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Abstract 

Background: Availability of whole-genome sequence data for a large number of cattle and efficient imputation 
methodologies open a new opportunity to include rare and low-frequency variants (RLFV) in genomic prediction 
in dairy cattle. The objective of this study was to examine the impact of including RLFV that are within genes and 
selected from whole-genome sequence variants, on the reliability of genomic prediction for fertility, health and lon-
gevity in dairy cattle.

Results: All genic RLFV with a minor allele frequency lower than 0.05 were extracted from imputed sequence data 
and subsets were created using different strategies. These subsets were subsequently combined with Illumina 50 k 
single nucleotide polymorphism (SNP) data and used for genomic prediction. Reliability of prediction obtained by 
using 50 k SNP data alone was used as reference value and absolute changes in reliabilities are referred to as changes 
in percentage points. Adding a component that included either all the genic or a subset of selected RLFV into the 
model in addition to the 50 k component changed the reliability of predictions by − 2.2 to 1.1%, i.e. hardly no change 
in reliability of prediction was found, regardless of how the RLFV were selected. In addition to these empirical analy-
ses, a simulation study was performed to evaluate the potential impact of adding RLFV in the model on the reliability 
of prediction. Three sets of causal RLFV (containing 21,468, 1348 and 235 RLFV) that were randomly selected from 
different numbers of genes were generated and accounted for 10% additional genetic variance of the estimated vari-
ance explained by the 50 k SNPs. When genic RLFV based on mapping results were included in the prediction model, 
reliabilities improved by up to 4.0% and when the causal RLFV were included they improved by up to 6.8%.

Conclusions: Using selected RLFV from whole-genome sequence data had only a small impact on the empirical 
reliability of genomic prediction in dairy cattle. Our simulations revealed that for sequence data to bring a benefit, the 
key is to identify causal RLFV.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Due to the progress in sequencing technology, whole-
genome sequence data has become available for large 
numbers of dairy cattle [1–3]. Using this resource, indi-
viduals with single nucleotide polymorphism (SNP) 
chip genotype data can be imputed to whole-genome 
sequence variants [4, 5]. Causal variants are expected to 

be better identified by using whole-genome sequence 
data, and therefore, can be used to improve the reliability 
of genomic prediction [6]. Brondum et al. [7] found that 
the reliability of genomic prediction increased by up to 
4% and 0.5% for milk yield traits and fertility, respectively, 
when quantitative trait loci (QTL) derived from whole-
genome sequence data were used. However, in dairy 
cattle, van Binsbergen et  al. [8] observed no increase in 
reliability of prediction when all imputed whole-genome 
sequence variants compared to only the QTL derived 
from sequence data were used.
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The SNP chips that are routinely used in genomic 
prediction in dairy cattle include mostly SNPs with a 
relatively high minor allele frequency (MAF) that can 
efficiently tag common variants. However, the ability 
of these chips to tag rare and low-frequency variants 
(RLFV) is limited. There are several indications that 
RLFV make an important contribution to genetic vari-
ance. For instance, nonsynonymous SNPs are expected 
to make a larger contribution to genetic variance than 
synonymous SNPs [9]. In the human genome, non-syn-
onymous variants tend to have a lower MAF than synon-
ymous variants [10]. More generally, functional variants 
are much more likely to be rare than common variants 
[11]. Rare variants are more often deleterious variants 
and, therefore, more prone to being purged from the 
population. Therefore, including RLFV in genomic pre-
diction, through (imputed) sequence data, might increase 
the reliability of genomic prediction. This may be espe-
cially the case for fitness traits, since alleles with deleteri-
ous effects are expected to strongly affect fitness and to 
be rare due to purging from the population. To date, the 
question about whether the inclusion of subsets of RLFV 
from imputed whole-genome sequence that are selected 
by different strategies, in addition to e.g. 50 k SNP chip 
data, improves the reliability of genomic prediction in 
dairy cattle has not been investigated.

There are various ways to select a subset of RLFV from 
whole-genome sequence for inclusion in genomic predic-
tion [12, 13]. One approach is to perform a genome-wide 
association study (GWAS) for RLFV, which allows to 
select those that are significantly associated with the trait 
of interest, under the condition that the existing sample 
size and the effect of the RLFV are large enough to be 
identified. Although the effect of RLFV is expected to be 
small, the power to detect RLFV can be improved when 
combining RLFV within a gene or region. The power 
to detect causal RLFV can be considerably increased 
by using methods that are specifically designed to map 
RLFV instead of the commonly used mixed linear mod-
els, as shown in a simulation study in dairy cattle [14]. In 
addition, for fitness-related traits, variants with a lower 
MAF are expected to have a larger effect [15], which sug-
gests that for genomic prediction of fitness-related traits, 
RLFV may be more relevant, in spite of their low MAF. 
An alternative approach is to use the annotation of vari-
ants that predict the biological impact of variants in gen-
eral [16–18]. It can be hypothesized that RLFV with high 
impact annotations, e.g. protein altering variants, prob-
ably have a larger effect on phenotypes, and therefore 
should be included in genomic prediction. Gonzalez-
Recio et al. [19] explored the contribution of rare variants 
in the genetic variance of milk-related traits and fertility, 
and examined the accuracy of genomic prediction using 

all the rare variants from transcripts for these traits. 
Their study and our previous data [20] suggested that the 
relative contribution of RLFV to the total genetic vari-
ance might be somewhat higher for health-related traits 
such as fertility, disease susceptibility and longevity than 
for milk production traits. Therefore, in this study, we 
made the hypothesis that the reliability of genomic pre-
diction can be increased by including selected subsets of 
RLFV for three fitness-related indices, i.e. fertility, health, 
and longevity, in dairy cattle.

The objective of this study was to test the above 
hypothesis and to empirically examine the impact of 
using selected RLFV from imputed whole-genome 
sequence data on the reliability of genomic prediction 
in dairy cattle. We also undertook a simulation study 
to evaluate what are the critical factors that increase 
the reliability of genomic prediction as a result of using 
RLFV in the model, depending on the amount of genetic 
variance explained by causal RLFV.

Methods
Phenotypes and genotypes
In total, 6337 Holstein sires with de-regressed proofs 
(DRP) were genotyped using the Illumina BovineSNP50 
BeadChip (50 k) version 1 or 2 (Illumina Inc., San Diego, 
CA) [21]. The following quality criteria were applied 
for selecting SNPs: minimum call rates were set to 85% 
for individuals and 95% for SNPs, and monomorphic 
SNPs or deviating from Hardy–Weinberg proportions 
(P < 0.00001) were excluded. Thus, 43,415 autosomal 
SNPs remained for the analyses. The genome position 
of the SNPs were based on the UMD3.1 Bovine genome 
assembly [22]. The 50  k genotypes of the 6337 ani-
mals were imputed to the sequence level by a two-step 
approach that was developed by Brondum et al. [4]. They 
showed that this strategy yields the highest imputation 
accuracy with optimal computation time for this par-
ticular type of data. The bulls’ 50 k genotypes were first 
imputed to a high-density SNP array (HD, 734,077 SNPs) 
using a multi-breed reference of 3383 animals, which 
were genotyped with the Illumina BovineHD chip (Illu-
mina Inc., San Diego, CA) by using IMPUTE2 software 
[23]. These imputed HD genotypes were subsequently 
imputed to the whole-genome sequence level with 
22,232,889 variants (SNPs, short insertions and dele-
tions) by using a multi-breed reference of 1228 animals 
from run4 of the 1000 bull genomes project [24] and from 
Aarhus University [25–27]. The reference genotype prob-
abilities that had an imputation quality (the  R2 value) at 
imputed markers lower than 0.9 were removed from the 
original sequence data [4]. Both the 50 k and the whole-
genome sequence genotypes were pre-phased with BEA-
GLE v3.3.2 [28]. The subsequent imputation step was 
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performed using the Minimac2 software [29]. Imputed 
variants with a MAF lower than 0.001 were filtered out, 
which removed SNPs that had less than 13 copies of the 
minor allele from the data, considering that the total 
number of alleles is equal to twice the number of animals 
(6337). The average imputation accuracy (the estimated 
value of the squared correlation between imputed geno-
types and true genotypes from Minimac2) was equal to 
0.850 with a standard deviation of 0.233 for rare variants 
(MAF < 0.01) and 0.873 with a standard deviation of 0.215 
for low-frequency variants (0.01 < MAF < 0.05).

All called variants were annotated using Variant 
Effect Predictor (VEP) and ENSEMBL (v.67) data-
bases [30]. Any sites with multiple transcripts that 
resulted in multiple annotations were annotated only 
once using the by-gene option in VEP [30] and anno-
tations of the non-reference alleles were classified, 
as explained later, according to SIFT scores of the 
variants [31]. VEP determines the effect of the vari-
ants (SNPs, short insertions and deletions) on genes, 
transcripts, and protein sequence. SIFT predicts the 
potential effect that a non-reference allele has on 
encoded proteins, and integrates the effect of amino 
acid change, folding structure (predicted or known), 
and conservation score [32].

Selection of RLFV from imputed sequence data
RLFV were defined as the imputed sequence vari-
ants that had a MAF lower than 0.05 and were selected 
based on their genic or intergenic localization, annota-
tion and association mapping. Depending on the amino 
acid change that results from having the rare instead of 
the alternative allele, rare variants are assigned to a dif-
ferent class of annotations (see classifications below). We 
selected four sets of RLFV in this study:

(1) RLFV in all 23,431 genes including non-coding 
genes;

(2) RLFV with annotations of ‘high impact’ from VEP 
and SIFT scores (frameshift variant, inframe dele-
tion, inframe insertion, missense variant, protein 
altering variant, start lost, stop gained, stop lost, 
splice acceptor variant, splice donor variant, splice 
region variant) according to how much the amino 
acid can be changed;

(3) RLFV from set (2) in addition to those with annota-
tions of ‘medium impact’ (3 prime UTR variant, 5 
prime UTR variant, downstream gene variant, syn-
onymous variant, upstream gene variant) according 
to how much the amino acids can be changed;

(4) RLFV in genes that were associated with the ana-
lyzed index trait by considering only the individu-
als included in the training population using the 

MONSTER software [33]. The details for mapping 
genic RLFV by the famSKAT approach [34] are 
described in Zhang et  al. [14]. Briefly, famSKAT 
models the effects of all genic RLFV in a genetic 
region such as a gene, as random effects with the 
same variance, without making any assumption 
about the direction of the effects of the genic RLFV 
across the loci considered. The genes with a p value 
lower than 0.01 from famSKAT approach were 
selected and the RLFV within these genes were 
extracted. Briefly, the model is:

where y is a vector of phenotypes, X is a design 
matrix for fixed covariates including the intercept, γ 
is a vector of unknown covariate effects, Z is an 
incidence matrix relating phenotypes to the corre-
sponding random polygenic effect, u is a vector of 
random polygenic effects that follows a multivariate 
normal distribution N (0,Aσ 2

a  ), where A is the ped-
igree-based additive genetic relationship matrix and 
σ 2
a  is the polygenic variance, e is a vector of random 

residuals, e ∼ N
(

0, Iσ 2
e

)

 , M is a n×m matrix that 
encodes the genotype at the m tested variant loci 
and n is the number of individuals with mij repre-
senting allele dosage (0, 1 or 2) of the minor allele at 
the j th variant of individual i , and β is a vector of 
random effects of the m variants, β ∼ N

(

0, Iσ 2
q

)

.

Finally, we examined a scenario that randomly sampled 
a similar number of RLFV when RLFV with medium-
to-high impact annotations were included in the predic-
tion model. This analysis was done for the health index 
because it showed the largest improvement in reliability 
of prediction compared to when 50 k SNPs were used in 
the prediction model.

Three fitness-related index traits (fertility, health 
and longevity) were studied, for which the phenotypes 
were DRP. In total, 5043, 4926 and 4673 bulls with DRP, 
imputed sequence data, 50  k data and pedigree infor-
mation were available for fertility, health and longevity, 
respectively. The fertility index is a linear combination of 
breeding values for interval from first to last insemina-
tion, number of inseminations for heifers and cows and 
interval from calving to first insemination for cows. The 
health index is a linear combination of breeding values 
for diseases other than clinical mastitis, which describe 
the genetic risk of reproductive, metabolic and feet-and-
leg diseases. These breeding values are based on recorded 
treatments by veterinarians during the first three lacta-
tions. The longevity index describes the genetic potential 
for the cows’ productive longevity. For details regarding 
the index traits, recording procedures and models used 

y = Xγ+ Zu +Mβ+ e,
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to estimate their breeding values, see http://www.nordi 
cebv.info/ntm-and-breed ing-value s.

Simulation of causal RLFV
Simulations were undertaken to evaluate the (potential) 
impact of including selected RLFV in the prediction 
model on the reliability of genomic prediction, assum-
ing that rare causal variants explained a small proportion 
of the genetic variance. In these simulations, quantita-
tive trait nucleotides (QTN) were simulated by randomly 
drawing RLFV from genes based on the assumption that 
the power of detecting RLFV can be improved when 
combining RLFV, each with a supposedly small effect, 
within a gene or genomic region. Three scenarios were 
simulated:

(1) SQTN (QTN simulated with a small effect): seven 
to ten genes were randomly selected per chromo-
some and the RLFV from these genes were simu-
lated as QTN.

(2) MQTN (QTN simulated with a medium effect): 
one gene per chromosome was randomly selected 
and the RLFV within these genes were simulated as 
QTN.

(3) LQTN (QTN simulated with a large effect): nine 
genes were randomly selected across the whole 
genome and the RLFV in these genes were simu-
lated as QTN.

From scenario (1) to (3), the number of simulated QTN 
decreased, while the variance explained by each QTN 
increased. Therefore, we expected a gradual increase in 
the power of detection of the simulated rare QTN from 
scenario (1) to (3).

Effects for the rare QTN were sampled from a normal 
distribution N ∼ (0, 1) . The true breeding values for the 
simulated rare QTN for all individuals [denoted as a col-
umn vector ( TBVQ )] were calculated as:

where MQ is the genotype matrix including the rare QTN 
(one row per animal), and α is the column vector of QTN 
effects. Then, the values in TBVQ were scaled such that 
the variance jointly explained by the rare QTN was equal 
to 10% of the estimated genetic variance explained by the 
SNPs on the 50 k chip. Finally, the scaled TBVQ for each 
individual was added to the fertility DRP to obtain the 
simulated phenotypes i.e. y = DRP+ TBVQ , where y is 
the simulated phenotype and DRP is the observed phe-
notype. The total variance explained by these simulated 

TBVQ = MQ × α,

QTN was equal to 10% of the estimated genetic vari-
ance explained by the markers on the 50 k chip, i.e. 14.5. 
Thus, for the simulated data, a heritability of 0.485 (i.e. 
(14.5 + 145)/328.8) was obtained and used, since the 
observed heritability for fertility was 0.441.

For each of the three simulation scenarios, we tested 
three strategies for selecting RLFV to include in the sub-
sequent genomic prediction step:

(1) Genotypes of the simulated QTN were used to 
compute the second GRM used in prediction 
model, and thus we assumed that the QTN were 
known without error.

(2) The RLFV from 10 randomly selected genes per 
chromosome were added to the simulated QTN to 
construct the second GRM in the prediction model, 
with none of these variants having a simulated 
effect. The second strategy mimicked real situations 
more closely, i.e. in which false positive associations 
add noise in the prediction model.

(3) The RLFV were selected based on significance of 
association mapping (see subset (4) in “Selection of 
RLFV from imputed sequence data” section).

Each simulation scenario was replicated 10 times, 
thus the reported reliabilities and the measure of bias 
estimated by the slope of the regression of the sum of 
DRP and TBVQ on genomic estimated breeding values 
(GEBV) were averaged across replicates. Standard errors 
of these average values were calculated as the standard 
deviation of the results across the 10 replicates divided by √
10 . Due to computational limitations, the simulations 

were undertaken only for fertility, and the rare variant 
association mapping (second strategy) was applied only 
to one randomly selected replicate.

Genomic prediction
The GBLUP model was used to predict genomic breeding 
values using the following model:

where y is the vector of phenotypes, 1 is a vector of 
1s, µ is the general mean, and Zg is the design matrix 
which allocates y to g . Vector g contains random addi-
tive genetic effects with a variance of Gσ 2

g  , where G is the 
genomic relationship matrix (GRM) calculated following 
VanRaden’s method 1 [35]:

(1)y = 1′µ+ Zgg + e,

G =
(

X − 2p1′
)(

X − 2p1′
)′

2
∑n

j−1 pj
(

1− pj
) ,

http://www.nordicebv.info/ntm-and-breeding-values
http://www.nordicebv.info/ntm-and-breeding-values
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where X is the allele sharing matrix with the number of 
copies of the second allele. p is a vector with allele fre-
quencies ( pj is the frequency of the second allele at locus 
j ) and 1 is a vector of 1s. The factor 2

∑n
j−1 pj(1− pj) 

scales G to be comparable to the pedigree-based relation-
ship matrix.

An alternative GBLUP model is:

which is used in the analysis when two GRM were fitted 
simultaneously. The symbols in Model (2) were the same 
as in Model (1). The vectors g1 and g2 were the two ran-
dom additive genetic effects corresponding to the two 
GRM. The two GRM are computed with the same for-
mula as in Model (1).

Model (1) with the GRM built using 50 k genotype data 
was used as the reference model for comparisons with 
other approaches. Genomic prediction with selected 
RLFV were done using Model (2) in which the first 
GRM was based on 50 k data and the second GRM was 
built using the RLFV selected by one of the strategies as 
described above. Estimation of variance components and 
prediction of breeding values were carried out using the 
DMU software [36].

For each index trait, the 1000 youngest bulls with a 
birth date between 23/07/2005 and 14/01/2009 were 
used as validation bulls. The remaining bulls (4043 for 
fertility, 3926 for health and 3673 for longevity) born 
before 23/07/2005 were used as training data. The relia-
bility of genomic prediction was measured as the squared 
correlation between GEBV and DRP divided by the mean 
reliability of DRP for validation individuals, i.e. 
r2GEBV = (cor(GEBV,DRP))2/r̄2DRP . Standard errors for 
the accuracies, i.e. the square roots of the reliabilities, 

were approximated using 
(

(

1−r2GEBV
)

√
N−2

)/

r̄DRP , where N is 

the size of the training data [37]. A measure of bias was 
estimated by the slope of the regression of DRP on GEBV 
in the validation dataset: i.e. b̂ = cov(DRP,GEBV)

var(GEBV)  . Any devi-
ation from 1 in this regression slope is an indication of 
bias of the scale of the GEBV.

(2)y = 1′µ+ Zg1g1 + Zg2g2 + e,

Results
Impact of including RLFV on the reliability of genomic 
prediction
The total number of genic RLFV ranged from 1,585,116 
to 1,605,553 across the three index traits (see Additional 
file 1: Table S1). Based on the association test, 0.4–1.2% 
genic RLFV of the total number of RLFV were selected 
across the three index traits. Less than 1% of the RLFV 
had high impact annotations, while less than 3% of the 
total RLFV had medium-to-high impact annotations (see 
Additional file  1: Table  S1). The reliabilities of genomic 
prediction obtained by using different sets of selected 
RLFV are in Table 1. The reliability of prediction obtained 
with the 50 k data was used as the reference scenario to 
compare alternative scenarios for each index trait. Reli-
abilities are presented on a scale from 0 to 100%, and 
hereafter absolute changes in reliabilities, i.e. changes in 
percentage points, are reported. Adding an additional 
component with either all genic or a subset of selected 
RLFV into the model to the 50  k component changed 
the reliability by − 2.2 to 1.1%. Thus, on average the 
prediction reliability hardly changed, regardless of how 
the RLFV were selected (Table 1). For the scenario that 
showed the largest improvement in reliability of predic-
tion (i.e. 0.7% obtained by adding RLFV with medium-to-
high impact annotations for the health index), we tested 
whether the improvement of the reliability of prediction 
was the result of simply increasing the number of RLFV 
in the model. We observed that adding a similar number 
of randomly selected RLFV increased reliability on aver-
age by 0.6% across 10 different random subsets. This sug-
gests that the observed small improvement for the health 
index is due to the addition of a considerable number of 
genic RLFV, and not necessarily to the addition of RLFV 
with medium-to-high impact annotations. When RLFV 
with high impact annotations were added as an addi-
tional genetic component, the reliability of prediction 
decreased for all three index traits. To gain more insight 
into these observations, we compared the estimates of 
variance components using different marker sets in the 
prediction models (Table  2). For all three index traits, 

Table 1 Reliability of genomic prediction using different marker sets

Reliabilities are presented on a scale from 0 to 100%. Accuracies, i.e. the square roots of the reliabilities, ranged from 0.513 to 0.635 on a scale from 0 to 1, while the 
corresponding standard errors ranged from 0.011 to 0.014

Marker sets Fertility Health Longevity

50 k SNP array 39.2 31.9 28.5

50 k + All genic RLFV 40.3 32.6 27.7

50 k + RLFV in genes with significant association 39.9 31.8 27.8

50 k + RLFV with medium-to-high impact annotations 39.7 32.6 27.1

50 k + RLFV with high impact annotations 38.4 31.5 26.3
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the variance explained by the RLFV was largest when 
all genic RLFV were included in the prediction model, 
followed by the scenarios with RLFV with medium and 
high impact annotations, while the genic RLFV selected 
by association mapping always explained the smallest 
genetic variance. 

We observed that the bias of the GEBV measured by 
regression slope for health and longevity was reduced by 
adding increasingly more RLFV, regardless of how they 
were selected (Table 3). However, the bias of the GEBV 
measured by regression slope was increased for fertility 
when adding increasingly more RLFV (Table  3). Across 
all three index traits, these results show that adding 
increasingly more RLFV, leads to an increasingly larger 
variance of the GEBV.

RLFV simulated as QTN
To validate the potential impact of including rare causal 
variants in the model on the reliability of genomic predic-
tion, we simulated genic RLFV as QTN and re-estimated 
the reliabilities of prediction using similar strategies to 
select RLFV used for prediction. In our study, only one 
replicate was randomly selected from each simulation 
scenario (Tables 4, 5 and 6), because computational limi-
tations prohibited the mapping of genic RLFV for all 10 
replicates. Results across all 10 replicates for all scenar-
ios, except that based on association mapping of genic 
RLFV, are in Tables S2, S3 and S4 (see Additional file 2: 
Tables S2, Additional file 3: S3, Additional file 4: S4).

The numbers of selected genic RLFV in the different 
scenarios from one replicate are in Table 4. The number 
of genic RLFV simulated as QTN ranged from 235 to 
21,468. When all simulated QTN were included with the 
50 k SNPs, the prediction reliabilities improved from 3.4% 
for the MQTN simulation scenario to 6.8% for the SQTN 
simulation scenario (Table 5). Adding randomly selected 
genic RLFV (without a simulated effect) to the simulated 
QTN, decreased the reliability from 1.2% in the SQTN 
simulation scenario to 4.3% in the LQTN simulation 

Table 2 Estimates of  additive genetic variance from  different models using various marker sets for  fertility, health 
and longevity

Marker sets/index traits Average number 
of variants

Fertility Health Longevity

Variance components 50 k RLFV 50 k RLFV 50 k RLFV

50 k 54,323 144.5 – 146.6 – 142.2 –

50 k + all genic RLFV 1,650,799 113.2 27.0 119.2 25.1 95.2 42.9

50 k + RLFV in genes with significant association 191,414 139.2 11.0 142.9 6.0 115.9 26.5

50 k + RLFV with medium-to-high impact annotations 577,732 117.7 22.2 120.3 23.5 97.7 39.8

50 k + RLFV with high impact annotations 81,717 131.6 17.0 123.2 21.4 105.8 31.9

Table 3 Bias of  the  GEBV measured by  regression slope in  different methods of  selection of  rare and  low-frequency 
variants (RLFV)

Methods of selection of RLFV Fertility Health Longevity

50 k SNP array 0.993 0.902 0.851

50 k + all genic RLFV 1.046 0.950 0.939

50 k + RLFV in genes with significant association 1.012 0.913 0.925

50 k + RLFV with medium-to-high impact annotations 1.040 0.956 0.931

50 k + RLFV with high impact annotations 1.038 0.935 0.902

Table 4 Characteristics for  one random replicate of  each 
simulation scenario

Chr = chromosome

RLFV refer to rare and low-frequency variants and QTN refer to quantitative 
trait nucleotides. SQTN corresponds to the scenario with RLFV in seven to ten 
genes per chromosome simulated as causal variants; MQTN corresponds to the 
scenario with RLFV in one gene per chromosome simulated as causal variants; 
LQTN corresponds to the scenario with RLFV in nine randomly selected genes 
across the whole genome simulated as causal variants. The simulated total 
variances for the QTN in SQTN, MQTN and LQTN were 10% of the estimate of 
variance explained by 50 k markers for fertility index

Characteristics SQTN MQTN LQTN

Number of genes 7–10 per chr 1 per chr 9

Number of genic RLFV simulated as 
QTN

21,468 1348 235

Number of RLFV from 10 random 
selected genes from each chromo-
some

29,166 27,290 28,308

Number of RLFV from mapped genes 78,080 81,010 80,999
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scenario compared with all simulated QTN included in 
the prediction model (Table 5). Across all simulation sce-
narios, adding genic RLFV from significant association 
mapping improved the reliability of prediction from 1.3% 
for the MQTN simulation scenario to 4.0% for the SQTN 
scenario compared to when 50 k SNPs were included in 
the prediction model (Table 5). We observed that the bias 
of the GEBV measured by regression slope was smallest 
when all QTN and the 50  k SNPs were included in the 
model (Table 6).

Similar to the observed increase in prediction reliability 
when all simulated QTN and the 50 k SNPs were included 
for one replicate, the average prediction reliabilities 
improved from 1.9% for the SQTN scenario to 4.3% for 
the MQTN scenario across 10 replicates of each simula-
tion scenario (see Additional file 3: Table S3). When ran-
domly selected genic RLFV (without a simulated effect) 
were added to the simulated QTN, reliabilities decreased 

from 1.9% for the SQTN scenario to 3.0% for the MQTN 
scenario compared to when only simulated QTN (see 
Additional file 3: Table S3). Moreover, we observed that 
the bias of the GEBV measured by regression slope aver-
aged across the 10 replicates decreased for all simulation 
scenarios when genic RLFV were added in the prediction 
model regardless of how they were selected (see Addi-
tional file 4: Table S4).

Discussion
Earlier studies showed that using all imputed whole-
genome sequence variants did not improve the reliabil-
ity of genomic prediction [8], but it increased when using 
QTL derived from whole-genome sequence data [7, 12, 
38]. Specifically, our aim was to examine empirically the 
impact of using selected RLFV from imputed whole-
genome sequence data on the reliability of genomic pre-
diction. We expected an improvement in the reliability of 
genomic prediction for the fitness-related traits fertility, 
health and longevity index by including imputed RLFV 
that jointly explained 13.3 to 24.6% of the explained DRP 
variance for these index traits in Nordic Holsteins [20]. 
Across the selection strategies applied here, the RLFV 
explained 4.0 to 31.1% of the explained DRP variance, but 
this was not reflected by changes in genomic prediction 
reliabilities, which varied by − 2.2 to 1.1%. This result is 
in line with the observation that the 50 k SNPs are able 
to capture most of the variance explained by the RLFV 
(Table 2).

This lack of improvement, and even decrease, in pre-
diction reliabilities when using such selection strategies 
may be due to differences in imputation accuracy for the 
different selected subsets. An average imputation accu-
racy of 0.79 was found for the high impact annotation 
variants and of 0.81 for medium-to-high impact anno-
tation variants, both these values being lower than the 
average value for all RLFV (0.85). However, it is unlikely 
that the decrease in prediction reliability using the high 
compared to the medium-to-high impact annotated 
RLFV is due to either this small difference in imputa-
tion accuracy or to a difference in MAF (the MAF for 
high impact annotation variants was on average 0.0162 
and the MAF for medium-to-high impact variants was 
on average 0.0166). The main difference between the 
medium-to-high and high impact variants, is that the 
former group contained ~ 19 times more variants com-
pared to the latter group. The fact that the reliabilities 
achieved with the medium-to-high impact variants 
were closer to those obtained in the scenario using all 
genic RLFV suggests that the benefit of this scenario 
may be due simply to the inclusion of many more RLFV. 
This is also in line with results of Hayes et al. [39] and 
Do et al. [40].

Table 5 Reliabilities of  genomic prediction for  one 
random replicate in each simulation scenario and different 
strategies for selection of rare and low-frequency variants 
(RLFV)

SQTN corresponds to the scenario with RLFV in seven to ten genes per 
chromosome simulated as causal variants; MQTN corresponds to the scenario 
with RLFV in one gene per chromosome simulated as causal variants; LQTN 
corresponds to the scenario with RLFV in nine randomly selected genes across 
the whole genome simulated as causal variants. Reliabilities are presented on a 
scale from 0 to 100%. Accuracies, i.e. the square roots of the reliabilities, ranged 
from 0.597 to 0.681 on a scale from 0 to 1, while the corresponding standard 
errors ranged from 0.010 to 0.012

Scenarios SQTN MQTN LQTN

50 k 35.7 43.0 38.0

50 k + all simulated QTN 42.5 46.4 43.6

50 k + simulated QTN and RLFV from 10 
random selected genes from each chromo-
some

41.3 44.1 37.9

50 k + RLFV in mapped genes 39.7 44.3 40.1

Table 6 Bias of  the  GEBV measured by  regression slope 
for  one random replicate in  each simulation scenario 
and  different strategies for  selection of  rare and  low-
frequency variants (RLFV)

SQTN corresponds to the scenario with RLFV in seven to ten genes per 
chromosome simulated as causal variants; MQTN corresponds to the scenario 
with RLFV in one gene per chromosome simulated as causal variants; LQTN 
corresponds to the scenario with RLFV in nine randomly selected genes across 
the whole genome simulated as causal variants

Scenarios SQTN MQTN LQTN

50 k 0.929 0.986 0.927

50 k + all simulated QTN 1.009 1.010 0.963

50 k + simulated QTN and RLFV from 10 
random selected genes from each chromo-
some

0.995 1.016 0.938

50 k + RLFV in mapped genes 0.986 1.013 0.967
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Low MAF levels imply that RLFV are only observed in 
a relatively small number of individuals, and some RLFV 
may be segregating only in either the training or valida-
tion population. Thus, such RLFV may contribute only 
slightly to the predictive ability at the population level. 
However, when we investigated this issue, we found that, 
in all cases, more than 92% of all genic RLFV were seg-
regating in both the training and validation populations 
(see Additional file 5: Table S5). Thus, although the RLFV 
may be family-specific, in our data, they did have the 
potential to contribute to the predictive reliability.

Previous studies also showed that using sequence vari-
ants or preselected sequence variants, regardless of their 
MAF, yielded no or only marginal improvements in the 
accuracy of genomic prediction in dairy cattle [19, 41–
43]. Related to this, Caballero et al. [44] showed that rare 
variants contribute little genetic variation to the pheno-
typic variation and are difficult to detect by GWAS. In 
the latter study, simulations were used to show that the 
common mutations of large effects are responsible for 
most of the genetic variation for quantitative traits except 
fitness [44]. However, we did observe that the bias of the 
GEBV measured by regression slope was slightly reduced 
when adding selected RLFV regardless of how they were 
selected for the health and longevity traits (Table 3) and 
also for the simulated datasets (see Additional file  4: 
Table S4). This result was also in line with the findings in 
[41, 43].

The selection scenario based on association mapping 
to identify the genic RLFV to be included in the predic-
tion model, did not outperform predictions based on 
the 50 k data, in the analyses of the empirical data. This 
apparently low power of the selection scenario based on 
association mapping may have several causes. We used 
composite indices as phenotypes and these indices are 
a combination of several traits, and therefore the power 
to detect rare variants may be lower than for “ordinary” 
traits. Even if there was sufficient power to detect rare 
variants, their contribution in the prediction of com-
posite indices may have been diluted in the index. As 
previously mentioned, using imputed rather than actual 
sequence data also reduces power. Moreover, the power 
to identify rare variants is low unless these variants or 
the combined RLFV in a gene or region have a large 
effect and a large sample size is used. For example, for 
a rare QTL that explains 0.1% of the total genetic vari-
ance, the power is not sufficient to identify it with the 
existing sample sizes of e.g. 5000 in dairy cattle [14]. 
In human studies, a very large sample size was used to 
detect associations of rare variants with phenotypes 
or diseases such as 60,564 individuals used for asso-
ciation mapping of rare variants with type 2 diabetes 
[45–47]. In our study, only ~ 5000 cattle individuals 

were available. It should be noted that the phenotypes 
used in this study are DRP based on large progeny 
groups, which have a  minimal residual variance, and 
thus provide much stronger detection power than the 
own phenotypes used in human studies. Meanwhile, 
the number of detected genes containing RLFV was 
relatively large (see Additional file  1: Table  S1), which 
suggests that it includes many false positives. Thus, the 
power to detect rare QTL for the real data of health-
related traits was relatively low, and consequently 
adding selected RLFV in the prediction models did 
not only add extra information, but also noise. Previ-
ously, Perez-Enciso et al. [17] showed that the potential 
benefit of including causal loci in genomic prediction 
quickly disappears when there are too many incorrectly 
identified loci. This is supported by the results from our 
simulation scenarios that showed a small gain in reli-
ability from using the mapped genic RLFV. Finally, the 
common SNPs genotyped on the 50 k array are, appar-
ently, able to explain part of the trait variance due to 
the genic RLFV, leaving little room for improvement 
when adding genic RLFV to the model. The small effec-
tive population size in dairy cattle results in long range 
linkage disequilibrium (LD) across the whole genome 
and the common variants may be able to capture part 
of the effect from the genic RLFV due to co-segregation 
of QTL and marker alleles because of close family rela-
tionships [48].

We used a simulation to study these issues with 
selected RLFV in genomic prediction. Our results con-
firmed that adding non-causal RLFV to causal RLFV in 
the prediction model, indeed adds noise and consid-
erably reduces the predictive ability. When significant 
genic RLFV from gene mapping were selected in the 
prediction model, the estimated variance component 
for genic RLFV was similar to the variance explained 
by the simulated QTN for all scenarios, in line with the 
improvement in predictive ability (see Additional file 6: 
Table S6). However, inclusion of the simulated QTN in 
the prediction model resulted in a larger improvement 
of the reliability compared to when significant genic 
RLFV from gene mapping were used (Table  5). These 
results suggest that improvement in prediction reliabil-
ity can be achieved, provided that data with sufficient 
power is available to identify the causal RLFV affecting 
complex traits.

Conclusions
We compared genomic prediction reliabilities using 
either only 50  k SNPs, or both 50  k SNPs and genic 
RLFV that were selected based on their association 
with the index trait studied or annotations of RLFV. 
Using either a selected subset of RLFV or all the genic 
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RLFV, at best, marginally improved the reliability of 
genomic prediction, but decreased it in several cases 
(the change in reliability ranged from − 2.2 to 1.1%). 
Several reasons can explain these results, including 
low imputation accuracies for RLFV, a limited power 
to map genic RLFV with the existing sample size, and 
the fact that common variants on the 50 k chip are able 
to capture a large proportion of variance due to genic 
RLFV. However, we showed by using simulations that 
prediction reliability increased slightly when significant 
genic RLFV from association mapping were included 
in the prediction model and increased substantially 
when the known rare QTN were added as a separate 
genetic component in the model, but this added ben-
efit was much reduced when adding additional random 
genic RLFV. This indicates that prediction reliability 
can be improved by using both 50 k data and selected 
genic RLFV, provided that the RLFV that explain a siz-
able variance in the index traits of interest are identi-
fied, without adding too many false positives that cause 
noise in the model.
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