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Abstract 

Background: Genotyping of sequence variants typically involves, as a first step, the alignment of sequencing reads 
to a linear reference genome. Because a linear reference genome represents only a small fraction of all the DNA 
sequence variation within a species, reference allele bias may occur at highly polymorphic or divergent regions of the 
genome. Graph-based methods facilitate the comparison of sequencing reads to a variation-aware genome graph, 
which incorporates a collection of non-redundant DNA sequences that segregate within a species. We compared the 
accuracy and sensitivity of graph-based sequence variant genotyping using the Graphtyper software to two widely-
used methods, i.e., GATK and SAMtools, which rely on linear reference genomes using whole-genome sequencing 
data from 49 Original Braunvieh cattle.

Results: We discovered 21,140,196, 20,262,913, and 20,668,459 polymorphic sites using GATK, Graphtyper, and SAM-
tools, respectively. Comparisons between sequence variant genotypes and microarray-derived genotypes showed 
that Graphtyper outperformed both GATK and SAMtools in terms of genotype concordance, non-reference sensitiv-
ity, and non-reference discrepancy. The sequence variant genotypes that were obtained using Graphtyper had the 
smallest number of Mendelian inconsistencies between sequence-derived single nucleotide polymorphisms and 
indels in nine sire-son pairs. Genotype phasing and imputation using the Beagle software improved the quality of the 
sequence variant genotypes for all the tools evaluated, particularly for animals that were sequenced at low coverage. 
Following imputation, the concordance between sequence- and microarray-derived genotypes was almost identical 
for the three methods evaluated, i.e., 99.32, 99.46, and 99.24% for GATK, Graphtyper, and SAMtools, respectively. Variant 
filtration based on commonly used criteria improved genotype concordance slightly but it also decreased sensitivity. 
Graphtyper required considerably more computing resources than SAMtools but less than GATK.

Conclusions: Sequence variant genotyping using Graphtyper is accurate, sensitive and computationally feasible in 
cattle. Graph-based methods enable sequence variant genotyping from variation-aware reference genomes that may 
incorporate cohort-specific sequence variants, which is not possible with the current implementation of state-of-the-
art methods that rely on linear reference genomes.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The sequencing of important ancestors of many cat-
tle breeds revealed millions of sequence variants that 
are polymorphic in dairy and beef populations [1–4]. In 
order to compile an exhaustive catalog of polymorphic 
sites that segregate in Bos taurus, the 1000 Bull Genomes 
consortium was established [5, 6]. The 1000 Bull 
Genomes project imputation reference panel facilitates 

the inference of sequence variant genotypes for large 
cohorts of genotyped animals, thus enabling genomic 
investigations at the nucleotide level [5, 7–9].

Sequence variant discovery and genotyping typi-
cally involve two successive steps [10–13]. First, raw 
sequencing data are generated, trimmed and filtered to 
remove adapter sequences and bases with low sequenc-
ing quality, and then aligned to a linear reference 
genome using, e.g., Bowtie [14] or the Burrows-Wheeler 
Alignment (BWA) software [15]. Second, the aligned 
reads are compared to the nucleotide sequence of a 
reference genome in order to discover and genotype 
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polymorphic sites using, e.g., SAMtools [16] or the 
Genome Analysis Toolkit (GATK) [17–19]. Variant dis-
covery may be performed either in a single- or multi-
sample mode. The accuracy (i.e., ability to correctly 
genotype sequence variants) and sensitivity (i.e., ability 
to detect true sequence variants) of sequence variant 
discovery is higher using multi-sample than single-
sample approaches particularly when the sequencing 
depth is low [20–24]. However, genotyping sequence 
variants from multiple samples simultaneously is a 
computationally intensive task, particularly when the 
sequenced cohort is large and diverse and had been 
sequenced at high coverage [19]. The multi-sample 
sequence variant genotyping approach that is imple-
mented in the SAMtools software has to be restarted 
for the entire cohort, once new samples are added. 
GATK implements two different approaches to multi-
sample variant discovery, i.e., the UnifiedGenotyper and 
HaplotypeCaller modules, with the latter relying on 
intermediate files in gVCF format that include proba-
bilistic data on variant and non-variant sites for each 
sequenced sample. Applying the HaplotypeCaller mod-
ule allows to separate variant discovery within samples 
from the estimation of genotype likelihoods across 
samples. Once new samples are added to an existing 
cohort, only the latter needs to be performed for the 
entire cohort, thus enabling computationally efficient 
parallelization of sequence variant genotyping in a large 
number of samples.

Sequence variant genotyping approaches that rely on 
alignments to a linear reference genome have limita-
tions for variant discovery, because a haploid reference 
sequence does not reflect variation within a species. As 
a result, read alignments may be erroneous particularly 
at genomic regions that differ substantially between the 
sequenced individual and the reference sequence, thus 
introducing reference allele bias, flawed genotypes, and 
false-positive variant discovery around indels [25–27]. 
Aligning reads to population- or breed-specific reference 
genomes may overcome most of these limitations [28–
30]. However, considering multiple (population-specific) 
linear reference genomes with distinct genomic coordi-
nates complicates the biological interpretation and anno-
tation of sequence variant genotypes across populations 
[31].

Genome graph-based methods consider non-linear 
reference sequences for variant discovery [31–35]. A 
variation-aware genome graph may incorporate distinct 
(population-specific) reference sequences and known 
sequence variants. Recently, the Graphtyper software 
has been developed in order to facilitate sequence vari-
ant discovery from a genome graph that has been con-
structed and iteratively augmented using variants from 

the sequenced cohort [32]. To date, sequence variant 
genotyping using variation-aware genome graphs has not 
been evaluated in cattle.

An unbiased evaluation of the accuracy and sensi-
tivity of sequence variant genotyping is possible when 
high confidence sequence variants and genotypes that 
were detected using genotyping technologies and algo-
rithms different from those to be evaluated are available 
[36]. For species for which such a resource is not avail-
able, the accuracy of sequence variant genotyping may be 
evaluated by comparing sequence variant genotypes to 
microarray-derived genotypes (e.g., [2, 24]). Due to the 
ascertainment bias in single nucleotide polymorphism 
(SNP) chip data, this comparison may overestimate the 
accuracy of sequence variant discovery particularly at 
variants that are either rare or located in less accessible 
genomic regions [37, 38].

In this study, we compared sequence variant discov-
ery and genotyping from a variation-aware genome 
graph using Graphtyper to two state-of-the-art meth-
ods (GATK and SAMtools) that rely on linear reference 
genomes from 49 Original Braunvieh cattle. We com-
pared sequence variant genotypes to microarray-derived 
genotypes in order to assess accuracy and sensitivity of 
sequence variant genotyping for each of the three meth-
ods evaluated.

Methods
Selection of animals
We selected 49 Original Braunvieh (OB) bulls that 
were either frequently used in artificial insemination or 
explained a large fraction of the genetic diversity of the 
active breeding population. Semen straws of the bulls 
were purchased from an artificial insemination center 
and DNA was prepared following standard DNA extrac-
tion protocols.

Sequencing data pre‑processing
All samples were sequenced on either an Illumina HiSeq 
2500 (30 animals) or an Illumina HiSeq 4000 (19 animals) 
sequencer using 150  bp paired-end sequencing librar-
ies with insert sizes ranging from 400 to 450  bp. Qual-
ity control (removal of adapter sequences and bases with 
low quality) of the raw sequencing data was carried out 
using the fastp software (version 0.19.4) with default 
parameters [39]. The filtered reads were mapped to the 
UMD3.1 version of the bovine reference genome [40] 
using BWA mem (version 0.7.12) [15] with option-M to 
mark shorter split hits as secondary alignments, default 
parameters were applied in all other steps. Optical and 
PCR duplicates were marked using Samblaster (version 
0.1.24) [41]. The output of Samblaster was converted 
into BAM format using SAMtools view (version 1.3) 



Page 3 of 15Crysnanto et al. Genet Sel Evol           (2019) 51:21 

[16], and subsequently coordinate-sorted using Sam-
bamba (version 0.6.6) [42]. We used the GATK (version 
3.8) RealignerTargetCreator and IndelRealigner modules 
to realign reads around indels. The realigned BAM files 
served as input for GATK base quality score recalibration 
using 102,092,638 unique positions from the Illumina 
BovineHD SNP chip and Bovine dbSNP version 150, as 
known variants. The mosdepth software (version 0.2.2) 
[43] was used to extract the number of reads that covered 
a genomic position.

Sequence variant discovery
We followed the best practice guidelines recommended 
for variant discovery and genotyping using GATK (ver-
sion 4.0.6) with default parameters for all commands [17, 
18, 24]. First, genotype likelihoods were calculated sepa-
rately for each sequenced animal using GATK Haplo-
typeCaller [19], which resulted in files in gVCF (genomic 
Variant Call Format) format for each sample [44]. The 
gVCF files from the 49 samples were consolidated 
using GATK GenomicsDBImport. Subsequently, GATK 
GenotypeGVCFs was applied to genotype polymorphic 
sequence variants for all samples simultaneously.

Graphtyper (version 1.3) was run in a multi-sample 
mode as recommended in Eggertsson et al. [32]. Because 
the original implementation of Graphtyper is limited to 
the analysis of the human chromosome complement, 
we cloned the Graphtyper GitHub repository (https ://
githu b.com/Decod eGene tics/graph typer ), modified the 
source code to allow analysis of the cattle chromosome 
complement, and compiled the program from the modi-
fied source code (see Additional file 1). The Graphtyper 
workflow consisted of four steps that were executed suc-
cessively. First, sequence variants were identified from 
the read alignments that were produced using BWA mem 
(see above). Second, these cohort-specific variants were 
used to augment the UMD3.1 reference genome and 
construct the variation-aware genome graph. Third, the 
sequencing reads were locally realigned against the vari-
ation-aware graph. A clean variation graph was produced 
by removing unobserved haplotypes paths from the raw 
graph. In the final step, genotypes were identified from 
the realigned reads in the clean graph. The Graphtyper 
pipeline was run in segments of 1 million bp and when-
ever the program failed to genotype variants for a par-
ticular segment either because it ran out of memory or 
exceeded the allocated runtime of 12 h, the interval was 
subdivided into smaller segments (10 kb).

Our implementation of SAMtools mpileup (version 1.8) 
[45] was run in a multi-sample mode to calculate geno-
type likelihoods from the aligned reads for all samples 
simultaneously. The parameters -E and -t were used to 

recalculate (and apply) base alignment quality and pro-
duce per-sample genotype annotations, respectively. 
Next, the estimated genotype likelihoods were converted 
into genotypes using BCFtools call using the -v and -m 
flags to output variable sites only, and permit sites to have 
more than two alternative alleles, respectively.

We implemented all pipelines using Snakemake (ver-
sion 5.2.0) [46]. The scripts for the pipelines are available 
via GitHub repository (https ://githu b.com/danan gcrys 
nanto /Graph -genot yping -paper -pipel ines).

Sequence variant filtering and genotype refinement
The GATK VariantFiltration module was used to parse and 
filter the raw VCF files. Quality control on the raw sequenc-
ing variants and genotypes was applied according to 
guidelines that were recommended for each variant caller. 
Variants that were identified using GATK were retained if 
they met the following criteria: QualByDepth (QD) > 2.0, 
FisherStrand < 60.0, RMSMappingQuality (MQ) > 40.0, 
MappingQualityRankSumTest (MQRankSum) > 12.5, 
ReadPosRankSumTest (ReadPosRankSum) > -8.0, SOR < 3.0 
(SNPs) and QD > 2.0, FS < 200.0, ReadPosRankSum > 20.0, 
SOR < 10.0 (indels). For the variants identified using SAM-
tools, the thresholds that have been applied in the 1000 
Bull Genomes project [5] were considered to remove vari-
ants with indication of low quality. Variants were retained 
if they met the following criteria: QUAL > 20, MQ > 30, 
ReadDepth (DP) > 10, DP < median(DP) + 3 * mean(DP). 
Moreover, SNPs were removed from the data if they had 
the same positions as the starting position of an indel. The 
output of Graphtyper was filtered so that it included only 
variants that met the criteria recommended by Eggerts-
son et  al. [32]: ABHet < 0.0 | ABHet > 0.33, ABHom < 0.0 | 
ABHom > 0.97, MaxAASR > 0.4, and MQ > 30.

We used Beagle (version 4.1) [47] to improve the raw 
sequence variant genotype quality and impute missing 
genotypes. The genotype likelihood (gl) mode of Beagle 
was applied to infer missing and modify existing geno-
types based on the phred-scaled likelihoods (PL) of all 
other non-missing genotypes of the 49 Original Braun-
vieh animals in our study.

Evaluation of sequence variant genotyping
To ensure consistent variant representation across 
the different sequence variant genotyping meth-
ods evaluated, we applied the vt normalize software 
(version 0.5) [48]. Normalized variants are parsimo-
nious (i.e., represented by as few nucleotides as pos-
sible) and left aligned [48]. The number of variants 
detected and transition to transversion (Ti/Tv) ratios 
were calculated using vt peek [48] and BCFtools stats 

https://github.com/DecodeGenetics/graphtyper
https://github.com/DecodeGenetics/graphtyper
https://github.com/danangcrysnanto/Graph-genotyping-paper-pipelines
https://github.com/danangcrysnanto/Graph-genotyping-paper-pipelines
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[45]. The intersection of variants that were common 
to the evaluated tools was calculated and visualized 
using BCFtools isec [45] and the UpSet R package [49], 
respectively.

Mendelian inconsistencies were calculated as the 
proportion of variants showing opposing homozygous 
genotypes in nine parent–offspring pairs that were 
included in the 49 sequenced animals. For this com-
parison, we considered only the sites for which the 
genotypes of both sire and son were not missing.

All 49 sequenced cattle were also genotyped 
using either the Illumina BovineHD (N = 29) or the 
BovineSNP50 (N = 20) Bead chip that comprise 777,962 
and 54,001 SNPs, respectively. The average genotyping 
rate at autosomal SNPs was 98.91%. In order to assess 
the quality of sequence variant genotyping, the geno-
types detected by the different variant calling methods 
were compared to the array-called genotypes in terms 
of genotype concordance, non-reference sensitivity and 
non-reference discrepancy [24, 50], and for more details 
on the metrics (see Additional file  2). Non-parametric 
Kruskal–Wallis tests followed by pairwise Wilcoxon 
signed-rank tests were applied to determine if any of the 
three metrics differed significantly between the three 
tools evaluated.

Computing environment and statistical analysis
All computations were performed on the ETH Zurich 
Leonhard Open Cluster with access to multiple nodes 
equipped with 18 cores Intel Xeon E5-2697v4 proces-
sors (base frequency rated at 2.3  GHz) and 128  GB of 
random-access memory. Unless otherwise stated, the R 
(version 3.3.3) software environment [51] was used for 
statistical analyses and ggplot2 (version 3.0.0) [52] was 
used for data visualisation.

Results
Following quality control (removal of adapter sequences 
and low-quality bases), we aligned more than 13 bil-
lion paired-end reads (2 × 125 and 2 × 150  bp) from 49 
Original Braunvieh cattle to the UMD3.1 assembly of 
the bovine genome. On average, 98.44% (91.06–99.59%) 
of the reads mapped to the reference genome and 4.26% 
(2.0–10.91%) of these were flagged as duplicates and not 
considered for further analyses. Sequencing depth ranged 
from 6.00 to 37.78 with an average depth per animal of 
12.75 and was above 12-fold for 31 samples. Although 
the realignment of sequencing reads around indels is no 
longer required when sequence variants are genotyped 
using the latest version of GATK (v 4), it is still recom-
mended to improve the genotyping of indels by using 

Fig. 1 Schematic representation of the three sequence variant discovery and genotyping methods evaluated. According to the best practice 
recommendations for sequence variant discovery using GATK, the VQSR module should be applied to distinguish between true and false positive 
variants. Because this approach requires a truth set of variants, which is not (publicly) available for cattle, the VQSR module was not considered in 
our evaluation
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SAMtools. To ensure a fair comparison of the three tools 
evaluated, we realigned the reads around indels on all 
BAM files and used the re-aligned files as a starting point 
for our comparisons (Fig. 1). The sequencing read data of 
49 cattle were deposited at European Nucleotide Archive 
(ENA) (http://www.ebi.ac.uk/ena) under primary acces-
sion PRJEB28191.

Sequence variant discovery and genotyping
Polymorphic sites (SNPs, indels) were discovered and 
genotyped in the 49 animals using either GATK (version 
4), Graphtyper (version 1.3) or SAMtools (version 1.8). 
All software programs were run using default parameters 
and workflow descriptions for variant discovery (Fig.  1 
and also see Methods). Only autosomal sequence vari-
ants were considered to evaluate the accuracy and sen-
sitivity of sequence variant genotyping. Because variant 
filtering has a strong impact on the accuracy and sensitiv-
ity of sequence variant genotyping [53, 54], we evaluated 
both the raw variants that were detected using default 
parameters for variant discovery (Fig.  1) and variants 
that remained after applying filtering criteria that are 
commonly used but may differ slightly between differ-
ent software tools. Note that GATK was run by using the 
suggested filtering parameters, when application of Vari-
ant Quality Score Recalibration (VQSR) is not possible.

Using default parameters for variant discovery for 
each of the software programs evaluated, 21,140,196, 
20,262,913, and 20,668,459 polymorphic sites were 

discovered using GATK, Graphtyper and SAMtools, 
respectively (Table 1). The vast majority (86.79, 89.42 and 
85.11%) of the detected variants were biallelic SNPs. Of 
the 18,594,182, 18,120,724 and 17,592,038 SNPs detected 
using GATK, Graphtyper and SAMtools, respectively, 
7.46, 8.31 and 5.02% were novel, i.e., they were not among 
the 102,091,847 polymorphic sites of the most recent ver-
sion (150) of the Bovine dbSNP database. The Ti/Tv ratio 
of the detected SNPs was equal to 2.09, 2.07 and 2.05 
using GATK, Graphtyper and SAMtools, respectively. 
Using GATK revealed four times more multiallelic SNPs 
(246,220) than either SAMtools or Graphtyper.

We identified 2,478,489, 2,044,585, and 3,076,421 
indels using GATK, Graphtyper, and SAMtools, respec-
tively, and 26.78%, 29.15%, and 41.75% of them were 
novel. SAMtools revealed the largest number and highest 
proportion (14.9%) of indels. Between 12 and 14% of the 
detected indels were multiallelic. While Graphtyper and 
GATK identified more (12%) deletions than insertions, 
the proportions were almost the same using SAMtools.

On average, each Original Braunvieh cattle carried 
between 7 and 8 million variants that differed from the 
UMD3.1 reference genome. Of these, between 2.4 and 2.6 
million SNPs were homozygous for the alternate allele, 
between 3.8 and 4.7 million SNPs were heterozygous and 
between 0.7 and 1 million were indels (Table 2).

An intersection of 15,901,526 biallelic SNPs was com-
mon to all sequence-variant discovery tools evaluated 
(Fig. 2a), i.e., between 85.51 and 90.39% of the detected 

Table 1 Number of  different types of  autosomal sequence variants detected in  49 Original Braunvieh cattle using 
three sequence variant genotyping methods (Full) and  subsequent variant filtration based on  commonly used criteria 
(Filtered)

Full Filtered

GATK Graphtyper SAMtools GATK Graphtyper SAMtools

Variants 21,140,196 20,262,913 20,668,459 19,761,679 17,679,155 18,871,549

SNPs 18,594,182 18,120,724 17,592,038 17,248,593 15,777,446 16,272,917

Not in dbSNP 1,387,781 1,505,586 882,575 867,838 564,326 570,901

Biallelic 18,347,962 18,053,396 17,528,249 17,111,806 15,730,153 16,218,714

Multi-allelic 246,220 67,328 63,789 136,787 47,293 54,203

Ti/Tv ratio 2.09 2.07 2.05 2.17 2.18 2.16

SNP array (%)

BovineHD 99.46 99.61 99.32 99.21 98.79 98.85

Bovine SNP50 99.14 99.26 99.12 98.91 98.87 98.90

Indels 2,478,489 2,044,585 3,076,421 2,445,766 1,826,808 2,598,632

Not in dbSNP 663,831 596,137 1,279,162 639,219 456,752 979,291

Biallelic 2,166,352 1,753,391 2,704,413 2,133,840 1,571,195 2,310,386

Multi-allelic 312,137 291,194 372,008 311,926 255,613 288,246

Insertion/Deletion 0.88 0.88 1 0.88 0.88 0.99

Complex variation 67,525 97,604 0 67,320 74,901 0

http://www.ebi.ac.uk/ena
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SNPs of each tool, and 466,029 (2.93%, Ti/Tv: 1.81) of 
them were novel, i.e., they were not present in dbSNP 
150. The Ti/Tv-ratio of the common SNPs was 2.22. 
SAMtools had the largest number of SNPs in common 
with the other two tools (90.39%). The number of pri-
vate SNPs, i.e., SNPs that were detected by one but not 
the other tools was largest for GATK and smallest for 
Graphtyper.

In total, 1,299,467 biallelic indels (Fig.  2b) were com-
mon to all evaluated tools and 98,931 (13.13%) of these 
were novel, i.e., they were not present in dbSNP 150. 
The intersection among the three tools was consider-
ably smaller for indels than for SNPs. Graphtyper had the 
highest proportion of indels in common with the other 
tools (74.11%). SAMtools discovered the largest number 
(2,704,413) of biallelic indels and most of them (41.26%) 
were not detected using either GATK or Graphtyper. 
GATK (21.2%) and Graphtyper (12.38%) discovered fewer 
private indels than SAMtools.

Sequence variant genotyping using Graphtyper is accurate
The 49 sequenced animals were also genotyped 
using either the Illumina BovineHD or the Illumina 
BovineSNP50 Bead chip. Genotype concordance, non-
reference sensitivity and non-reference discrepancy 
were calculated using array-called and sequence variant 
genotypes at corresponding positions. Genotype con-
cordance is a measure of the proportion of variants that 
have identical genotypes on the microarray and in whole-
genome sequencing data. Non-reference sensitivity is the 
proportion of microarray-derived variants that were also 
detected in the sequencing data. Non-reference discrep-
ancy reflects the proportion of sequence variants that 
have genotypes that differ from the microarray-derived 
genotypes [for more details on how the different metrics 
were calculated (see Additional file 2)]. All metrics were 
calculated both for raw and filtered variants either before 

or after applying the algorithm implemented in the Bea-
gle software for haplotype phasing and imputation.

In the raw data, the proportion of missing non-refer-
ence sites was 1.90%, 0.56%, and 0.47% using GATK, 
Graphtyper, and SAMtools, respectively. The genotype 
concordance between the sequence- and microarray-
derived genotypes was higher (P < 0.005) when Graph-
typer (97.72%) was used than when either SAMtools 
(97.68%) or GATK (95.99%) was used (Table  3). For the 
three tools evaluated, the genotype concordance was 
higher at homozygous than heterozygous sites, particu-
larly in animals that were sequenced at low depth (see 
Additional file  3) In order to take the variable propor-
tions of missing genotypes in the sequence variants into 
account, we calculated non-reference sensitivity and 
non-reference discrepancy. Non-reference sensitivity was 
almost identical using Graphtyper (98.26%) and SAM-
tools (98.21%). However, non-reference sensitivity was 
clearly lower using GATK (93.81%, P < 0.001). Non-ref-
erence discrepancy was lower using Graphtyper (3.53%) 
than using either SAMtools (3.6%, P = 0.003) or GATK 
(6.35%, P < 0.001).

Next, we analysed the proportion of opposing homozy-
gous genotypes for SNPs and indels in nine sire-son 
pairs that were included among the sequenced animals 
(Table  4). We observed that SNPs that were discovered 
using either Graphtyper or SAMtools had almost a simi-
lar proportion of genotypes with Mendelian inconsisten-
cies in the full and filtered datasets, whereas the values 
were two times higher using GATK. The proportion of 
opposing homozygous genotypes was higher for indels 
than SNPs for all the tools evaluated. However, in the 
full and filtered datasets, it was lower when Graphtyper 
was used than when either GATK or SAMtools was used. 
Using filtering parameters that are commonly applied 
for the three evaluated tools (see Methods), we excluded 
1,378,517 (6.52%, Ti/Tv 1.24), 2,583,758 (12.75%, Ti/

Table 2 Average number of autosomal variants identified per animal using three sequence variant genotyping methods

The number of variants is presented for the three tools evaluated before (Full) and after (Filtered) applying recommended filters to identify and exclude low quality 
variants

Full Filtered

GATK Graphtyper SAMtools GATK Graphtyper SAMtools

Total biallelic SNPs 6,324,455 7,384,058 6,617,948 6,105,674 6,533,711 6,564,229

Heterozygous 3,890,351 4,758,297 4,187,882 3,744,336 4,074,011 4,147,033

Homozygous ALT 2,434,104 2,625,761 2,430,066 2,361,338 2,459,700 2,417,196

Ti/Tv 2.17 2.13 2.11 2.20 2.14 2.13

Total biallelic indels 693,697 767,261 1,007,420 691,765 697,637 960,218

Heterozygous 390,495 441,172 616,981 388,622 391,856 593,417

Homozygous ALT 303,202 326,089 390,439 303,143 305,781 366,801

Singletons 49,166 23,406 32,810 41,408 17,999 32,398
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Tv 1.47) and 1,796,910 (8.69%, Ti/Tv 1.36) variants due 
to low mapping or genotyping quality from the GATK, 
Graphtyper, and SAMtools datasets, respectively. The 
genotype concordance between sequence- and microar-
ray-derived genotypes was slightly higher for the filtered 
than the raw genotypes, but the non-reference sensitivity 

was lower for the filtered than the raw genotypes, which 
indicates that the filtering step also removed some true 
variant sites from the raw data (Table  3). The filtering 
step had almost no effect on the proportion of Mende-
lian inconsistencies detected in the nine sire-son pairs 
(Table 4).

Fig. 2 Number of biallelic SNPs (a) and indels (b) identified in 49 Original Braunvieh cattle using three sequence variant genotyping methods. Blue 
horizontal bars represent the total number of sites discovered for each method. Vertical bars indicate private and common variants detected by the 
methods evaluated
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Beagle genotype refinement improved genotype quality
We used the Beagle software to refine the primary gen-
otype calls and infer missing genotypes in the raw and 
filtered datasets. Following imputation, the quality of 
the sequence variant genotypes increased for all evalu-
ated tools particularly for the individuals that had a 
sequencing coverage less than 12-fold (Fig. 3). The larg-
est increase in the concordance metrics was observed for 
the sequence variants that were obtained using GATK 
(Tables 3 and 4). Following imputation, the variants iden-
tified using Graphtyper had a significantly higher quality 
(P < 0.05) for eight out of the ten metrics evaluated.

The quality of the sequence variant genotypes, par-
ticularly before Beagle genotype phasing and imputa-
tion, was influenced by the variable depth of coverage 
for the 49 sequenced samples of our study (Fig. 3). When 
we restricted the evaluations to 31 samples that had an 
average sequencing depth above 12-fold, the three tools 
performed almost identically (see Additional file  4). 
However, the performance of Graphtyper was signifi-
cantly (P < 0.05) higher for 12 (out of the total 20) metrics 
than either that of GATK or SAMtools. When 18 samples 
with an average sequencing depth lower than 12-fold 
were considered, the differences observed in the three 
metrics were more pronounced between the three tools. 
In samples with a low sequencing coverage, Graphtyper 

performed significantly (P < 0.05) better than either 
GATK or SAMtools for all concordance metrics both 
before and after filtering and Beagle imputation, except 
for the non-reference sensitivity.

Computing requirements
The multi-sample sequence variant genotyping pipelines 
that were implemented using either GATK or SAMtools 
were run separately for each chromosome in a single-
threading mode. The SAMtools mpileup module took 
between 3.07 and 11.4 CPU hours and required between 
0.12 and 0.25 gigabytes (GB) peak random-access mem-
ory (RAM) per chromosome. To genotype 20,668,459 
sequence variants in 49 animals, SAMtools mpileup 
required 192 CPU hours (Fig. 4).

For GATK, we submitted 1421 parallel jobs of the 
HaplotypeCaller module (i.e., one job for each ani-
mal and chromosome) that required between 3.9 and 
12.3 GB RAM and between 0.36 and 11 CPU hours to 
complete. To process 29 chromosomes in 49 samples, 
the HaploytpeCaller module required 2428 CPU hours. 
Subsequently, we ran the GATK GenomicsDBImport 
module, which required between 7.98 and 20.88  GB 
RAM and between 2.81 and 19.31 CPU hours per chro-
mosome. GATK Joint Genotyping required between 
4.33 and 17.32  GB of RAM and between 1.81 and 

Table 3 Comparisons between array-called and sequence variant genotypes

Genotype concordance, non-reference sensitivity and non-reference discrepancy (in percentage) were calculated between the genotypes from the Bovine SNP Bead 
chip and sequence–derived genotypes for 49 Original Braunvieh cattle considering either the raw or imputed (Imp) sequence variant genotypes before (Full) and after 
(Filtered) variants were filtered based on commonly used criteria. Asterisks denote significant differences (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001) with the best value (italic) 
for a respective parameter

Genotype concordance Non‑reference sensitivity Non‑reference discrepancy

Full Filtered Full Filtered Full Filtered

Raw Imp Raw Imp Raw Imp Raw Imp Raw Imp Raw Imp

GATK 95.99*** 99.32*** 96.02*** 99.39*** 93.81*** 99.36 93.67*** 99.15 6.35*** 1.05*** 6.3*** 0.95***

Graphtyper 97.71 99.46 97.75 99.52 98.26 99.35 97.91 99.00*** 3.53 0.83 3.47 0.73

SAMtools 97.68*** 99.24*** 97.7* 99.29*** 98.21 99.35 97.53*** 98.67*** 3.6** 1.17*** 3.56** 1.09***

Table 4 Proportions of opposing homozygous genotypes observed in nine sire-son pairs

The ratio (in percentage) was calculated using autosomal sequence variants considering either the raw or imputed (Imp) sequence variant genotypes before (Full) and 
after (Filtered) variants were filtered based on commonly used criteria. Asterisks denote significant differences (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001) with the best value 
(italic) for a respective parameter

SNPs Indels

Full Filtered Full Filtered

Raw Imp Raw Imp Raw Imp Raw Imp

Bovine HD SNP array 0.001

GATK 0.73* 0.15* 0.72* 0.13* 0.98* 0.24* 0.99* 0.21*

Graphtyper 0.36 0.11 0.36 0.11 0.54 0.13 0.54 0.13

SAMtools 0.33 0.28* 0.32 0.25* 0.67 0.54* 0.61 0.57*
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14.01 h per chromosome. To genotype 21,140,196 pol-
ymorphic sequence variants in 49 animals, the GATK 
pipeline required 2792 CPU hours (Fig. 4).

The Graphtyper pipeline including construction of 
the variation graph and genotyping of sequence vari-
ants was run in parallel for 2538 non-overlapping seg-
ments of 1 million bp as recommended by Eggertson 
et al. [32]. The peak RAM required by Graphtyper was 
between 1 and 3 GB per segment. Twelve segments, for 
which Graphtyper either ran out of memory or did not 
finish within the allocated time, were subdivided into 
smaller segments of 10  kb and subsequently re-run 
(Additional file 5). The genotyping of 20,262,913 poly-
morphic sites in 49 animals using our implementation 

of the Graphtyper pipeline required 1066 CPU hours 
(Fig. 4).

The computing resources required by SAMtools and 
GATK increased linearly with chromosome length. The 
computing time required to genotype sequence vari-
ants was highly heterogeneous along the genome using 
Graphtyper. The CPU time for a 1-Mb segment ranged 
from 0.196 to 10.11  h, with an average CPU time of 
0.42 h. We suspected that flaws in the reference genome 
might increase the complexity of the variation-aware 
graph and that the construction of the graph might ben-
efit from an improved assembly. To test this hypoth-
esis, we re-mapped the sequencing reads to the recently 
released new bovine reference genome (ARS-UCD1.2, 

Fig. 3 Accuracy and sensitivity of sequence variant genotyping at different sequencing depths. Genotype concordance, non-reference sensitivity 
and non-reference discrepancy were calculated for 49 Original Braunvieh cattle considering either raw (red) or filtered and imputed (blue) sequence 
variant genotypes. The grey points represent overlays of the results from the other methods
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https ://www.ncbi.nlm.nih.gov/assem bly/GCF_00226 
3795.1) and repeated the graph-based sequence vari-
ant discovery. Indeed, we did observe a decrease in the 
computing time required to genotype polymorphic sites 
(particularly at chromosomes 12, 27 and 29) and a more 
uniform runtime along the genome, which possibly indi-
cates that graph-based variant discovery in cattle will be 
faster and more accurate with highly contiguous refer-
ence sequences (Fig. 5).

Discussion
We used either GATK, Graphtyper, or SAMtools  to dis-
cover and genotype polymorphic sequence variants in 
whole-genome sequencing data of 49 Original Braun-
vieh cattle that were sequenced at between 6 and 38-fold 
genome coverage. Whereas SAMtools and GATK dis-
cover variants from a linear reference genome, Graph-
typer locally realigns reads to a variation-aware reference 
graph that incorporates cohort-specific sequence vari-
ants [32]. Our graph-based variant discovery pipeline 
that is implemented by using the Graphtyper software 
used the existing bovine reference sequence to con-
struct the genome graph. Subsequently, the graph was 
augmented with variants that were detected from linear 
alignments of the 49 Original Braunvieh cattle. The use of 
more sophisticated genome graph-based approaches that 
have been developed very recently facilitates the map-
ping of raw sequencing reads directly against a genome 

graph without the need to first align reads towards a 
linear  reference genome [34]. Whereas genome graph-
based variant discovery has been explored recently in 
mammalian-sized genomes [27, 31, 32, 35], our work is 
the first to apply graph-based sequence variant genotyp-
ing in cattle.

In order to evaluate graph-based variant discovery in 
cattle, we compared accuracy and sensitivity of Graph-
typer to GATK, and SAMtools  , i.e., two state-of-the-art 
methods on linear reference genomes that have been 
evaluated thoroughly in many species including cattle [2, 
20]. We ran each tool with default parameters for variant 
discovery and applied commonly used or recommended 
filtration criteria. However, our evaluation of the soft-
ware tools may suffer from ascertainment bias because 
we relied on SNPs that are included in bovine SNP arrays, 
i.e., they are located predominantly at genomic regions 
where variants are easy to identify [37, 38, 50]. Thus, the 
global accuracy and sensitivity of sequence variant dis-
covery might be overestimated in our study. However, 
this ascertainment bias is unlikely to affect the relative 
performance of the methods evaluated.

In 49 Original Braunvieh cattle, sequence variant 
genotyping was more accurate using Graphtyper than 
either GATK or SAMtools. Differences in accuracy are 
small between the three tools, particularly when sam-
ples are sequenced at an average coverage higher than 
12-fold (see Additional file 4). Yet, Graphtyper performed 

Fig. 4 Computing time required to genotype all autosomal sequence variants in 49 Original Braunvieh cattle. The runtime of GATK and Graphtyper 
is shown for the different steps (see Fig. 1 for more details)

https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1


Page 11 of 15Crysnanto et al. Genet Sel Evol           (2019) 51:21 

significantly better than GATK and SAMtools for sam-
ples sequenced at medium (> 12-fold) or low (< 12-fold) 
coverage indicating that genome graph-based variant 
discovery in cattle is accurate across a wide range of 
sequencing depths. GATK might perform better than 
observed in our study, when the VQSR module is applied 
to train the variant filtration algorithm on true and false 
variants [55]. However, to the best of our knowledge, the 
required sets of true and false variants are not available 
in cattle. An intersection of variants detected by differ-
ent sequence variant genotyping software may be consid-
ered as a truth set (e.g., [56]) and compiling such a set is 
possible using the 49 samples from our study. However, 
a truth set that has been constructed from the data that 
are used for evaluation is likely to be depleted for variants 
that are difficult to discover in the target data set, thus 
preventing an unbiased evaluation of variant calling [36]. 

Variants from the 1000 Bull Genomes project [5, 6] could 
potentially serve as a truth/training set. However, vari-
ants from the 1000 Bull Genomes project were detected 
from short read sequencing data using either GATK or 
SAMtools, i.e., technologies and software that are part 
of our evaluation, thus precluding an unbiased compari-
son of variant discovery between GATK, Graphtyper, and 
SAMtools  [36]. Vander Jagt et  al. [57] showed in a sub-
set of samples from the 1000 Bull Genomes project that 
GATK VQSR does not notably improve the concordance 
between sequence-derived and microarray-called geno-
types compared to GATK hard filtering. Interestingly, the 
proportion of opposing homozygous genotypes in sire/
offspring pairs was slightly higher in their study using 
GATK VQSR than GATK hard-filtering as used by the 
1000 Bull Genomes project [57]. Applying GATK VQSR 
to the variants of our dataset corroborates the findings of 

Fig. 5 Sequence variant genotyping on chromosome 12 using Graphtyper. Computing time required (a) and number of variants discovered (b) for 
bovine chromosome 12 using Graphtyper. Each dot represents an interval of 1 million bp. Blue and red colours represent values for the UMD3.1 and 
ARS-UCD1.2 versions of the bovine assembly, respectively
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Vander Jagt et  al. [57] (see Additional file  6). Consider-
ing that the quality of the truth/training sets has a strong 
impact on the capabilities of VQSR (Additional file 6) and 
that high-confidence variants are currently not publicly 
available for cattle, we report GATK results using the 
recommended filtering parameters when VQSR is not 
possible.

Regardless of the method evaluated, we observed het-
erozygous under-calling in animals that are sequenced 
at low coverage, i.e., heterozygous variants were errone-
ously genotyped as homozygous due to an insufficient 
number of sequencing reads supporting the heterozygous 
genotype [10, 58–60]. In agreement with previous stud-
ies [2, 5], Beagle imputation improved genotype concord-
ance and reduced heterozygous under-calling particularly 
in individuals that are sequenced at low coverage. After 
the imputation step, the genotype concordance, non-
reference sensitivity, and non-reference discrepancy of 
the three tools were almost identical, which indicates 
that genotyping sequence variants from samples with a 
medium genome coverage is possible at high accuracy (at 
least for common variants in more accessible regions of 
the genome) using any of the three tools evaluated and 
subsequent Beagle error correction. While such con-
clusions have been drawn previously for SAMtools and 
GATK [2, 20], our findings demonstrate that the geno-
type likelihoods estimated from the Graphtyper software 
are also compatible with and benefit from the imputation 
algorithm implemented in the Beagle software. Consid-
ering that sequence data are enriched for rare variants 
that are more difficult to impute than common variants 
from SNP microarrays [61], the benefits from Beagle 
error correction might be overestimated in our study. 
An integration of phasing and imputation of missing 
genotypes directly in a graph-based variant genotyping 
approach would simplify sequence variant genotyping 
from variation-aware graphs [31, 62, 63]. Using Graph-
typer for variant genotyping and Beagle for genotype 
refinement enabled us to genotype sequence variants in 
49 Original Braunvieh cattle at a genotypic concordance 
of 99.52%, i.e., higher than previously achieved using 
either GATK or SAMtools for variant calling in cattle 
that are sequenced at a similar genome coverage [2–5, 
20, 64]; this indicates that graph-based variant discovery 
might improve sequence variant genotyping. However, 
applying the filtering criteria that are recommended for 
Graphtyper [32] removed more variants from the Graph-
typer (12.75%) than from either GATK (6.52%) or SAM-
tools (8.69%) datasets. It should be mentioned that GATK 
VQSR would remove considerably more variants from 
the GATK dataset than GATK hard filtering as applied in 
our study (see Additional file 6). Fine-tuning of the vari-
ant filtering parameters is necessary to further increase 

the accuracy and sensitivity of sequencing variant geno-
typing, particularly for Graphtyper [53, 54]. Moreover, 
the accuracy and sensitivity of graph-based variant dis-
covery may be higher when known variants are consid-
ered for the initial construction of the variation graph 
[32]. Indeed, we observed a slight increase in genotype 
concordance (see Additional file 7) when we used Graph-
typer to genotype sequence variants from a variation-
aware genome-graph that incorporated bovine variants 
listed in dbSNP 150. However, additional research is 
required to prioritize a set of variants to augment bovine 
genome graphs for different cattle breeds [65].

Using microarray-derived genotypes as a truth set 
may overestimate the accuracy of sequence variant dis-
covery particularly at variants that are rare or located in 
less accessible regions of the genome. Moreover, it does 
not allow assessment of the accuracy and sensitivity of 
indel discovery because variants other than SNPs are cur-
rently not routinely genotyped with commercially avail-
able microarrays. Estimating the proportion of opposing 
homozygous genotypes between parent–offspring pairs 
may be a useful diagnostic metric to detect sequencing 
artefacts or flawed genotypes at indels [66]. Our results 
show that genotypes at indels are more accurate using 
Graphtyper than either SAMtools or GATK because 
Graphtyper produced less opposing homozygous geno-
types at indels in nine sire-son pairs than the other meth-
ods both in the raw and filtered datasets. These findings 
are in line with those reported by Eggertsson et al. [32], 
who showed that the mapping of the sequencing reads to 
a variation-aware graph could improve read alignment 
nearby indels, thus enabling highly accurate sequence 
variant genotyping also for variants other than SNPs. 
Recently, Garrison et  al. [34] showed that graph-based 
variant discovery may also mitigate reference allele bias. 
An assessment of reference allele bias was, however, not 
possible in our study because the sequencing depth was 
too low for most samples.

In our study, Graphtyper required less computing time 
than GATK to genotype sequence variants for 49 individ-
uals. SAMtools required the least computing resources, 
probably because the implemented mpileup algorithm 
produces genotypes from the aligned reads without 
performing the computationally intensive local realign-
ment of the reads. However, with an increasing number 
of samples, the multi-sample variant genotyping imple-
mentation of the GATK HaplotypeCaller module seems 
to be more efficient than SAMtools mpileup because vari-
ant discovery within samples can be separated from the 
joint genotyping across samples [19, 57]. A highly paral-
lelized graph-based variant discovery pipeline also offers 
a computationally feasible and scalable framework for 
variant discovery in thousands of samples [32]. However, 
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the computing time necessary for graph-based vari-
ant genotyping might be high in genomic regions where 
the nucleotide diversity is high or the assembly is flawed 
[35, 67]. In our study, the algorithm implemented in the 
Graphtyper software failed to finish within the allocated 
time for 12 1-Mb segments including a segment on chro-
mosome 12 that contains a large segmental duplication 
[61, 68, 69] possibly because many mis-mapped reads 
increased graph complexity. The region on chromosome 
12 contains an unusually large number of sequence vari-
ants and has been shown to suffer from low accuracy of 
imputation [61]. Graphtyper also failed to finish within 
the allocated time for a region on chromosome 23 that 
encompasses the bovine major histocompatibility com-
plex, which is known to have a high level of diversity. Our 
results show that Graphtyper may also produce geno-
types for problematic segments when they are split and 
processed in smaller parts. Moreover, most of these prob-
lems disappeared when we considered the latest assembly 
of the bovine genome, which possibly corroborates that 
more complete and contiguous genome assemblies may 
facilitate more reliable genotyping from variation-aware 
graphs [37, 70].

Conclusions
Genome graphs facilitate sequence variant discovery 
from non-linear reference genomes. Sequence vari-
ant genotyping from a variation-aware graph is possible 
in cattle using Graphtyper. Sequence variant genotyp-
ing at both SNPs and indels is more accurate and sensi-
tive using Graphtyper than either SAMtools or GATK. 
The proportion of Mendelian inconsistencies at both 
SNPs and indels is low using Graphtyper, which indi-
cates that sequence variant genotyping from a varia-
tion-aware genome graph facilitates accurate variant 
discovery at different types of genetic variation. Consid-
ering highly informative variation-aware genome graphs 
that have been constructed from multiple breed-specific 
de-novo assemblies and high-confidence sequence vari-
ants may facilitate more accurate, sensitive and unbiased 
sequence variant genotyping in cattle.
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