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Abstract 

Background: Large-scale phenotyping for detailed milk fatty acid (FA) composition is difficult due to expensive and 
time-consuming analytical techniques. Reliability of genomic prediction is often low for traits that are expensive/
difficult to measure and for breeds with a small reference population size. An effective method to increase reference 
population size could be to combine datasets from different populations. Prediction models might also benefit from 
incorporation of information on the biological underpinnings of quantitative traits. Genome-wide association studies 
(GWAS) show that genomic regions on Bos taurus chromosomes (BTA) 14, 19 and 26 underlie substantial propor-
tions of the genetic variation in milk FA traits. Genomic prediction models that incorporate such results could enable 
improved prediction accuracy in spite of limited reference population sizes. In this study, we combine gas chroma-
tography quantified FA samples from the Chinese, Danish and Dutch Holstein populations and implement a genomic 
feature best linear unbiased prediction (GFBLUP) model that incorporates variants on BTA14, 19 and 26 as genomic 
features for which random genetic effects are estimated separately. Prediction reliabilities were compared to those 
estimated with traditional GBLUP models.

Results: Predictions using a multi-population reference and a traditional GBLUP model resulted in average gains in 
prediction reliability of 10% points in the Dutch, 8% points in the Danish and 1% point in the Chinese populations 
compared to predictions based on population-specific references. Compared to the traditional GBLUP, implementa-
tion of the GFBLUP model with a multi-population reference led to further increases in prediction reliability of up to 
38% points in the Dutch, 23% points in the Danish and 13% points in the Chinese populations. Prediction reliabilities 
from the GFBLUP model were moderate to high across the FA traits analyzed.

Conclusions: Our study shows that it is possible to predict genetic merits for milk FA traits with reasonable accuracy 
by combining related populations of a breed and using models that incorporate GWAS results. Our findings indicate 
that international collaborations that facilitate access to multi-population datasets could be highly beneficial to the 
implementation of genomic selection for detailed milk composition traits.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  grum.gebreyesus@mbg.au.dk 
1 Department of Molecular Biology and Genetics, Center for Quantitative 
Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 
8830 Tjele, Denmark
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4757-3060
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-019-0460-z&domain=pdf


Page 2 of 14Gebreyesus et al. Genet Sel Evol           (2019) 51:16 

Background
Milk contains various fatty acids (FA) that are grouped 
into different categories depending on the length of the 
carbon chains, degree of unsaturation and isomerization. 
Some groups of dietary FA are linked to cardiovascular 
disease risks, whereas others are suggested to be ben-
eficial to human health [1–3]. Such links have long trig-
gered interests for the modification of the FA profile of 
bovine milk. Several studies have reported substantial 
genetic variation in bovine milk FA traits [4, 5], which 
may provide the opportunity to modify milk FA compo-
sition through selective breeding. Genomic selection has 
become the main strategy in livestock selective breeding 
by allowing the selection of candidate bulls at younger 
ages [6]. However, prediction accuracy for traits that are 
difficult and expensive to measure is still limited because 
of the small size of reference populations. To date, 
genomic prediction accuracies have not been reported 
for milk FA composition traits, in spite of the growing 
interest to include these in the breeding goals of dairy 
cattle [7]. This is mainly due to the difficulty of large-scale 
recording of milk FA traits. Gas chromatography (GC), 
the current method of choice for quantifying milk FA 
traits with high accuracy, requires expensive equipment 
and time-consuming techniques that challenge large-
scale phenotyping.

A strategy that is increasingly receiving attention in 
genomic prediction for numerically small breeds or diffi-
cult-to-measure traits is to combine datasets from differ-
ent breeds/populations [8, 9]. The benefits of combining 
data for genetic analyses depend highly on the genetic 
distance between the populations that are used in differ-
ent studies, and on marker density [8]. In this study, we 
combined samples for 16 FA traits that were measured 
by GC in the Chinese, Danish and Dutch Holstein popu-
lations that were genotyped using, or imputed to, high-
density (HD) single nucleotide polymorphism (SNP) 
arrays for genomic prediction. Given the common use 
of outstanding North American bulls in the Chinese, 
Danish and Dutch Holstein breeding populations, high 
genetic similarities are expected between these popula-
tions. Previous studies showed high consistency in link-
age disequilibrium (LD) patterns between the Danish and 
Chinese Holstein [10, 11] and between the Dutch, Danish 
and Chinese Holstein populations (Gebreyesus et al. per-
sonal communication).

Although genomic prediction allows the use of all 
genome-wide markers without the need to map quantita-
tive trait loci (QTL), incorporation of biological informa-
tion might improve furthermore the accuracy of genomic 
prediction for small-scale recorded traits. Methods have 
been suggested to weigh variants according to prior 
knowledge of their effect on the traits [12, 13], and gains 

in prediction accuracies have been reported [14, 15]. For 
several years, genome-wide association studies (GWAS) 
have been used as a powerful tool to investigate the 
genetic background of quantitative traits and diseases. 
Incorporation of GWAS results in genomic prediction 
models can improve genomic prediction accuracy [16], 
especially when prediction accuracy is limited by refer-
ence size. However, a major hurdle in GWAS is that their 
power of detection depends on the size of the samples 
available for the analyses. Moreover, GWAS often result 
in the detection of large genomic regions, especially in 
cattle breeds, because of long range LD [17]. An option 
to deal with the limitation in sample size could be to 
combine several smaller datasets that are available across 
populations for joint GWA. Additional evidence from 
gene ontology and pathways analyses might also help 
refine GWAS detections.

GWAS on milk FA traits have frequently reported sig-
nificant associations in large regions on Bos taurus chro-
mosomes (BTA) 14, 19 and 26 [18–21]. Further studies 
on the characterization of these regions have also sug-
gested that they have large effects on most milk FA traits 
[22–27]. In addition, several other regions that explain 
relatively smaller proportions of the genetic variance in 
multiple FA traits have been reported across the bovine 
genome [19, 20]. Information on such major regions that 
underlie their genetic variation might improve accuracy 
of genomic prediction for the small-scale recorded milk 
FA traits.

Traditionally, the genomic best linear unbiased pre-
diction (GBLUP) model [28] is based on the implicit 
assumption that many QTL, each one explaining a 
small fraction of the genetic variance, underlie quanti-
tative traits. In the implementation of GBLUP, genetic 
effects are estimated based on the realized relationship 
matrix that is computed from genome-wide markers 
[28]. Often, the contribution of genetic markers to the 
genomic relationship is not weighted according to the 
explained proportion of the genetic variance. Such an 
approach, in which each marker is assumed to contribute 
equally to the relationship matrix although the associa-
tions between genetic variants and traits differ, can cause 
a “dilution” of the effects of major regions. In this context, 
Sørensen et al. [29] suggested an extension of the GBLUP 
model to allow the incorporation of available information 
about the biological mechanisms that underlie quanti-
tative traits. To implement such an extension, Sørensen 
et  al. [29] suggested a genomic feature BLUP approach 
(GFBLUP), in which variants are categorized according 
to biological information, such as chromosomes, genes 
or biological pathways, so that groups of SNPs are differ-
entiated depending on the variance they explain and the 
size of their effects for genomic prediction.
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In this study, we implemented a GFBLUP approach in 
which regions that had been detected through GWAS on 
BTA14, 19, 26 were fitted as genomic features of inter-
est to predict genomic breeding values (GBV) for the FA 
traits analyzed. Then, we compared these estimated pre-
diction reliabilities to those estimated with the traditional 
GBLUP model. The objectives of this study were to (1) 
estimate and compare genomic prediction reliabilities for 
16 milk FA traits in three Holstein populations; and (2) 
investigate gains in genomic prediction reliability from 
combining multi-population reference sets and incorpo-
rating biological information based on GWAS results.

Methods
Animals and phenotypes
Milk samples were obtained from 784 Chinese (from 18 
herds in China), 675 Danish (from 22 herds in Denmark) 
and 1566 Dutch Holstein (from 398 herds in the Neth-
erlands) cows. Stages of lactation of the sampled cows 
ranged from 3 to 700 days in milk (DIM) in the Chinese 
population, 9  to 481 DIM in the Danish population and 
60 to 278 DIM in the Dutch Holstein population. To 
standardize the samples from these three countries, only 
cows at 60 DIM or more were considered for genomic 
prediction, which resulted in 700 Chinese, 614 Danish 

and 1566 Dutch samples available for the analysis. The 
reason for restricting samples at lactation stages of 
60 days or more is that the genetic determinism of milk 
fat composition traits may differ in the earlier stages of 
lactation. Indeed, there is evidence that the effects of 
genes in early and later lactation differ [30] and exclud-
ing early lactation records should help eliminate this het-
erogeneity issue. All sampled cows in the Dutch Holstein 
population were at first parity, whereas cows in the Chi-
nese and Danish populations were at parities 2 to 6 and 
parities 1 and 2, respectively.

Gas chromatography was used to quantify 13 FA 
traits that were measured as weight proportion of total 
fat (% wt/wt) (see Table  1) as described by Li et  al. 
[21] for the Chinese samples, Poulsen et  al. [31] for 
the Danish samples and Stoop et  al. [4] for the Dutch 
samples. Furthermore, desaturation indexes were 
calculated based on the FA measurements as: C14 
index = C14:1/(C14:1 + C14:0) × 100; C16 index = C16:1/
(C16:1 + C16:0) × 100 and C18 index = C18:1c9/
(C18:1c9 + C18:0) × 100.

Genotypes and imputation
Real or imputed high-density (HD) genotypes were avail-
able for all sampled cows. All the cows in the Chinese 

Table 1 Phenotypic means and coefficients of variation (%) for FA traits across populations and combined datasets

All parameter estimates for C18:2n6, C18:3n3 and CLA are computed on raw data before log-transformation
a Expressed in % wt/wt of total fat
b Desaturation indexes calculated as unsaturated/(unsaturated + saturated) × 100

FA CN DK NL Combined

Mean CV h2 Mean CV h2 Mean CV h2 Mean CV h2

Saturated  FAa

 C8:0 0.58 37.9 0.06 1.47 15.0 0.33 1.31 13.0 0.48 1.18 32.2 0.27

 C10:0 2.22 18.0 0.16 3.22 17.4 0.36 2.87 15.7 0.51 2.80 20.7 0.39

 C12:0 2.94 16.7 0.21 3.69 18.4 0.30 3.79 19.0 0.40 3.58 21.2 0.33

 C14:0 10.10 11.3 0.22 11.60 11.7 0.14 11.10 9.5 0.39 11.00 11.5 0.25

 C15:0 0.99 13.1 0.10 1.11 17.1 0.27 1.11 17.1 0.29 1.09 16.5 0.23

 C16:0 32.90 5.6 0.27 30.10 11.6 0.12 29.10 12.0 0.48 30.20 11.7 0.34

 C18:0 12.00 14.1 0.25 9.84 19.4 0.23 9.84 17.7 0.37 10.30 19.3 0.25

Unsaturated  FAa

 C14:1 0.86 24.4 0.35 1.01 27.7 0.49 1.38 19.6 0.55 1.19 29.4 0.47

 C16:1 1.64 20.1 0.26 1.58 26.6 0.42 1.39 20.9 0.65 1.49 23.5 0.46

 C18:1c9 28.30 8.6 0.24 19.60 14.5 0.07 20.20 13.8 0.41 21.90 20.0 0.27

 C18:2n6 3.99 11.5 0.26 1.74 15.5 0.17 1.11 22.5 0.27 1.89 63.0 0.18

 C18:3n3 0.42 14.3 0.05 0.50 18.0 0.05 0.50 32.0 0.27 0.48 27.1 0.19

 CLA 0.41 22.0 0.15 0.57 26.3 0.11 0.56 46.4 0.32 0.53 43.4 0.21

Desaturation  indexesb

 C14 index 7.84 20.8 0.36 7.98 23.7 0.59 11.0 16.6 0.62 9.71 24.4 0.53

 C16 index 4.74 19.6 0.24 4.97 22.3 0.37 4.6 19.8 0.55 4.70 20.6 0.38

 C18 index 70.20 4.7 0.21 66.60 5.9 0.26 67.3 5.8 0.49 67.80 5.87 0.31
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dataset were genotyped using the BovineSNP50 Bead-
chip (50  K, Illumina). A population of 96 Chinese Hol-
stein bulls, which were genotyped using the BovineHD 
Beadchip (777  K), was used as reference to impute the 
50 K genotypes to HD. Of the 675 Danish cows, 278 were 
genotyped using the BovineSNP50 Beadchip and 397 
were genotyped using the BovineHD Beadchip, which 
were then used as reference to impute the 50  K geno-
types of the first 278 Danish cows to HD as described in 
Gebreyesus et al. [32]. A custom 50 K SNP Beadchip was 
used to genotype cows in the Dutch dataset. A reference 
population consisting of 1333 Dutch Holstein cows and 
55 bulls that were genotyped with the BovineHD Bead-
chip (777 K) was used to subsequently impute the 50 K 
genotypes of the Dutch samples to HD as described in 
Duchemin et al. [33].

Quality controls on SNPs were undertaken within each 
population. Accordingly, SNPs with minor allele frequen-
cies (MAF) lower than 0.05 or with a count of one of the 
genotypes less than 10 in each population were excluded 
from both the population-specific as well as combined-
population predictions. Finally, 464,130 common SNPs 
were available for all the populations and scenarios.

Models
Traditional and “genomic features” GBLUP models 
were implemented to estimate genomic breeding values 
(GBV).

Traditional GBLUP
GBLUP models were implemented using DMU [34] in 
two scenarios: (1) population-specific reference sets 
within the Chinese, Danish and Dutch samples, and (2) 
a combined reference set of the three populations. The 
general model used for the traditional GBLUP, both pop-
ulation-specific as well as combined-population refer-
ence sets, was:

where yijkl is the phenotype of cow l in parity i , and herd 
j , µ is the fixed mean effect; b1 is the regression coeffi-
cient for k th day of lactation (DIMk) , b2 is the regression 
coefficient for the Wilmink adjustment ( exp−0.05×DIMk ) 
of DIM [35], eijkl is a random residual effect assumed to 
be normally distributed with e ∼ N

(

0, I2e
)

 , where I is an 
identity matrix. Season of sampling was not modeled in 
the analyses because all the cows were sampled during 
the summer. gl is the random additive genetic effect of 
cow l following a normal distribution N

(

0,Gσ 2
a

)

, where 
G is the genomic relationship matrix between individuals 

(1)

yijkl = µ+ parityi + herdj + b1DIMk + b2

× exp−0.05×DIMk + gl + eijkl ,

and σ 2
a  is the genetic variance. The genomic relation-

ship matrix used in the GBLUP models was calculated 
as described in the first method presented by VanRaden 
[28].

Homogeneity of residuals was assessed by plotting the 
residuals against predicted phenotypes from Model (1) 
based on the combined-population dataset with all avail-
able individuals. For some of the FA traits, especially for 
C18:2n6, C18:3n3 and CLA, residuals tend to increase 
with the mean, which indicates heterogeneity in the 
residual variance, thus records for these traits were log-
transformed for the genomic prediction scenarios.

GFBLUP
A GFBLUP model was implemented using a combined-
population reference set to estimate GBV for population-
specific validation sets. In the traditional GBLUP model, 
a single random genetic effect based on the genomic rela-
tionship matrix that was constructed using all the SNPs 
was considered. In contrast, four random genetic effects 
were considered in the GFBLUP approach according to 
the following model:

where g14l is the random additive genetic effect of cow 
l based on the genomic relationship matrix ( G14 ) con-
structed using only the SNPs on BTA14 and assuming 
a normal distribution with N

(

0,G14σ
2
14

)

 , where σ 2
14 is 

the genetic variation explained by the SNPs on BTA14. 
Similarly, g19l and g26l are the random additive genetic 
effects of cow l based on the relationship matrices com-
puted using the SNPs on BTA19 and 26, respectively, and 
assumed to follow normal distributions as for g14l . Finally, 
gRl is the random additive genetic effect of cow l based 
on the genomic relationship matrix that was constructed 
by using all remaining SNPs except those on BTA14, 19 
and 26, following a normal distribution N

(

0,GRσ
2
R

)

 . The 
SNPs used to calculate the relationship matrices include 
13,033 SNPs on BTA14, 12,603 SNPs on BTA19 and 
9703 SNPs on BTA26. The different genomic relationship 
matrices for the GFBLUP model were computed follow-
ing the first method of VanRaden [28]. The other compo-
nents in Model (2) are as defined in Model (1).

The total genomic value was calculated as: 
gl = g14l + g19l + g26l + gRl.

The proportion of the genomic variance explained by 
each genetic component of the GFBLUP model was com-
puted as:

(2)

yijkl = µ+ parityi + herdj + b1DIMk

+ b2 × exp−0.05×DIMk +g14l + g19l + g26l + gRl + eijkl ,

(3)%varfeaturei =
σ 2
featurei

σ 2
total

× 100,
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where σ 2
featurei

 is σ 2
14, or σ 2

19, or σ 2
26 , and σ 2

total is the total 
additive genetic variance computed as:

The proportions of genomic variance were estimated 
based on the combined-population dataset including all 
available individuals, i.e., both the training and validation 
sets.

Binwise linkage disequilibrium on BTA14, 19 and 26
To study the similarity of the LD structures of the bovine 
chromosomes taken as features in the three populations, 
pairwise LD was calculated between the SNPs within 
a 1-Mbp window on BTA14, 19 and 26, with the  r2 as a 
measure in the Plink program [36].

Training and validation populations
For all the scenarios, a resampling strategy was applied 
to create five validation sets of 100 cows for each popu-
lation. The general principle was to avoid sibling and 
dam-progeny relationships between validation sets and 
with the reference population for each replicate. Table 2 
shows the size of the reference populations used in the 
within- and the combined-population genomic predic-
tion for each trait and population. For the Danish popu-
lation, a subset of cows that had no siblings and whose 
dams are not within the dataset were first selected 
(n = 197). For each analysis of resampled datasets, 100 

(4)σ 2
total = σ 2

14 + σ 2
19 + σ 2

26 + σ 2
R .

of these cows were randomly sampled for the validation 
set and the remaining cows were included back to the 
reference population. In the Dutch and Chinese popula-
tions, all the sampled cows had at least one half-sib in the 
dataset. In the Dutch dataset, all cows were in first parity 
and belonged to one of three sire-groups, whereas in the 
Chinese dataset, the majority of the cows were from five 
different sires. Hence, a sire-group (group of cows with 
common sire) was randomly selected for each validation 
set. Since each sire-group included more than 100 cows 
in both the Chinese and Dutch datasets, another random 
sampling of 100 cows was undertaken within the selected 
sire-groups and the remaining cows from the group were 
excluded from the reference population. The main rea-
son for restricting the validation to 100 cows was to have 
comparable reference and validation group sizes in the 
three populations.

Prediction reliability
For all models, prediction reliability for cows was com-
puted as the squared correlation between estimated GBV 
and the phenotype corrected for fixed effects and scaled 
by dividing with the estimated heritabilities. Corrected 
phenotypes were computed based on single-population 
traditional GBLUP as in Model (1) and used for all sce-
narios. The heritability estimates used to scale the reli-
abilities were from the models in the respective scenario 
using all available individuals. Accordingly, heritability in 
the traditional GBLUP approaches was computed as:

Table 2 Number of  cows in  the  reference sets for  each FA trait in  the  Chinese (CN), Danish (DK), Dutch (NL) 
and the combined-population genomic prediction

Trait CN DK NL

Single Combined Single Combined Single Combined

C8:0 584 2764 518 2771 892 2188

C10:0 585 2767 520 2775 892 2192

C12:0 585 2765 519 2774 892 2190

C14:0 586 2766 519 2774 892 2191

C15:0 583 2751 516 2760 887 2181

C16:0 583 2762 518 2769 892 2186

C18:0 587 2762 518 2771 889 2178

C14:1 584 2761 516 2769 890 2187

C16:1 583 2755 519 2763 887 2185

C18:1c9 585 2765 518 2773 892 2190

C18:2n6 585 2760 518 2768 889 2188

C18:3n3 583 2750 518 2759 885 2180

CLA 580 2750 518 2758 886 2178

C14 index 583 2758 515 2767 890 2184

C16i ndex 580 2750 517 2757 887 2177

C18 index 585 2758 516 2767 889 2185
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and the heritability for the GFBLUP model was com-
puted as:

where σ 2
total is the summation of the variance explained 

by each genomic feature as given in Eq. (4).
For population-specific traditional GBLUP models, all 

available data from the respective populations were used 
to estimate heritabilities. For the combined-population 
analyses (both combined GBLUP and GFBLUP models), 
the combined-population data including all available 
individuals was used to estimate heritabilities.

Prediction accuracies reported for each scenario are 
average values of the five replicates (folds).

Results
Heritability estimates for milk fatty acid composition traits
Phenotypic means, coefficients of variation (%) and herit-
ability estimates for the FA traits in the different popula-
tions and the combined dataset are in Table  1. Overall, 
phenotypic means were comparable between the Danish 
and Dutch datasets, whereas those for the Chinese data-
set showed larger differences for some of the FA traits. 
Such differences between the Chinese data on the one 
hand and the Danish and Dutch on the other hand were 
observed, in particular, for C8:0, C18:2n6 and C18:1c9. 
Larger differences were also observed in the estimates 
of coefficients of variation between the populations for 
some of the studied traits. In the combined dataset, coef-
ficients of variation ranged from 5.87% (C18 index) to 
63.0% (C18:2n6). Similarly, some differences in the esti-
mated heritabilities were observed, with estimates being 
generally higher for the Dutch dataset followed by those 
for the Danish dataset.

Consistency in LD on BTA14, 19 and 26 
between populations
The LD analysis on BTA14, 19 and 26 indicates similar 
binwise pairwise LD  (r2) in the three populations within 
the regions considered for the genomic feature prediction 
model (Fig.  1). Furthermore, the minimum and maxi-
mum average pairwise LD values for SNPs within bins of 
1-Mbp sizes were similar between the populations on the 
three bovine chromosomes.

(5)h2 =
σ 2
a

σ 2
a + σ 2

e

,

(6)h2 =
σ 2
total

σ 2
total + σ 2

e

,

Prediction reliability estimated with traditional GBLUP 
models
Table 3 presents prediction reliabilities for the FA traits 
studied in the three populations using the GBLUP model 
based on population-specific reference sets. Prediction 
reliabilities calculated by using reference populations 
separately were, in general, low across the FA traits and 
populations. Prediction reliabilities were especially low 
for the Chinese dataset followed by those for the Danish 
population. In the Chinese single-population genomic 
prediction, reliabilities were highest for C16:0 (0.19) and 
C18:0 (0.19), followed by C18 Index (0.15). Prediction 
reliabilities were very low for the de novo synthesized FA 
in general, and particularly for C10:0, C12:0 and C14:0 
in the Chinese validation. Similarly, genomic predic-
tion using the Danish reference population separately 
resulted in low prediction reliabilities across traits. Pre-
diction reliabilities were highest for CLA (0.14) followed 
by C14:0 (0.11) and lowest for C16:0 and C18:1c9. Mod-
erate to low prediction reliabilities were computed in the 
Dutch single-population genomic prediction. Using the 
Dutch separate reference population, genomic prediction 
reliability was highest for C14 index (0.43) followed by 
C14:1 (0.39).

Reliabilities of genomic predictions based on the com-
bined-population reference were higher across traits 
and populations compared to those based on separate 
reference populations (Table  3). Genomic prediction 
reliability based on the multi-population reference was 
on average 10% points higher for the Dutch validation 
population compared to single-population genomic pre-
diction. Increases in prediction reliability were largest 
for C16 index (∆ = 0.18), C16:1 (∆ = 0.17) and C18:3n3 
(∆ = 0.15), and smallest for C18:0 (∆ = 0.01). In the Dan-
ish validation, prediction reliability increased by 8% 
points on average after adding the Dutch and Chinese 
reference populations. Increases in prediction reliabil-
ity were largest for C10:0 (∆ = 0.23), C8:0 (∆ = 0.20) and 
C15:0 (∆ = 0.15). Sizable improvements in prediction 
reliability were also observed for C14 and C18 indexes. 
However, no improvement was obtained for C14:0 and 
prediction reliability even declined for C18:3n3 with 
the multi-population prediction compared to the Dan-
ish within-population analysis. With an average increase 
in prediction reliability of 1% point, little or no gain was 
observed from the combined-population analysis for 
most FA traits in the Chinese validation. In the Chinese 
validation, the greatest benefits of adding the Danish and 
Dutch reference populations were observed for C18:1c9 
(∆ = 0.08), followed by C10:0 (∆ = 0.07) and C14 index 
(∆ = 0.06). However, for some traits, prediction reliabili-
ties were less good with the combined reference than 
with the single-population reference (Table 3).
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Prediction reliability estimated with the GFBLUP model
Substantial increases in prediction reliability were 
obtained using the GFBLUP model for multi-population 
reference sets compared to the combined GBLUP model 
(Fig.  2). Accordingly, an average gain in prediction reli-
ability of 16% points was observed in the Dutch valida-
tion when the GFBLUP model was used compared to 

the traditional GBLUP with the combined reference 
population. Increases in prediction reliability were larg-
est for C18:1c9 (∆ = 0.38), C16:0 (∆ = 0.33) and C14:0 
(∆ = 0.33) in the validation for the Dutch Holstein. Simi-
larly, average gains in reliability of 9% points in the Dan-
ish validation and 2.3% points in the Chinese validation 
populations were achieved by using the GFBLUP model 
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compared to the GBLUP with the same reference popula-
tion sizes. For the Danish validation, prediction reliabili-
ties increased highly for C16 index (∆ = 0.23), C14 index 
(∆ = 0.22), C15:0 and C16:1 (∆ = 0.21). In the Chinese 
validation, the largest increase in prediction reliability 
obtained with the GFBLUP model was observed for C14 
index (∆ = 0.13) followed by C14:1 (∆ = 0.06). Using the 
Dutch dataset as an example, we also studied the predic-
tive ability of the GFBLUP model in a single-population 
reference setting (see Additional file  1), and the results 
showed an average increase of 12% points in prediction 
reliability with the GFBLUP model compared to the tra-
ditional GBLUP.

Whereas the increases in prediction reliability from 
the GFBLUP model varied between populations, siz-
able improvements for specific FA traits were consistent 
across the populations. For example, for the C14 index, 
gains in prediction reliability were 23% points in the 
Dutch, 22% points in the Danish and 13% points in the 
Chinese validation populations.

In the combined-population analysis, the genomic fea-
tures fitted in the GFBLUP model (BTA14, BTA19 and 
BTA26) collectively explained substantial proportions of 
the total genetic variance across the FA traits (Fig. 3). For 
instance for the C14 index, 57% of the genetic variance 
were explained by the genomic features, with BTA26 
alone explaining 38.3% of the genetic variance. Similarly, 
sizable proportions of the total genetic variance for C14:0 
(33.4%) and C10:0 (20%) were explained by BTA19 alone. 

Variants on BTA14 collectively explained 38.3 and 36.7% 
of the genetic variance for C16:0, and for C18:1n9 and 
C18:2n6, respectively. In contrast, for C18:0, BTA14 and 
26 each explained 5% of the genetic variance.

For most of the studied traits, the gain in prediction 
reliability obtained by using the GFBLUP model across 
the FA traits was related to the proportion of genomic 
variance explained by the fitted genomic features. Such 
trends were consistent across the validation populations 
especially for C18:0, CLA and C14 index. However, for 
C18:1c9 we observed no improvement in prediction reli-
ability in the Danish population, and even a decline in 
the Chinese dataset, with the GFBLUP model in spite of 
the fact that a sizable proportion of the genetic variance 
was explained collectively by the fitted features (56.6%). 
The relationship between proportions of genetic variance 
explained by the genomic features and gains in prediction 
reliability from the GFBLUP model (vis-à-vis traditional 
GBLUP) is shown in Fig. 4. Scatterplots of the GBV that 
were predicted by using the GFBLUP model against the 
corrected phenotypes for all validation individuals from 
all replicates are in Additional files 2, 3 and 4 (see Addi-
tional files 2, 3, 4) for the validations in the Chinese, Dan-
ish and Dutch populations, respectively. The slope of the 
regression of corrected phenotypes on predicted GBV 
varied according to trait and population studied. Regres-
sion slopes were close to 1 for all traits except C14 (1.40) 
and C18:3n3 (1.42) in the Dutch validation across all sce-
narios. However, the values for most traits deviated from 

Table 3 Genomic prediction reliabilities obtained with  traditional GBLUP based on  within- and  combined-population 
references

Trait CN DK NL

Single Combined Single Combined Single Combined

C8:0 0.06 0.05 0.06 0.26 0.11 0.18

C10:0 0.003 0.07 0.06 0.29 0.17 0.28

C12:0 0.001 0.04 0.04 0.18 0.25 0.31

C14:0 0.0004 0.001 0.11 0.11 0.25 0.36

C15:0 0.03 0.03 0.04 0.19 0.03 0.06

C16:0 0.19 0.18 0.001 0.07 0.13 0.19

C18:0 0.19 0.12 0.06 0.07 0.05 0.06

C14:1 0.11 0.15 0.06 0.16 0.39 0.49

C16:1 0.07 0.12 0.09 0.14 0.22 0.39

C18:1c9 0.07 0.15 0.005 0.09 0.13 0.26

C18:2n6 0.06 0.10 0.01 0.03 0.10 0.22

C18:3n3 0.08 0.04 0.10 0.01 0.06 0.21

CLA 0.12 0.10 0.14 0.16 0.16 0.25

C14 index 0.10 0.16 0.05 0.18 0.43 0.56

C16 index 0.10 0.13 0.09 0.14 0.12 0.30

C18 index 0.15 0.05 0.02 0.15 0.12 0.19
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1 in the Danish and Chinese populations and this devia-
tion was especially high for C16:0, C18:1c9, C18:2n6 and 
C18:3n3 in the Danish and C14:0, C15:0 and C16 index in 
the Chinese population.

The prediction reliabilities reported here for each sce-
nario are average values of five replicates. The differences 
in correlations between the corrected phenotypes and 
predicted GBV among the five replicates varied accord-
ing to trait and population. The mean absolute devia-
tion in the correlation values of the replicates from the 
reported average value ranged from 0.01 to 0.17 across 

traits in the different models for the Chinese validation, 
and from 0.03 to 0.10 in the Danish and from 0.04 to 0.21 
in the Dutch validation.

Discussion
Combining reference populations
The population-specific genomic prediction for the FA 
traits studied, generally, resulted in low prediction reli-
abilities in the Chinese and Danish populations. For the 
Dutch validation, moderate prediction reliabilities were 
achieved for some of the FA traits. In general, the low 
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prediction reliabilities with a population-specific refer-
ence reflect the well-established impact of a small refer-
ence population in genomic prediction reliability [37, 38]. 
However, prediction reliabilities were in general lower 
for the Chinese single-population prediction than for the 
Danish single-population prediction although the sizes 
of their reference populations were similar. This can be 
partially explained by the lower heritability estimates for 
the Chinese dataset for most of the FA traits than for the 
other datasets. The effect of a small reference population 
size is larger on low heritability traits for which a rela-
tively large number of records will be required in the ref-
erence population to achieve high accuracies of GBV in 
unphenotyped animals [39]. Cows from a few sire-groups 
were used for the prediction in the Chinese and Dutch 
populations. Prediction accuracies obtained with such 
large half-sib groups might not be representative of those 
obtained with larger populations in which such a parental 
structure is less common. The distribution of haplotypes 
in a population comprising few sires will differ from that 
in a random population sample and the estimated SNP 
effects may be biased, to some extent, since they are con-
ditioned on the haplotypes of the few sires represented in 
the reference population.

Combining reference populations resulted in a rela-
tively sizable improvement in prediction reliability in 
the Danish and Dutch validation. Previous studies using 

either simulated [40] or real data [41] suggested that 
pooling data from different populations is beneficial 
for the accuracy of genomic predictions. However, the 
genetic distance between the populations/breeds that 
are combined [8], the marker density used, the genetic 
architecture of the traits [42], and the inconsistencies in 
allele substitution effects [43] might affect such advan-
tages. A gain in prediction reliability of up to 9% points 
was obtained for some traits in the Chinese validation, 
whereas little or no increase was observed for some of the 
traits by adding the Dutch and Danish Holstein reference 
populations. This was unexpected given the genetic simi-
larity and high consistency in genome-wide LD that exist 
between the populations combined [10, 11]. One possible 
reason for the limited benefits from combining the refer-
ence populations for the Chinese validation could be dif-
ferences in SNP effects between the Chinese population, 
on the one hand, and the Dutch and Danish populations, 
on the other hand. Previously, in a joint GWAS using the 
same dataset, we (Gebreyesus et  al. personal commu-
nication) found that effects of SNPs in the DGAT1 and 
SCD1 genes on BTA14 and 26, respectively, were smaller 
in the Chinese dataset than in the Dutch and Chinese 
datasets. Polymorphisms in DGAT1 and SCD1 underlie 
a substantial proportion of the genetic variation in most 
milk FA traits. Based on our previous GWAS results, 
we suggested that differences in feeding systems are the 
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most likely source of significant differences in phenotypic 
means between the Chinese dataset, on the one hand, 
and the Dutch and Danish datasets, on the other hand. 
Fitting herd as a fixed effect accounts for differences due 
to management systems. However, such differences can 
introduce feed-by-genotype interactions that result in 
differences in the size of SNP effects. Inconsistencies in 
SNP effects have been shown to reduce the advantages 
from multi-population genomic prediction [43]. On the 

one hand, SNP effects estimated in a multi-population 
reference, which is dominated by Dutch Holstein cows 
(n = 1566) compared to the Danish (n = 614) and Chi-
nese (n = 586) cows, are used to predict breeding values 
for the 100 Chinese validation animals. On the other 
hand, the corrected phenotypes from the single-popula-
tion analysis for these validation animals reflect the SNP 
effects in the Chinese population. With such differences 
in the estimates of SNP effects for the Chinese population 
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compared to the others, the correlations between breed-
ing values estimated by using the multi-population refer-
ence sets and the corrected phenotypes, i.e., prediction 
accuracies, are expected to be low. This also leads us to 
expect smaller contributions from the Chinese reference 
population for the gains in prediction reliability observed 
for the Dutch and Danish validations using the combined 
reference predictions.

Incorporating GWAS results in prediction models
In this study, we also implemented a GFBLUP model that 
considered BTA14, 19 and 26 as genomic features and 
allowed separate random genetic effect components for 
these regions. In general, implementation of this GFB-
LUP model resulted in further improvements in predic-
tion accuracy for most of the traits across the validation 
populations. However, the level of improvement varied 
across the populations with the smallest improvement 
observed for the Chinese validation.

The relative gain in prediction reliability with the GFB-
LUP model across the FA traits appears to be related to 
the proportion of genetic variance that is collectively 
explained by the features considered. For instance, the 
gain in prediction reliability from the GFBLUP model 
was highest for the C14 index, in all three populations, 
for which more than half of the genomic variance was 
explained by the genomic features collectively, i.e., 
BTA14, 19 and 26. Likewise, smaller increases in pre-
diction reliability across the populations were computed 
for C18:0, which had the smallest proportion of variance 
explained by BTA14, 19 and 26. However, this pattern is 
mainly limited to the Danish and Dutch validation since 
the gains in prediction reliability from the GFBLUP were 
generally low in the Chinese validation regardless of the 
proportion of variance explained by the features.

Different methods have been suggested to incor-
porate biological information in genomic prediction 
models. For instance, MacLeod et  al. [13] introduced 
the Bayes RC model, an extension of the Bayes R 
model [44], to incorporate biological information by 
defining classes of SNPs that are likely to be enriched 
for causal variants. Similarly, Brøndum et al. [45] pre-
sented Bayesian prediction models based on genome-
position specific priors, whereas Gebreyesus et al. [46] 
introduced hierarchical Bayesian models based on the 
clustering of adjacent SNPs to exploit heterogene-
ous (co)variance patterns. However, with few excep-
tions (e.g. Zhang et  al. [47]), most of these models 
are implemented within a Bayesian framework that is 
computationally demanding. Hence, their applicability 
in routine evaluations is limited. GBLUP is straight-
forward to implement and estimated GBV are similar 
to those estimated in the BLUP approach [6] since the 

method, i.e., assumption of a normal distribution of 
QTL effects, is equivalent to the BLUP approach used 
in traditional breeding programs [28]. Thus, its sim-
plicity and lower computational burden have made 
GBLUP a method of choice in routine genetic evalu-
ations. Therefore, implementing biological informa-
tion-augmented approaches in GBLUP models are 
closer to practical implementation in the breeding 
industry.

Our findings show that improvement in prediction relia-
bility from multi-population prediction using the GFBLUP 
model was substantial and consistent across populations 
for some of the traits analyzed. These include the C14 
index and, to some extent, C14:1 and C16:1 FA. Saturated 
FA in milk, in particular C12:0, C14:0 and C16:0 are fre-
quently associated with increases in serum cholesterol 
in humans, and this has been the basis for the develop-
ment of the atherogenicity index: (C12 + 4·C14 + C16)/
(MUFA + n3 PUFA + n6 PUFA) [48]. We have shown that 
by pooling data and incorporating biological information, 
it is possible to predict genetic merits for the composi-
tion of such FA with accuracies as high as 0.79 in spite of 
the limited size of the reference populations used. These 
findings highlight the possibility of implementing selec-
tive breeding to modify the bovine milk FA composition, 
although large-scale phenotyping for these traits is still a 
challenge. Our findings also indicate that genomic pre-
diction for small-scale recorded traits might benefit from 
international collaborations for access to data across 
populations.

Conclusions
In this study, we compared the accuracies of genomic 
prediction for the detailed milk fat composition traits 
using a multi-population reference and a model incor-
porating GWAS findings with those obtained with tra-
ditional GBLUP models in a single population scenario. 
Our results indicate that pooling multi-population data 
and implementing prediction models augmented with 
biological information can enable prediction of genetic 
merits for the small-scale recorded bovine milk FA com-
position traits with reasonable accuracies. High predic-
tion reliabilities were estimated for some of the FA traits 
using the multi-population reference and a GFBLUP 
model, e.g. 0.79 for the C14 index, 0.69 for C14:0 and 
0.64 for C18:1c9, which indicates that the modification of 
the milk fatty acid composition through selective breed-
ing could be considered in spite of the current limitations 
in large-scale phenotyping.
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Additional file 1. Genomic prediction reliability in the Dutch population 
using single- and combined-population GBLUP and GFBLUP. Bar plots 
of genomic prediction reliability (y-axis) for all the FA traits (x-axis) in the 
Dutch population with single-population GBLUP, single-population GFB-
LUP and combined reference population GFBLUP models.

Additional file 2. Plots of predicted GBV against corrected phenotypes 
from the GFBLUP model in the Chinese validation. Scatterplots of pre-
dicted GBV (y-axis) against corrected phenotypes (x-axis) from the GFBLUP 
model in the Chinese population using all five validation sets.

Additional file 3. Plots of predicted GBV against corrected phenotypes 
from the GFBLUP model in the Danish validation. Scatterplots of predicted 
GBV (y-axis) against corrected phenotypes (x-axis) from the GFBLUP model 
in the Danish population using all five validation sets.

Additional file 4. Plots of predicted GBV against corrected phenotypes 
from the GFBLUP model in the Dutch validation. Scatterplots of predicted 
GBV (y-axis) against corrected phenotypes (x-axis) from the GFBLUP model 
in the Dutch population using all five validation sets.
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