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SHORT COMMUNICATION

More animals than markers: a study 
into the application of the single step T‑BLUP 
model in large‑scale multi‑trait Australian Angus 
beef cattle genetic evaluation
Vinzent Boerner* and David J. Johnston

Abstract 

Multi-trait single step genetic evaluation is increasingly facing the situation of having more individuals with geno-
types than markers within each genotype. This creates a situation where the genomic relationship matrix (G ) is not 
of full rank and its inversion is algebraically impossible. Recently, the SS-T-BLUP method was proposed as a modified 
version of the single step equations, providing an elegant way to circumvent the inversion of the G and therefore 
accommodate the situation described. SS-T-BLUP uses the Woodbury matrix identity, thus it requires an add-on 
matrix, which is usually the covariance matrix of the residual polygenic effet. In this paper, we examine the applica-
tion of SS-T-BLUP to a large-scale multi-trait Australian Angus beef cattle dataset using the full BREEDPLAN single step 
genetic evaluation model and compare the results to the application of two different methods of using G in a single 
step model. Results clearly show that SS-T-BLUP outperforms other single step formulations in terms of computational 
speed and avoids approximation of the inverse of G.
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Background
Within the last decade, genotyping thousands of indi-
viduals with single nucleotide polymorphism (SNP) chips 
has become common practice in breeding programs of 
many species of economic relevance. However, due to 
cost effectiveness these individuals are being genotyped 
with low- to medium-density SNP chips, with usually not 
more than 50,000 markers.

To date, genetic evaluation systems accommodate 
SNP genotypes via the so-called single step model, in 
which  most often markers are used to pre-calculate 
a relationship matrix, which subsequently augments 
the usual pedigree derived relationship matrix into a 
so-called H matrix   (SS-H-BLUP) [1]. With the mixed 
model equations  (MME) requiring the inverse of this 
matrix, and assuming that G is actually algebraically 
invertible, increasing numbers of genotyped individuals 
have imposed a large computational burden on genetic 

evaluation systems. To circumvent this problem an 
approximation of the inverse of G was proposed, but the 
effect of this approximation on estimated breeding val-
ues  (EBV) is dataset-dependent and must therefore be 
empirically determined for every single application [2].

However, the situation described above of having more 
genotyped individuals than markers has led to a situa-
tion where G is not of full rank and therefore algebraically 
no longer invertible. An alternative solution is to not use 
G and move to a model which incorporates the markers 
directly  (SS-SNP-BLUP). While SS-SNP-BLUP is generally 
equivalent to SS-H-BLUP, and some formulations such as 
[3] offer huge model flexibility, many of its final implemen-
tations suffer from convergence problems with regard to 
iterative solving [3] or demanding pre-conditioner compu-
tation [4]. However, recently an elegant intermediate model 
has been formulated, which may be seen as a mix of SS-H-
BLUP and SS-SNP-BLUP and is called SS-T-BLUP [5, 6]. SS-
T-BLUP does not need G or its inverse and fits the marker 
indirectly. As it also fits G indirectly, it is generally algebrai-
cally equivalent to SS-H-BLUP. Thus, it provides EBV at the 
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individual level, which can be readily transformed into SNP 
solutions but avoids the complex co-variance structure of 
SS-SNP-BLUP [3, 5, 7].

In this paper, we will examine the computational 
advantage of SS-T-BLUP for a large-scale multi-trait 
BREEDPLAN single step genetic evaluation of Australian 
Angus beef cattle. We will compare the results to those 
obtained by using an ordinary SS-H-BLUP approach.

Methods
Model
In the following, three equivalent representations of the 
inverse of the H matrix are derived which differ in their 
computational demand before and while solving the 
MME. Many of the formulas have been derived else-
where [1, 5, 6, 8–11], but for convenience they are  pre-
sented below.

The H matrix required for SS-H-BLUP can be written as:

where A is the pedigree-based numerator relationship 
matrix, A1,1 denotes a diagonal block of A related to the 
set of mn non-genotyped individuals, A2,2 denotes a diag-
onal block of A related to the set of mg genotyped indi-
viduals, and A1,2 and A2,1 denote off-diagonal blocks of A 
located between the non-genotyped and genotyped indi-
viduals. Gw is a genomic relationship matrix of dimen-
sion mg ×mg which is constructed by Gw = γ M D M′+ 
� C , where M is a centred and scaled matrix of marker 
genotypes of dimension mg ×mm , D is an arbitrary but 
symmetric and positive definite matrix of dimension 
mm ×mm , C is an arbitrary but symmetric and posi-
tive definite matrix of dimension mg ×mg , and γ and � 
are arbitrary non-zero weights. Note that in applica-
tions where all markers are weighted equally and the 
co-variance between markers is set to zero, D reduces 
to an identity matrix if M is centred and scaled. Further-
more, C may be a diagonal matrix of random noise which 
ensures invertibility of M D M′ , and � and γ are set to 1. 
Or C = A2,2 , 0 < � < 1 , γ = 1− � , where � is interpreted 
as the proportion of the total additive genetic variance 
not explained by markers [8].
H−1 can be written as:
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where A:,: is a respective block of the inverse of A.
Replacing Gw with γ M D M′ + � C in Eq. 1 and invert-

ing the resulting matrix yields:

where

according to the Woodbury matrix identity.
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2,2
 , Eq. 4 simplifies to:
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Given the matrices H−1 , H̃−1 and �−1 , three different 
BLUP models can be defined, SS-H-BLUP, SS-H̃-BLUP, 
and SS-T-BLUP, which differ solely in the formulation of 
the inverse of H used (H−1 , H̃−1 or �−1).

Computational implications when solving iteratively
The differences between the three approaches regarding 
computational time spent on preparing necessary data 
and solving the MME iteratively can be reduced to a set 
of very specific operations unique to the respective rep-
resentation of the inverse of H . This also applies to the 
differences in memory requirements.

Assuming that C = A2,2 , preparation of SS-H-BLUP 
requires to  build G , A2,2 and Gw , and invert both Gw 
and A2,2 . Preparing SS-H̃-BLUP involves building G , 
A2,2 and Gw , and inverting Gw , whereas setting up SS-
T-BLUP requires building M† and M∗ . Furthermore, 
SS-H̃-BLUP and SS-T-BLUP require a sparse factori-
sation of A1,1 to facilitate matrix-vector operations on 
( A2,2 − A2,1(A1,1)−1A1,2 ) and sampling the diagonal 
elements of ( A2,2 − A2,1(A1,1)−1A1,2 ) if required  [12]. 
Note that vector operations on (A1,1)−1 involve solving 
an equation for every single vector instead of doing an 
inversion once [11].

A widely used method when solving MME itera-
tively is the conditioned gradient descent method  [also 
known as preconditioned gradient method  (PCG)]. It 
requires the multiplication of a vector with the MME 
coefficient matrix once per iteration. Therefore, this 
method is affected by the way the inverse of H is pre-
sented. More specifically, during iteration the compu-
tational differences between the three approaches can 
be reduced to the multiplication of a vector of length 
mg , say z, with a dense matrix, which is ( G−1

w  − A−1
2,2

 ), or 
G−1
w  , or M∗ M∗′ , for SS-H-BLUP, SS-H̃-BLUP and SS-T-

BLUP, respectively. Furthermore, SS-H̃-BLUP and SS-
T-BLUP require the multiplication of z with the matrix 
( A2,2 − A2,1(A1,1)−1A1,2 ), which involves solving ( A1,1 ) 
f∗ = f, where f=A1,2 z.

Differences in peak memory requirement directly 
result from the size of the arrays, which must be kept in 
RAM simultaneously during preparation and iteration. 
Furthermore, for SS-H-BLUP and SS-H̃-BLUP, the com-
putational task, in which peak memory usage occurs, 
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changes as the number of genotyped individuals exceeds 
the number of markers.

Data
The SS-H-BLUP, SS-H̃-BLUP and SS-T-BLUP models 
were applied to an Australian Angus beef cattle data-
set currently used in BREEDPLAN single step genetic 
evaluation  [13]. The dataset comprised 35 traits with 
9,565,814 records and 2,621,403 individuals in the pedi-
gree. The number of animals with genotypes was 58,705 
which comprised SNP genotypes of various densities and 
panel manufacturers imputed to a common set of 56,009 
SNPs [14]. To increase the computational load, additional 
91,295 and 341,295 dummy genotypes (total dataset size 
of 150k and 400k genotypes, respectively) were generated 
in a regression-sampling approach (see next paragraph). 
The 400k dataset was used only for SS-T-BLUP because 
the other models were computationally infeasible.

Dummy genotypes for 91,295  (341,295) individuals, 
sampled from the pool of non-genotyped individuals, 
were generated by M̃ = A∗,2A

−1
2,2

Mc , where M̃ is a matrix 
of dimension 91,295  (341,295) × 56,009 of expected 
marker counts of the sampled non-genotyped individu-
als, Mc is a matrix of real marker counts of dimension 
58,705 × 56,009, which were centred using mean allele 
counts estimated from the data, and A∗,2 is the off-diag-
onal block of A between the sampled non-genotyped 
individuals and the 58,705 genotyped individuals. Outli-
ers in M̃ (< 0 and > 2 ) were truncated to 0 and 2, respec-
tively, where the proportion of outliers was lower than 
1%. Subsequently, each expected marker count M̃i,j was 
translated into a dummy marker genotype by drawing 
two samples from a binomial distribution with param-
eters p = M̃i,j/2 and q = 1− M̃i,j/2 . Note that dummy 
genotypes that are generated this way may be affected by 
Mendelian inconsistency, but these were only generated 
for the purpose of increasing the computational load and 
are not part of the usual BREEDPLAN analysis.

The BREEDPLAN multi-trait model included pre-cor-
rected phenotypes [15], a single fixed factor per trait, 27 
correlated random genetic factors  (including direct and 
maternal), 27 correlated random genetic group factors 
with 19 genetic groups  (including direct and maternal), 
3 correlated random maternal permanent environmental 
factors and 22 correlated random sire-by-herd interac-
tion factors. For traits with repeated observations, repeti-
tions were modelled as correlated traits sharing the same 
genetic factor. Accounting for the extensive production 
system and the widespread use of natural mating in large 
herds using groups of bulls, the pedigree and its deriva-
tives (e.g. A , A−1 ) allowed for more than one pair of par-
ents per animal if necessary  [15]. The total number of 
equations was 76,823,378.
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For all three models matrix, D was set to identity, 
matrix C  = A2,2 , and � and γ were set as 0.05 and 0.95, 
respectively.

Software
The system of equations was solved with AGBU’s current 
large-scale linear mixed model library solver, which uses 

the PCG algorithm for iteratively solving linear mixed 
models and integrates Intel(R) MKL(R), version 2017 
update 8. For research and commercial purposes, the 
solver is available on request. Block-diagonal and diago-
nal pre-conditioners were used for random and fixed fac-
tors, respectively.

Denoting the MME as Xb = y, where X is the coef-
ficient matrix, b is the solution vector and y is the right 
hand side vector, convergence was achieved when the L2 
norm of vector (y − Xb) scaled by the L2 norm of vector 
y was ≤ 2.68E−9 . All computationally relevant integers 
and all real numbers were represented in 64 bit form. 
All matrices and vectors required for preparation and 
solving were stored in random access memory  (RAM). 
Computations for the 150k dataset were carried out on a 
computer with two sockets each with an Intel(R) Xeon(R) 
CPU E5-2697 v3 with 2.60 GHz, a total of 28 cores and 
528 GB of RAM. Computations for the 400k dataset were 
carried out on a computer with two sockets each with an 
Intel(R) Xeon(R) CPU E5-2697 v4 with 2.30 GHz, a total 
of 36 cores and 256 GB of RAM.

Results
Results for the different parts of the setup and solving 
steps are in Table  1. SS-H-BLUP150 , SS-H̃-BLUP150 , SS-
T-BLUP150 and SS-T-BLUP400 converged in equal num-
bers of rounds which was ≃ 2560 (see Fig. 1). The major 
differences between SS-H-BLUP150 , SS-H̃-BLUP150 and 
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Fig. 1  The solver convergence criterion on a log10 scale as a 
function of the number of iterations for SS-H-BLUP150 (black), 
SS-H̃-BLUP150 (blue), SS-T-BLUP150 (red) and SS-T-BLUP400 (green)

Table 1  Processing time in  real time seconds  (hours) for  various tasks and  the  additional memory requirement 
in gigabyte specific to the model when iteratively solving a SS-T-BLUP, SS-H-BLUP and SS-H̃-BLUP model using a multi-
trait Australian Angus BREEDPLAN dataset with 35 traits, 2.6 million animals and 77 million equations

(1) 150,000 individuals with genotypes. (2) 400,000 individuals with genotypes. (3) Sampling of diagonal elements of A−1
2,2 using 10,000 samples. (4) Approximated 

model specific memory requirement in addition to the memory requirement common to all models. SS-H-BLUP: Gw and A2,2 were build explicitly and inverted. SS-H̃
-BLUP: Gw and A2,2 were build explicitly. Gw was inverted explicitly, A2,2 − A

2,1(A1,1)−1
A
1,2 was used whilst solving. SS-T-BLUP: an implicit representation of G−1

w  and 
A
2,2 − A

2,1(A1,1)−1
A
1,2 were used whilst solving

Task SS-H-BLUP1
150 SS-H̃-BLUP150 SS-T-BLUP150 SS-T-BLUP2

400

G 1756 1756 – –

A2,2 250 250 – –

G −1 9150 9150 – –

A2,2 −1 3500 – – –

M
† and K – – 3422 4210

Ku – – 352 320

M
∗ – – 629 1170

A
−1
2,2 diag

3 – 262 262 219

Preprocessing total 14,656 (4) 11,418 (3.2) 4,665 (1.3) 5,919 (1.6)

Iteration time per round 7.5 11.2 8.6 12

Total iteration time 19,123 (5.3) 28,716 (7.9) 22,134 (6.1) 30,809 (8.5)

Total evaluation time 33,779 (9.4) 40,134 (11.1) 26,799 (7.4) 36,728 (10.2)

≈ RAM4 180 180 104 216
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SS-T-BLUP150 were the computing times for run prepara-
tion and per round of iteration. 

The preparation time for model specific parts for SS-T-
BLUP150 was 1.3 h, for SS-H-BLUP150 4 h and for SS-H̃
-BLUP150 3.2  h. Thus, compared to SS-T-BLUP, SS-H-
BLUP needed 3 times and SS-H̃-BLUP 2.5 times more 
real time for all necessary pre-calculations.

In terms of time per iteration, SS-H-BLUP150 needed 
7.5 real time seconds for a single round of the precon-
ditioned gradient solver, followed by SS-T-BLUP150 with 
8.5 real time seconds. With 11.2 seconds per iteration 
SS-H̃-BLUP was slowest. These differences were caused 
by multiplying a vector, say y, with matrices �−1 , H−1 
and H̃−1 . This can be narrowed down further to a single 
matrix vector operation �H−1

2,2
y = (G−1

w − A−1
2,2

)y in SS-
H-BLUP, or one matrix vector operation G−1

w y and one 
solver operation y = (A2,2 − A2,1(A1,1)−1A1,2)x in SS-H̃
-BLUP, or two matrix vector operations M∗ M∗′ y and one 
solver operation y = A2,2 − A2,1(A1,1)−1A1,2 x in SS-T-
BLUP. In the example given here, computations of �H−1

2,2

y and G−1
w  y required ≈ 2.25e10 floating point opera-

tions (FLOP), whereas M∗ M∗′ y required ≈ 1.5e10 FLOP.
SS-T-BLUP and SS-H̃-BLUP have further compu-

tational costs for solving y = (A2,2 − A2,1(A1,1)−1A1,2

)x, which offset the FLOP advantage of SS-T-BLUP and 
produce an additional overhead for SS-H̃-BLUP when 
compared to SS-H-BLUP. For SS-H̃-BLUP150 , this dis-
advantage is not balanced by avoiding inversion of 
A2,2 , which results in SS-H̃-BLUP having the longest 
total run time of all approaches. The combination of an 
advantage in terms of FLOPs, extra burden for opera-
tion y = (A2,2 − A2,1(A1,1)−1A1,2)x and huge saving 
in preparation time made SS-T-BLUP the fastest of all 
approaches. Note that for SS-H̃-BLUP the operation 
y = (A2,2 − A2,1(A1,1)−1A1,2)x is the only overhead com-
pared to SS-H-BLUP when iterating, and therefore allows 
inference regarding the increase in seconds per iteration 
solely attributable to the sparse representation of A−1

2,2
.

Due to major time savings for run preparation and 
only a slight increase in time per iteration, SS-T-BLUP150 
needed only 80% of the total processing time required by 
SS-H-BLUP150 , and only 66% of SS-H̃-BLUP150 . The dif-
ference in total processing time between SS-H-BLUP150 
and SS-H̃-BLUP150 was almost 2  h caused by a rapid 
inversion of A2,2 and fast iteration when using SS-H-
BLUP150.

Additional approximate random access mem-
ory (RAM) requirements in gibabyte due to matrices and 
operations that are unique to the approaches are in the 
last row in Table 1. For SS-H-BLUP and SS-H̃-BLUP, the 
additional RAM requirement peaked when G and A2,2 or 
their inverse matrices were kept in RAM to calculate Gw 

or ( G−1
w  − A−1

2,2
 ), respectively. For SS-T-BLUP the addi-

tional RAM requirement peaked when operations ( γ−1 
D−1 + M′ M† ) and M† = �−1(A2,2 − A2,1(A1,1)−1A1,2) M 
required keeping matrix M and a matrix of dimension 
mm ×mm in RAM simultaneously.

The last column in Table 1 shows the computing time 
and additional RAM requirement for SS-T-BLUP400 . 
Note that SS-H-BLUP models using 400k dataset were 
computationally infeasible.

Discussion
SS-T-BLUP has been proposed as a single step model 
which can be helpful for datasets for which the number 
of genotyped individuals exceeds the number of mark-
ers and the G matrix is algebraically not invertible. These 
situations are becoming more common in commercial 
plant and livestock species where increasing numbers of 
individuals are genotyped with low- to medium-density 
SNP chips [6]. The method is enabled by reformulating 
the H matrix representation such that neither the G or 
A2,2 matrices, nor their inverse matrices need to be built 
or approximated.

In terms of modelling capacity SS-T-BLUP, SS-H-
BLUP, and SS-H̃-BLUP have drawbacks compared to 
SS-SNP-BLUP. The derivation of matrix �−1 is depend-
ent on a matrix C with weight � , which is usually matrix 
A2,2 or a diagonal matrix of random noise. This applies 
to matrices H−1 and H̃−1 as well, because invertibility of 
G is never guaranteed. In addition, SS-SNP-BLUP can be 
reformulated such that every single genetic effect in the 
model can have different γ and � and every single marker 
in the model can have a different genetic co-variance 
matrix. Such a situation arises when markers have differ-
ent effects within a trait and different effects in different 
traits. The former requires D to be non-identity diago-
nal, the latter a unique matrix D for every single trait. 
In a multi-trait analysis, the genetic covariance matrix 
for marker i may then be 

√
Di�

√
Di where � is a global 

genetic co-variance matrix and Di is a diagonal matrix 
of weights of marker i in the different traits. This expan-
sion is not possible for the models applied here. How-
ever, SS-SNP-BLUP usually comes at the cost of much 
higher model dimensionality and slow convergence rates 
when solved iteratively  [3]. The latter can be dealt with 
by using a more elaborate pre-conditioner, which is still 
computationally demanding [4]. To our knowledge, it has 
not been shown yet that the model flexibility of SS-SNP-
BLUP is required for more accurate EBV.

Since all models were equivalent, it was expected that 
the number of iterations needed for convergence was 
the same. However, surprisingly there was no difference 
in the number of iterations for convergence when using 
only the 58,705 real genotypes (results not shown), 150k 
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genotypes or 400k genotypes. A possible explanation 
is the way the dummy genotypes were generated. Thus, 
it is very likely that a dataset with 400k real genotypes 
may require more iterations but that the time needed 
for preparation and per iteration will be similar to that 
observed in this study.

As shown by the results, SS-T-BLUP clearly outper-
forms SS-H-BLUP in terms of total processing time 
mainly due to the huge computational cost of setting-up 
G , A2,2 and inverting both. In particular, the inversion cost 
grows cubic with mg , whereas at a constant mm the cost 
for generating M† grows less than linearly and the cost for 
Ku grows proportional to (mm × (mm + 1))/2×mg.

Conclusion
These results support the conclusion that SS-T-BLUP 
provides a feasible algorithm to calculate exact solu-
tions for estimated breeding values when the number of 
genotyped individuals exceeds the number of markers. A 
limitation to the number of genotyped individuals is only 
set by the available RAM. Therefore, SS-T-BLUP allows 
solving single step equation systems iteratively with-
out generating G or A2,2 or their inverse matrices or any 
approximation of these matrices.
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