−µj,−µk, ξkj)
�

tk(1− tk)tj(1− tj)
dtkdtj

−









√
u(1− u)

(bj − aj)
−

arctg

�

�

1−u
u

�

(bj − aj)









�

�

�

�

�

�

�

�

bj

aj

×









√
u(1− u)

(bk − ak)
−

arctg

�

�

1−u
u

�

(bk − ak)









�

�

�

�

�

�

�

�

bk

ak
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