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Abstract 

Background: For genomic selection in populations with a small reference population, combining populations of 
the same breed or populations of related breeds is an effective way to increase the size of the reference population. 
However, genomic predictions based on single nucleotide polymorphism (SNP)-chip genotype data using combined 
populations with different genetic backgrounds or from different breeds have not shown a clear advantage over 
using within-population or within-breed predictions. The increasing availability of whole-genome sequencing (WGS) 
data provides new opportunities for combined population genomic prediction. Our objective was to investigate the 
accuracy of genomic prediction using imputation-based WGS data from combined populations in pigs. Using 80K 
SNP panel genotypes, WGS genotypes, or genotypes on WGS variants that were pruned based on linkage disequi-
librium (LD), three methods [genomic best linear unbiased prediction (GBLUP), single-step (ss)GBLUP, and genomic 
feature (GF)BLUP] were implemented with different prior information to identify the best method to improve the 
accuracy of genomic prediction for combined populations in pigs.

Results: In total, 2089 and 2043 individuals with production and reproduction phenotypes, respectively, from three 
Yorkshire populations with different genetic backgrounds were genotyped with the PorcineSNP80 panel. Imputation 
accuracy from 80K to WGS variants reached 92%. The results showed that use of the WGS data compared to the 80K 
SNP panel did not increase the accuracy of genomic prediction in a single population, but using WGS data with LD 
pruning and GFBLUP with prior information did yield higher accuracy than the 80K SNP panel. For the 80K SNP panel 
genotypes, using the combined population resulted in a slight improvement, no change, or even a slight decrease 
in accuracy in comparison with the single population for GBLUP and ssGBLUP, while accuracy increased by 1 to 2.4% 
when using WGS data. Notably, the GFBLUP method did not perform well for both the combined population and the 
single populations.

Conclusions: The use of WGS data was beneficial for combined population genomic prediction. Simply increasing 
the number of SNPs to the WGS level did not increase accuracy for a single population, while using pruned WGS data 
based on LD and GFBLUP with prior information could yield higher accuracy than the 80K SNP panel.
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Background
Genomic prediction (GP), a method proposed by Meu-
wissen et al. [1], in which breeding values are predicted 
using dense genome-wide markers, has become a rou-
tine procedure in livestock breeding programs. In GP, 
quantitative trait loci (QTL) are presumed to be in link-
age disequilibrium (LD) with at least one of the geno-
typed markers and the markers are used to estimate 
the level of genetic similarity between individuals and 
explain the genetic variance for the trait. Compared with 
pedigree-based prediction of breeding values, GP can 
be performed as soon as DNA is available, which allows 
accurate selection early in life. Generally, the accuracy of 
GP increases as the number of animals in the reference 
population increases. For small reference populations, 
combining populations of the same breed or popula-
tions of related breeds has been reported to increase the 
accuracy of GP, such as for Holstein populations in the 
EuroGenomics [2] and North American consortiums [3]. 
However, GP using combined populations has not shown 
a clear advantage compared with GP using a single popu-
lation [4–6]. The reason may be that the populations that 
are combined are too divergent, such that LD between 
the QTL and genotyped SNPs is not sufficiently consist-
ent between populations. Therefore, an important ques-
tion in this regard is whether the accuracy of combined 
population GP can be improved by using whole-genome 
sequencing (WGS) markers instead of the lower-density 
SNP panels.

The availability of next-generation sequencing technol-
ogies has made it possible to apply GP to WGS data. Gen-
erally, increasing the number of SNPs in a panel increases 
the level of LD between a SNP and a QTL, which should 
be beneficial for GP. WGS data include a large number 
of genomic variants, including most causal mutations. 
Thus, prediction depends much less on LD between 
SNPs and causal mutations. However, some studies have 
demonstrated that using WGS data did not increase pre-
diction accuracy or increased it only slightly compared 
to using high-density SNP panel genotypes. For exam-
ple, van Binsbergen et al. [7] reported that using imputed 
WGS data did not increase the accuracy of GP in Hol-
stein-Friesian cattle compared to using BovineHD SNP 
genotype data. Zhang et al. [8] also showed that increas-
ing marker density did not increase or only slightly the 
accuracy of GP of feed efficiency component traits in 
Duroc pigs. Nevertheless, Brondum et al. [9] showed that 
the accuracy of GP could be improved by adding sev-
eral significant QTL that were detected by genome-wide 
association studies (GWAS) using WGS data. Ni et  al. 
[10] reported that using only SNPs in or around a gene 
from WGS data increased the accuracy of GP in laying 
chickens. Thus, GP with WGS data could be an attractive 

approach, although to date, the expectation of a higher 
accuracy has not been realized with real WGS data.

In pigs, most previous studies on GP have concentrated 
on populations with the same or very similar genetic 
backgrounds [11, 12]. However, in some national pig 
genetic improvement programs, pigs from a wide variety 
of sources are available, e.g., many Chinese pig breeding 
farms have no genetic links between them. To extend the 
size of the reference population, joint genetic evaluation 
can be performed by combining populations with differ-
ent genetics, as in beef cattle [13, 14]. A previous study 
showed that using SNP genotypes from a combined ref-
erence population can improve the accuracy of GP, but 
this improvement was very small [6]. Using WGS data 
for combined population GP could be an attractive and 
meaningful approach to increase accuracy [15–17].

Our objective was to evaluate alternate approaches for 
combined population GP by analyzing WGS data. Three 
Yorkshire pig populations with different genetic back-
grounds were used to establish a combined reference 
population, and two reproduction traits and two produc-
tion traits were investigated to assess the accuracy of GP 
using different methods.

Methods
Ethics statement
The procedure for collecting pig blood samples was car-
ried out in strict accordance with the protocol approved 
by the Animal Care and Use Committee of China Agri-
cultural University (Permit Number: DK996).

Populations and phenotypes
Yorkshire populations were sampled from three breed-
ing farms in China, designated LM, XD, and ZX. Infor-
mation on the populations and phenotypes is in Table 1. 
The pigs in the LM and ZX populations are both Amer-
ican Yorkshire progeny but from different breeding 
companies, and pigs in the XD population are British 
Yorkshire. The phenotypic records of the reproduction 
traits of piglets born alive (NBA) and total number of 
piglets born (TNB), and the production traits of days to 
100 kg (AGE) and backfat thickness (BFT) were exam-
ined. BFT was measured between the 10th and 11th rib 
of pigs at a weight of ~ 100  kg by real-time B-mode 
ultrasound. AGE and BFT were measured from 85 to 
130 kg, and then adjusted to 100 kg. AGE and BFT were 
calculated as follows: AGE = measured age+ (100−

measured weight
)

×
measured age−CF
measured weight  , where CF is a cor-

rection factor (referring to the China National Swine 
Genetic Improvement Program) that is equal to 50.775 
and 46.415 for males and females, respectively; 
BFT = measured backfat thickness + (100−measured

weight
)

×
measured backfat thickness

measured weight−CF  , where CF is equal to 
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− 7.277 and − 9.440 for males and females, respectively. 
For the LM population, records were available for all 
reproduction and production traits, for the XD popula-
tion only NBA and TNB records were available, and for 
the ZX population only production records were 
available.

Derivation of corrected phenotypes
To avoid the double counting problem for parental 
information, corrected phenotypes that were derived 
from pedigree-based estimated breeding values (EBV) 
were used as response variables in GP analyses [8, 12]. 
The model used to estimate EBV is that defined by the 
Center of National Swine Genetic Evaluation of China 
(http://www.cnsge .org.cn/). Pedigree-based EBV and 
genetic parameters for reproduction traits were esti-
mated based on a single-trait repeatability model, which 
was implemented separately for each population. In the 
model, the fixed effect included herd-year-season, in 
which season comprised four levels (1st = December to 
February; 2nd = March to May; 3rd = June to August; 
4th = September to November), and the random effects 
included additive genetic, residual, and permanent 
environment effects. For the production traits, a bivari-
ate animal model was implemented with the fixed effect 
of herd-year-season-sex and the random effects of 
additive genetics, litter, and residual. In total, 141,876 
animals were traced back to construct a pedigree rela-
tionship matrix. Corrected phenotypic values ( yc ) for 
reproduction were calculated as EBV plus the average 
of estimated residuals over parities for a sow, and as 
the EBV plus estimated residual for each individual for 
the production traits. Individuals with an EBV reliabil-
ity lower than 0.3 were removed. The number of geno-
typed animals used in the study is in Table 1. EBV and 

EBV reliability were computed using the DMUAI pro-
cedure in the DMU software [18].

Genotype data and imputation
Whole-genome sequence data on 289 pigs from 6 breeds 
were used as reference data for imputation, comprising 
32 Duroc, 86 Large White, 29 Erhualian, 94 Yorkshire, 
24 China South, and 24 China North pigs. All pigs had 
an average sequencing depth of ~ 25X and were intro-
duced by Yan et al. [19] as a reference panel. SNP calling 
for these individuals was performed following the gen-
eral next-generation sequencing data processing proce-
dures, as described by Yan et al. [19]. After SNP calling, 
46,766,110 SNPs were retained for imputation.

For the animals from the three populations used in 
this study, genomic DNA was extracted from blood sam-
ples using a TIANamp Blood DNA Kit (catalog number 
DP348; Tiangen, Beijing). Genotyping was performed 
using the PorcineSNP80 BeadChip (Illumina, San Diego, 
CA), which includes 68,528 SNPs across the pig genome. 
In total, 6103 pigs, which represented all families as best 
as possible, were genotyped as the target panel for impu-
tation. Furthermore, 22 individuals in the target panel of 
6103 pigs were sequenced (~ 10X) to calculate the gen-
otype concordance rate (CR), which was defined as the 
proportion of genotypes of the imputed variants, which 
were the same as the whole-genome sequence variants.

Imputation from the 80K chip to WGS genotypes was 
performed with Beagle 4.1 [20]. Imputation accuracy was 
assessed by the allelic R-squared measure (AR2) in Beagle, 
which is an estimate of the squared correlation between 
the most probable and the true reference dose. Vari-
ants with a minor allele frequency (MAF) lower than 0.01 
were excluded using the PLINK software (v1.90) [21] and 
only variants located on autosomes were used for further 
analysis, resulting in 56,463 SNPs from the 80K panel, and 

Table 1 Summary of the three Yorkshire populations, numbers of genotyped animals, and estimates of heritability ( h2)

NBA number of piglets born alive, TNB total number of piglets born, AGE days to 100 kg, BFT backfat thickness, N-obs number of individuals/observations
a Yorkshire populations from three Chinese pig breeding farms

Populationa (number  
of animals in the pedigree)

Origin Trait N-obs Birth year Genotyped  
animals

h
2 (SE)

LM (72,998) USA NBA 5907/19,660 2004–2016 1641 0.08 (0.01)

TNB 5907/19,660 1641 0.09 (0.01)

AGE 28,827 2007–2016 1769 0.38 (0.02)

BFT 28,827 1769 0.36 (0.02)

XD (51,964) UK NBA 4842/18,369 2004–2015 762 0.07 (0.01)

TNB 4842/18,369 762 0.07 (0.01)

ZX (16,914) USA AGE 6721 2012–2016 320 0.19 (0.03)

BFT 6721 320 0.24 (0.03)

http://www.cnsge.org.cn/
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18,976,288 SNPs for the imputed whole-genome sequence, 
henceforth referred to as WGS data. The following addi-
tional quality control criteria were used to remove SNPs 
from the WGS data: SNPs with an overall amplification 
of less than 90% and a random pair of SNPs that were in 
high LD with each other  (r2 ≥ 0.9 [22]). After LD pruning, 
4,099,253 SNPs were retained for the WGS data.

Statistical models
Based on the 80K SNP data, the WGS data, and the pruned 
WGS data, three methods were used to predict breed-
ing values using the corrected phenotypes: the GBLUP 
method based on the genomic relationship matrix, the 
single-step GBLUP (ssGBLUP) method with a combined 
pedigree–genomic relationship matrix, and the genomic 
feature BLUP (GFBLUP) method, which included an addi-
tional genomic effect that quantifies the joint effect of a 
group of variants associated with a genomic feature.

GBLUP
The GBLUP [23] model was used to predict the genomic 
EBV (GEBV) of all genotyped individuals:

where yc is the vector of corrected phenotypes, µ is the 
overall mean, 1 is a vector of ones, g is the vector of 
genomic breeding values, following a normal distribution 
of N(0,Gσ 2

g  ), where σ 2
g  is the additive genetic variance, 

and G is the marker-based genomic relationship matrix 
[23]. Z is an incidence matrix linking g to yc , and e is the 
vector of random errors, following a normal distribution 
of N(0, Iσ 2

e  ), where σ 2
e  is the residual variance.

ssGBLUP
The ssGBLUP model uses the phenotype information of 
both genotyped and non-genotyped animals in the same 
model as GBLUP, except that yc also contains the cor-
rected phenotype values of the non-genotyped animals, 
and vector g is assumed to follow a normal distribution 
N
(

0,Hσ 2
g

)

 . The inverse of H is used in the mixed model 
equations, and is given by this simple form [24–26]:

where A22 represents the submatrix of the pedigree-
based relationship matrix A corresponding to the gen-
otyped animals and, to avoid singularity problems, 
Gw = 0.95Ga + 0.05A22 [27, 28], where Ga is an adjusted 
G according to Christensen et al. [11] to avoid differences 
in scale and location between the elements of G and ele-
ments of A22:

yc = 1µ+ Zg + e,

H−1
=

[

G−1
w − A−1

22 0
0 0

]

+ A−1,

Ga = Gβ+ α.

where α and β are adjustment factors derived from the 
following equations:

where Avg. diag is the average of the diagonal ele-
ments, and Avg. offdiag is the average of the off-diagonal 
elements.

GFBLUP
The GFBLUP [29] model, which uses prior information 
about genomic features, is based on a linear mixed model 
with two random genomic effects:

where yc , 1 , µ and e are the same as in GBLUP, f  is the 
vector of genomic values captured by genetic markers 
associated with a genomic feature of interest, following a 
normal distribution of N(0,Gfσ

2
f  ), r is the vector of 

genomic effects captured by the remaining set of genetic 
markers, following a normal distribution N(0,Grσ

2
r  ), and 

Z is an incidence matrix that links f  and r to yc . Matrices 
Gf and Gr were constructed in the same way as G , but 
using only the genetic marker set defined by a genomic 
feature, as described in the following, and the remaining 
markers, respectively. Variance components were esti-
mated via the R package EMMREML (v3.1) [30].

Two strategies were used to define genetic markers that 
formed the different classes of genomic features used in 
GFBLUP model analyses. First, the following general lin-
ear model-based association analysis (GLMA) was con-
ducted, as implemented in the MVP software [31]. After 
LD pruning, all WGS variants were tested for association:

where yc , 1 , µ , g , Z and e are the same as in GBLUP, b 
is the additive effect of the variant to be tested for asso-
ciation, and x is the vector of the variant’s genotype indi-
cator variable coded as 0, 1 or 2. The analysis was based 
only on the reference data. Different p value cut-off levels 
 (10−1 to  10−7) were used to assess the statistical signifi-
cance of the effect of individual SNPs. When a SNP was 
determined to be significantly associated with corrected 
phenotypes based on the pre-specified significance cut-
off level, the corresponding genomic region was consid-
ered to define a genomic feature.

Second, we derived genomic features from the sum-
mary statistics of a group of genetic markers located in 
a previously identified QTL region. All QTL for a spe-
cific trait were downloaded from NRSP (National Ani-
mal Genome Research Program), and gene annotation 
information was downloaded from Ensembl (http://www.

Avg. diag(G)β+ α = Avg. diag(A22)

and Avg. offdiag(G)β+ α = Avg. offdiag(A22),

yc = 1µ+ Zf + Zr + e,

yc = 1µ+ Zg + xb+ e,

http://www.ensembl.org
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ensem bl.org). The markers were grouped according to the 
genomic locations of the QTL region for a specific trait 
category downloaded from the database. The genomic 
region spanned by each individual QTL was standardized 
to three bins of 100, 500 and 1000 kb on each side of the 
QTL midpoint. The SNPs that were mapped to the QTL 
region were considered to define a genomic feature.

Evaluation of the accuracy of genomic prediction
The three methods, GBLUP, ssGBLUP, GFBLUP, were 
compared based on the accuracy of genomic predictions. 
The (ss)GBLUP models based on the 80K SNP panel, 
WGS data, and WGS data after LD pruning were termed 
(ss)GBLUP_80K, (ss)GBLUP_WGS, and (ss)GBLUP_LD, 
respectively. For GFBLUP, the genomic feature matrix 
was constructed based on prior information gained from 
QTL and GWAS strategies, and the results were termed 
GFBLUP_QTL and GFBLUP_GWAS, respectively.

To evaluate the accuracy of genomic prediction, the 
younger LM animals, based on birth dates after Decem-
ber 2013 for reproduction traits and after August 2014 
for production traits, were selected as validation popula-
tions, with sizes of 223 and 270, respectively. Considering 
that, only reproduction records were available from the 
XD population and the small number of genotyped ani-
mals from the ZX population, younger XD animals (born 
after April 2013) were chosen as the validation popula-
tion for reproduction traits, with a size of 196, which 
was similar to the size of the LM validation population. 
The accuracy of genomic prediction was evaluated as 
the correlation between GEBV and yc in the validation 
population. To evaluate the impact of using a combined 
reference population, the accuracy of genomic prediction 
based on the single and combined reference populations 
were compared for the production and reproduction 
traits.

Results
Population structure and genetic parameters
To identify the population structure of the three York-
shire populations, principal component analysis (PCA) 
was performed using the 80K SNP panel. Figure 1 illus-
trates that the genetic backgrounds of the LM and ZX 
populations differed, although both were American York-
shire progeny. Likewise, the XD population was distantly 
related to the LM and ZX groups due to its British origin.

Estimates of heritability of the reproduction and pro-
duction traits in the three Yorkshire populations are in 
Table  1. Heritability estimates for the production traits 
ranged from 0.19 to 0.38 in the LM and ZX populations 
and for reproduction traits they were similar (0.07–0.09) 
in the LM and XD populations.

Genotype imputation accuracy
To assess the imputation accuracy for the imputed vari-
ants, we removed variants with minor allele frequencies 
(MAF) lower than 9.9E−5 and calculated the mean AR2 
and mean CR across the range of MAF for the remain-
ing variants, as shown in Fig.  2. The average CR across 
all variants was 0.92, which is sufficient for further analy-
sis. The AR2 was sensitive to MAF. Variants with a MAF 
lower than 0.15 accounted for ~ 77% of the total num-
ber of variants, and the AR2 was extremely low for vari-
ants with a MAF lower than 0.05. For the variants with 
a MAF higher than 0.15, the AR2 was greater than 80%. 

Fig. 1 Principal component analysis (PCA) for three Yorkshire 
populations. XD, LM and ZX represent three Yorkshire populations 
from three Chinese pig breeding farms; PC1 (3.9%) = first principal 
component (variance explained by PC1 = 3.9%); PC2 (2.1%) = second 
principal component (variance explained by PC2 = 2.1%)

Fig. 2 Imputation accuracy for each minor allele frequency (MAF) 
interval. Genotype concordance rate (CR), which was defined as the 
proportion of genotypes of the imputed variants that were the same 
as the whole-genome sequencing variants. AR2, allelic R-squared 
for consistent variants between imputation and whole-genome 
sequencing. AR2_ALL, allelic R-squared for all imputed variants

http://www.ensembl.org
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Imputation accuracy was also investigated for each chro-
mosome. As shown in Additional file 1: Figure S1 there 
were no significant differences between chromosomes.

Genomic prediction accuracy
Comparison of the GBLUP method based on different marker 
densities
Genomic relationship matrices for use with GBLUP were 
constructed based on the different marker densities of the 
80K SNP panel, the WGS data, and the WGS data after LD 
pruning. Table  2 presents the accuracy of genomic pre-
diction for the reproduction traits based on the different 
reference populations and the LM validation population. 
For the LM reference population, prediction accura-
cies obtained with GBLUP_80K were 0.453 and 0.450 for 
NBA and TNB and were similar with GBLUP_WGS, i.e. 

0.456 and 0.452, respectively. We found a similar trend 
in accuracies for the XD validation population, as shown 
in Table  3. For the XD reference population, predic-
tion accuracies with GBLUP_80K and GBLUP_WGS 
were almost the same for NBA but slightly decreased 
for TNB from 0.431 with GBLUP_80K to 0.425 with 
GBLUP_WGS. Table 4 presents the accuracy of genomic 
prediction of the production traits for the LM validation 
population. There were no obvious differences in accuracy 
between GBLUP_80K and GBLUP_WGS for the LM ref-
erence population, e.g., the accuracy for AGE was 0.625 
with GBLUP_80K and 0.633 with GBLUP_WGS.

It should be noted that, compared to GBLUP_80K and 
GBLUP_WGS, GBLUP_LD resulted in a higher accu-
racy for all scenarios (Tables 2, 3, 4); improvements were 
on average 1.4 and 1.0% for reproduction traits and 2.2 

Table 2 Accuracy of  genomic prediction for  reproduction 
traits using different reference populations to predict 223 
younger individuals of the LM population

GBLUP_80K genomic BLUP based on the 80K SNP panel; GBLUP_WGS GBLUP 
based on imputed whole-genome sequencing (WGS) data; GBLUP_LD 
GBLUP based on WGS after LD pruning; GFBLUP_QTL genomic feature BLUP 
with a genomic feature matrix constructed based on QTL prior information; 
GFBLUP_GWAS genomic feature BLUP with a genomic feature matrix constructed 
based on GWAS prior information; ssGBLUP_80K, ssGBLUP_WGS, ssGBLUP_LD 
For ssGBLUP, the H matrix was constructed based on the different genomic 
relationship matrices of the 80K chip panel, WGS data and WGS data after 
LD pruning and termed ssGBLUP_80K, ssGBLUP_WGS and ssGBLUP_LD, 
respectively; NBA number of piglets born alive; TNB total number of piglets born
a Yorkshire population LM, XD or LM plus the XD reference population

Reference  seta (size 
of reference population)

Method Trait

NBA TNB

LM (1418) GBLUP_80K 0.453 0.450

GBLUP_WGS 0.456 0.452

GBLUP_LD 0.470 0.464

GFBLUP_QTL 0.473 0.466

GFBLUP_GWAS 0.464 0.459

ssGBLUP_80K 0.649 0.664

ssGBLUP_WGS 0.641 0.658

ssGBLUP_LD 0.662 0.679

LM+XD (2180) GBLUP_80K 0.459 0.460

GBLUP_WGS 0.467 0.468

GBLUP_LD 0.478 0.479

GFBLUP_QTL 0.478 0.471

GFBLUP_GWAS 0.462 0.455

ssGBLUP_80K 0.646 0.664

ssGBLUP_WGS 0.648 0.667

ssGBLUP_LD 0.668 0.686

XD (762) GBLUP_80K 0.026 − 0.016

GBLUP_WGS 0.042 − 0.001

GBLUP_LD 0.050 0.028

GFBLUP_QTL − 0.017 − 0.058

GFBLUP_GWAS − 0.008 − 0.009

Table 3 Accuracy of  genomic prediction for  reproduction 
traits using different reference populations to predict 196 
younger individuals of the XD population

GBLUP_80K genomic BLUP based on the 80K SNP panel; GBLUP_WGS GBLUP 
based on imputed whole-genome sequencing (WGS) data; GBLUP_LD 
GBLUP based on WGS after LD pruning; GFBLUP_QTL genomic feature BLUP 
with a genomic feature matrix constructed based on QTL prior information; 
GFBLUP_GWAS genomic feature BLUP with a genomic feature matrix constructed 
based on GWAS prior information; ssGBLUP_80K, ssGBLUP_WGS, ssGBLUP_LD 
For ssGBLUP, the H matrix was constructed based on the different genomic 
relationship matrices of the 80K chip panel, WGS data and WGS data after 
LD pruning and termed ssGBLUP_80K, ssGBLUP_WGS and ssGBLUP_LD, 
respectively; NBA number of piglets born alive; TNB total number of piglets born
a Yorkshire population LM, XD or LM plus the XD reference population

Reference  seta (size 
of reference population)

Method Trait

NBA TNB

XD (566) GBLUP_80K 0.392 0.431

GBLUP_WGS 0.390 0.425

GBLUP_LD 0.396 0.435

GFBLUP_QTL 0.398 0.435

GFBLUP_GWAS 0.378 0.425

ssGBLUP_80K 0.441 0.465

ssGBLUP_WGS 0.439 0.457

ssGBLUP_LD 0.440 0.462

LM+XD (2207) GBLUP_80K 0.387 0.439

GBLUP_WGS 0.407 0.454

GBLUP_LD 0.403 0.455

GFBLUP_QTL 0.407 0.458

GFBLUP_GWAS 0.429 0.494

ssGBLUP_80K 0.451 0.480

ssGBLUP_WGS 0.455 0.481

ssGBLUP_LD 0.453 0.483

LM (1641) GBLUP_80K 0.121 0.214

GBLUP_WGS 0.204 0.275

GBLUP_LD 0.152 0.228

GFBLUP_QTL 0.163 0.232

GFBLUP_GWAS 0.221 0.282
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and 1.0% for production traits, respectively. The highest 
increase was 3.3% for AGE with GBLUP_LD compared to 
GBLUP_80K for the LM+ZX reference population and 
the LM validation population. This result indicates that 
pruning SNPs that are in complete or high LD with other 
SNPs is an effective strategy to reduce the number of 
uninformative markers and increase the prediction accu-
racy with WGS data.

Accuracy of GFBLUP methods with preselection and prior 
biological information
To evaluate the effect of including prior information, 
GFBLUP methods with preselection and prior biology 
strategies were compared with GBLUP_WGS and other 
methods. Prediction accuracies differed for different 
QTL lengths or GWAS p values used for GFBLUP (see 

Additional file  2: Table  S1, Additional file  3: Table  S2, 
Additional file  4: Table  S3, Additional file  5: Table  S4, 
Additional file  6: Table  S5, Additional file  7: Table  S6, 
Additional file  8: Table  S7, Additional file  9: Tables S8]. 
The best results for GFBLUP are in Tables 2, 3 and 4. In 
the scenario in which a single population was used as the 
reference population, the accuracy of genomic predic-
tion increased by on average 1.1 and 1.5% for GFBLUP_
QTL and GFBLUP_GWAS, respectively, compared to 
GBLUP_WGS (Tables 2, 3 and 4), although in some sce-
narios, accuracy did not increase or slightly decreased, 
e.g., with the XD reference and validation population 
for NBA, prediction accuracies were 0.390 and 0.378 
for GBLUP_WGS and GFBLUP_GWAS, respectively 
(Table  3). Therefore, preselection of variants that might 
be causal on the basis of prior biological knowledge (e.g., 
Gene Ontology and pathway) may be key to improving 
prediction accuracy.

Accuracy of ssGBLUP
In this study, the genomic relationship matrix H for ssG-
BLUP was based on the same marker densities as those 
used for GBLUP. Among the three approaches (GBLUP, 
GFBLUP and ssGBLUP) used to predict genomic breed-
ing values, ssGBLUP performed best. For the LM vali-
dation population in Table 2, the accuracy of prediction 
obtained by ssGBLUP ranged from 0.641 to 0.686 for 
NBA and TNB. Averaged across the two traits, ssGB-
LUP yielded a 20.1% higher accuracy than GBLUP and a 
19.3% higher accuracy than GFBLUP for a given scenario. 
A similar trend was also found for the XD validation 
population for reproduction traits and for the LM vali-
dation population for production traits (Tables 3 and 4). 
As shown in Table 3, on average, ssGBLUP had a 4.1 and 
3.1% higher accuracy than GBLUP and GFBLUP, respec-
tively. The size of the increase in accuracy from using 
ssGBLUP was small, which could be due to the small 
number of genotyped animals (the XD reference popu-
lation included 556 animals). In addition, with the XD 
reference population, accuracy was on average slightly 
higher for GFBLUP_GWAS (0.494) than for ssGBLUP 
(0.481) with the LM+XD reference population (Table 3). 
Table  4 presents the accuracy of genomic prediction 
for production traits with ssGBLUP. Among the three 
genomic prediction methods used, ssGBLUP on average 
yielded a 17.0 and 16.4% higher accuracy than GBLUP 
and GFBLUP, respectively.

The accuracies of prediction obtained with ssGBLUP 
when different marker densities were used for the con-
struction of H were also compared, as shown in Tables 2, 
3 and 4. For most scenarios, ssGBLUP_LD performed 
better than ssGBLUP_80K and ssGBLUP_WGS for both 

Table 4 Accuracy of  genomic prediction for  production 
traits using different reference populations to predict 270 
younger individuals of the LM population

GBLUP_80K genomic BLUP based on the 80K SNP panel; GBLUP_WGS GBLUP 
based on imputed whole-genome sequencing (WGS) data; GBLUP_LD 
GBLUP based on WGS after LD pruning; GFBLUP_QTL genomic feature BLUP 
with a genomic feature matrix constructed based on QTL prior information; 
GFBLUP_GWAS genomic feature BLUP with a genomic feature matrix constructed 
based on GWAS prior information; ssGBLUP_80K, ssGBLUP_WGS, ssGBLUP_LD 
For ssGBLUP, the H matrix was constructed based on the different genomic 
relationship matrices of the 80K chip panel, WGS data and WGS data after 
LD pruning and termed ssGBLUP_80K, ssGBLUP_WGS and ssGBLUP_LD, 
respectively; AGE days to 100 kg; BFT backfat thickness
a Yorkshire population of LM, ZX or LM plus the ZX reference population

Reference  seta (size 
of reference population)

Method Trait

AGE BFT

LM (1499) GBLUP_80K 0.625 0.432

GBLUP_WGS 0.633 0.436

GBLUP_LD 0.642 0.445

GFBLUP_QTL 0.642 0.444

GFBLUP_GWAS 0.640 0.444

ssGBLUP_80K 0.739 0.677

ssGBLUP_WGS 0.738 0.663

ssGBLUP_LD 0.745 0.671

LM+ZX (1819) GBLUP_80K 0.615 0.431

GBLUP_WGS 0.636 0.443

GBLUP_LD 0.648 0.454

GFBLUP_QTL 0.638 0.443

GFBLUP_GWAS 0.635 0.452

ssGBLUP_80K 0.737 0.677

ssGBLUP_WGS 0.739 0.664

ssGBLUP_LD 0.746 0.673

ZX (320) GBLUP_80K 0.028 0.067

GBLUP_WGS 0.098 0.111

GBLUP_LD 0.164 0.142

GFBLUP_QTL 0.164 0.144

GFBLUP_GWAS 0.124 0.119
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the reproduction and production traits. However, ssG-
BLUP_LD performed almost as well as ssGBLUP_80K 
and ssGBLUP_WGS with the XD validation population 
(Table 3). Furthermore, in the scenarios that used the LM 
and LM+ZX reference populations, the accuracy of ssG-
BLUP_LD was slightly lower than that of ssGBLUP_80K 
for the production traits (Table 4).

Impact of the combined reference population on accuracy 
of genomic prediction
Our main objective was to investigate how much the 
accuracy of genomic prediction can increase by using 
combined populations with different genetic back-
grounds and WGS data instead of lower-density marker 
panels. For the reproduction traits with the LM valida-
tion population (Table  2), the accuracy of genomic pre-
dictions based on GBLUP_80K increased slightly from 
0.453 and 0.450 to 0.459 and 0.460 for NBA and TNB, 
respectively, when the reference population was enlarged 
from only the LM population to the admixed population 
LM+XD. Corresponding average increases in accuracy 
were 1.4 and 1.2% for GBLUP_WGS and GBLUP_LD, 
respectively. For the same scenarios, the accuracy of 
prediction was not improved or decreased slightly when 
combining the reference populations for ssGBLUP_80K 
for NBA and TNB, while both GBLUP_WGS and 
GBLUP_LD yielded approximately 1% higher accuracy 
with the combined reference population. For the XD 
validation population (Table  3), prediction accuracy 
for NBA and TNB decreased or slightly increased for 
GBLUP with the combined reference population based 
on the low-density marker panel. However, when WGS 
data were used, prediction accuracy on average improved 
by 2.3 and 1.4% for NBA and TNB with GBLUP_WGS 
and GBLUP_LD, respectively. For ssGBLUP, average 
prediction accuracy for NBA and TNB increased when 
combining reference populations, by 1.3, 2, and 1.7% 
for ssGBLUP_80  K, ssGBLUP_WGS, and ssGBLUP_LD, 
respectively. The improvement in prediction accuracy 
from combining reference populations was greater for 
the WGS data than for the 80K SNP panel.

For production traits, prediction accuracy for AGE 
and BFT based on the combined reference population 
LM+ZX compared to the single reference population 
LM decreased for GBLUP based on the 80K SNP panel 
(Table 4). However, when WGS data were used, predic-
tion accuracy increased, although the increase was small, 
at approximately 1%, for GBLUP_WGS and GBLUP_LD. 
A similar trend was also found for ssGBLUP, where a 
small advantage was obtained when WGS data were used 
compared to the 80K marker panel. The reason for the 
small advantage of the combined reference population 
for production traits may be because the LM population 

was already large, and the small size of the ZX population 
did not provide much additional information.

Tables  2, 3 and 4 show that there was no advantage 
from using the combined population genomic predic-
tion for the GFBLUP method. For the reproduction traits 
with the LM validation population, as shown in Table 2, 
similar prediction accuracies were obtained with the sin-
gle and the combined reference population. However, 
for the XD validation population (see Table 3), the accu-
racy of genomic prediction with GFBLUP increased for 
reproduction traits when using the combined LM + XD 
reference population compared to using the XD popu-
lation alone. For the production traits (see Table 4), the 
accuracy of genomic prediction decreased slightly with 
the combined reference population, except that the 
accuracy for BFT increased from 0.444 to 0.452 with 
GFBLUP_GWAS.

We also performed genomic prediction across popula-
tions with different genetic backgrounds. When the XD 
population was used for genomic prediction of reproduc-
tion traits in LM (see Table 2), i.e. when no animals from 
the LM population were included in the reference popu-
lation, prediction accuracies obtained with GBLUP_80K 
were as low as 0.026 and − 0.016 for NBA and TNB, 
respectively. However, GBLUP_WGS and GBLUP_LD 
yielded a 1.6 (1.5) and 2.4% (4.4%) higher accuracy, 
respectively, for this scenario than GBLUP_80K for NBA 
(TNB), while GFBLUP yielded a lower accuracy than 
GBLUP_80K. Likewise, when using LM to predict XD, 
the accuracy of prediction obtained with GBLUP_80K 
was 0.121 and 0.214 for NBA and TNB, respectively, and 
increased with GBLUP_WGS and GBLUP_LD. For the 
production traits (see Table  4), when using ZX to pre-
dict LM, a higher prediction accuracy was also obtained 
for all scenarios when WGS data were used than when 
the 80K SNP panel was used, which further supports the 
advantage of using WGS data in combined population 
genomic prediction.

Discussion
Impact of marker density on accuracy of genomic 
prediction
In this study, we investigated the accuracy of genomic 
prediction based on imputed WGS data versus a 
medium-density SNP panel using real pig data. In the-
ory, using WGS data in genomic prediction is expected 
to lead to higher predictive ability, because WGS data 
include most of the causal mutations that influence traits 
of interest, and prediction is much less limited by LD 
between SNPs and causal mutations [32, 33]. In addi-
tion, simulation studies suggested that WGS data could 
improve the accuracy of genomic prediction within a 
population by as much as 40%, depending on the trait, 
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statistical method, and MAF of the causal mutations 
affecting the traits [17, 34]. However, we observed no 
increase in accuracy when imputed sequence data was 
used for within-population prediction compared to 
50K or 80K SNP data. An example is the genomic predic-
tion of reproduction and production traits when both the 
reference and validation populations were from LM, (see 
Tables 2 and 4), and we observed an even lower accuracy 
with imputed sequence data than with the 80K SNP chip 
for TNB within the XD population (see Table 3). Similar 
results were reported for feed efficiency component traits 
in Duroc pigs [8], backfat thickness in pigs [35], and body 
conformation traits in Chinese Holsteins using imputed 
HD data [36].

When using imputed WGS data for genomic predic-
tion, several factors can affect accuracy of resulting 
predictions:

(1) Genotype imputation accuracy. In the current 
study, we obtained a high average imputation accu-
racy of 0.92 from 80K to WGS. However, poten-
tial imputation errors are difficult to detect, which 
affects the accuracy of genomic prediction. van 
Binsbergen et  al. [7] reported that the predictive 
accuracy was lower with imputed HD array data 
than with genotyped HD array data for a population 
of more than 5000 Holstein-Friesian cattle. Cur-
rently, sequencing all individuals in a population is 
not realistic. Thus, to benefit from the advantage of 
using WGS data instead of high-density genotype 
data for genomic prediction, it is necessary to target 
a large training set with a small average relationship 
between animals to increase imputation accuracy 
[37].

(2) LD pruning of WGS data. One basic assumption 
of GS is that each QTL is in LD with at least one 
SNP; thus, SNPs that are distributed across the 
whole genome can explain most of the genetic vari-
ance [1]. However, when two SNPs are in high LD, 
their genotypic information is redundant and only 
one is necessary to represent the variation in neigh-
boring regions, especially for WGS data. Too many 
SNPs with high LD may introduce noise and result 
in biased genomic prediction. Based on our results, 
pruning SNPs that are in complete or high LD with 
other SNPs is an effective strategy to improve the 
accuracy of genomic prediction, as higher accuracy 
was obtained with GBLUP and ssGBLUP for almost 
all the scenarios (Tables 2, 3 and 4) when high LD 
SNPs ( r2 > 0.9) were removed from the WGS data. 
Removing uninformative SNPs also decreased the 
computational demand for the construction of the 
G matrix. Similar results were obtained in Holstein-

Friesian bulls with an LD threshold for pruning of 
0.9 [22].

(3) Preselection and prior biology of sequence variants. 
WGS data are expected to capture genetic variation 
more completely than SNP panels, but the direct 
use of WGS data did not yield an advantage in our 
study. Many studies have demonstrated that adding 
significant markers derived from HD marker panels 
or sequence data into medium (50K or 80K) density 
panel data can improve the accuracy of genomic 
prediction [9, 36, 38], since it treats significant 
SNPs as genomic features (as in GFBLUP, which 
is discussed below). However, in this study, accu-
racy did not increase by adding preselected GWAS 
markers from the WGS data to the 80K SNP panel 
(results not shown), which agrees with the results 
of Veerkamp et  al. [39] and Calus et  al. [22]. The 
lack of improvement in accuracy may be due to the 
genetic architecture of the trait or the limited ability 
to correctly estimate QTL.

Comparison of methods of genomic prediction
In this study, three different methods, GBLUP, ssGBLUP 
and GFBLUP, were compared. To date, the use of GFB-
LUP and ssGBLUP with WGS data in pigs has rarely 
been investigated. The ssGBLUP model uses a combined 
genotype-pedigree relationship matrix [24, 25], and in 
this study, all ungenotyped animals were added to con-
struct the H matrix. As expected, ssGBLUP performed 
better than GBLUP and GFBLUP for all scenarios, which 
is consistent with other reports [6, 12]. Our results show 
that ssGBLUP did not yield a higher accuracy of genomic 
prediction with WGS data than with the 80K SNP panel 
in the same scenarios. The possible reason is that the A 
matrix portion of the construction of the H matrix was 
the same, and that the other part of the genomic relation-
ship matrix was based on the 80K SNP panel and WGS, 
whereas increasing the number of markers used for pre-
diction to the WGS level does not increase the accuracy, 
as discussed above.

In this study, we investigated the efficiency of GFBLUP 
based on two sources of additional information: incor-
porating prior knowledge of QTL from the literature 
(GFBLUP_QTL) and including significant SNPs obtained 
from GWAS (GFBLUP_GWAS) as known genomic fea-
tures. Our results indicate that GFBLUP yielded approx-
imately 1 to 2% higher accuracy than GBLUP based on 
the WGS data for the reproduction and production traits 
(see Tables 2, 3 and 4). This is consistent with other stud-
ies [29, 40]. Fang et al. [40] reported that the accuracy of 
genomic prediction was marginally improved (approxi-
mately 3%) with GFBLUP compared to standard GBLUP 
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when using imputed sequence variants in Holstein and 
Jersey cattle. The advantage of GFBLUP over GBLUP 
is attributed mainly to the fact that GFBLUP allows the 
assignment of different weights to the genomic vari-
ants in the different genomic relationship based on their 
estimated genomic parameters, which can better fit the 
genetic architecture of the trait [29, 40]. However, GFB-
LUP was not superior to GBLUP for all scenarios, e.g., for 
prediction within the XD population, prediction accura-
cies for NBA were 0.390 and 0.378 with GBLUP_WGS 
and GFBLUP_GWAS, respectively (Table 3). The imper-
fect imputation of WGS variants may be a factor that 
limits the predictive ability of GFBLUP, as noted in other 
studies [29, 41].

Genomic features based on published QTL includes 
non-causal markers, and the genetic architecture of com-
plex traits is currently poorly revealed by GWAS, owing 
to the many individually undetectable QTL with small 
to moderate effects [42], which could affect the predic-
tive ability of GFBLUP. Furthermore, the model may be 
trait-specific, e.g., the total heritability of a trait and the 
number of markers per genomic feature differ by trait, 
which can cause variation in the accuracy of genomic 
prediction (see Additional files 2 to 9: Tables S1 to S8). 
Moreover, published QTL are not available for some 
traits (e.g., farrowing interval of sows), and prior QTL 
information is far from complete for most traits of inter-
est. All these factors limit the use of GFBLUP with pub-
licly available QTL data. The number of SNPs in genomic 
features obtained by using QTLdb or GWAS affects the 
estimate of the genomic feature variance, as shown in 
Additional files 2 to 9: Tables S1 to S8. The prediction 
accuracy of GFBLUP is influenced both by the genomic 
variance explained by the genomic features and by the 
number of noisy SNPs that are present in each feature. In 
addition, any errors in estimates of variance components 
will reduce prediction accuracy, because using incorrect 
variance components results in the genomic relationships 
not being used for prediction in an optimal manner [43].

However, our results indicated that GFBLUP had 
no advantage for genomic prediction in the combined 
population compared to single-population genomic 
prediction, e.g., as shown in Table  2, for the LM vali-
dation population, the accuracy of GS for TNB with 
GFBLUP_GWAS decreased from 0.459 for the LM ref-
erence population to 0.455 for the combined LM+XD 
reference population. Furthermore, GFBLUP_QTL 
did not increase accuracy of prediction for the com-
bined LM+XD reference population compared to the 
LM reference population, which could be caused by 
non-persistent associations between SNPs and QTL or 
inconsistent LD patterns between SNPs and QTL across 
populations. Thus, the same genomic feature matrix in a 

single population for GFBLUP should not be used for the 
combined population.

Combined-population genomic prediction based on WGS 
data
Reference population size and relationships between the 
reference and validation populations are key factors for 
the accuracy of genomic prediction. Generally, the accu-
racy of genomic prediction increases with increasing ref-
erence population size [44]. However, assembling a large 
reference population is challenging due to the relatively 
small population sizes of some breeds or farms. Com-
bining populations into one common reference popula-
tion has been very useful for genomic prediction, e.g., 
in dairy and beef cattle [2, 3, 13, 14]. In this study, we 
assessed the advantage of a combined reference popula-
tion for genomic prediction. Our previous investigation 
showed that the combined reference population in pigs 
did not have an advantage over a single population in 
all scenarios and even performed more poorly with the 
80K SNP panel [6]. This was confirmed by our findings 
in this study, which enlarged the genotyped population 
compared to our previous investigation (Tables 2, 3 and 
4). This phenomenon was also reported in other studies 
[4, 15, 45] and can be due to three factors: (1) inconsist-
ent LD between SNPs and QTL across populations in the 
SNP-chip panel [15, 44]; (2) an increase in the genetic 
distance between individuals of the reference and vali-
dation populations, resulting in lower accuracy for the 
combined reference population [46]; and (3) differences 
in allele substitution effects between populations, result-
ing in differences in the components of that variance 
in terms of the contribution of each QTL, which could 
impact prediction in the combined population [47].

However, our results also indicated that the accuracy 
of genomic prediction increased by 1 to 2.4% and by 
1% when using WGS data instead of the 80K SNP panel 
with GBLUP and ssGBLUP, respectively, in all scenarios 
(Tables  2, 3 and 4). Iheshiulor et  al. [17] also reported 
that the use of WGS data was especially beneficial for 
multibreed prediction. This improvement is mainly due 
to improvements in the three factors discussed above. 
For example, when calculating the G-matrix based on the 
LM and XD populations, the number of genomic rela-
tionships between the two populations that are greater 
than 0.1 increased from 741 for the 80K SNP panel to 
21,310 for the WGS data. Hayes et  al. [33] also noted 
that the main reason for the benefit of WGS data in com-
bined populations and across populations was that the 
presence of QTL in the WGS data increased the prob-
ability of picking up similar QTL that segregate between 
populations.
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However, the size of the increase in accuracy from using 
WGS was still small. Several other sources of improve-
ment could be explored: (1) incorporating imputation 
accuracy into genomic prediction models by weighting 
all SNPs with imputation accuracy of AR2 for the con-
struction of the G matrix; (2) using two Bayesian meth-
ods of split-and-merge Bayesian variable selection [22] 
and BayesR to drop variants with a small effect [48] for 
the combined population prediction to fit the model and 
reduce the computing time, since the Bayesian method 
can theoretically capture all the variants provided by 
the WGS data; (3) using an LD-adjusted kinship matrix 
instead of a standard kinship matrix in genomic predic-
tion models to eliminate the biases due to overestimation 
in regions of strong LD and underestimation in regions 
of low LD, as described by Speed et al. [49]; and (4) using 
a multitrait model for genomic prediction in multipopu-
lation reference populations, in which the same trait in 
different populations is considered as a different trait. For 
populations with similar genetic backgrounds, i.e., for 
which genetic relationships between populations are suf-
ficient, another advantage of using a multitrait approach 
is that it accounts for potential genotype-by-environment 
interactions (G × E) to improve the accuracy of genomic 
prediction [50, 51]. For multitrait GBLUP, a multipopula-
tion genomic relationship matrix can be used to account 
for the genetic relationships between populations [52]. 
However, it might not be possible to apply multitrait ssG-
BLUP if there is little or no pedigree relationship between 
populations. In addition, the computational demand 
of the multitrait approach will increase rapidly with an 
increase in the number of populations, as more (co)vari-
ance components will have to be estimated, and it will 
be more difficult to converge. However, the efficiency of 
these approaches in actual genome prediction requires 
further investigation.

Conclusions
The use of WGS data holds potential to increase the 
accuracy of combined-population genomic prediction, 
and ssGBLUP performed best in all scenarios. How-
ever, WGS is still much more expensive than SNP-chip 
assays; thus, a more acceptable approach is to sequence 
a subset of a population as a reference panel to perform 
genotype imputation with high accuracy. Our results 
showed that simply increasing the number of markers 
used for prediction to the WGS level does not increase 
the accuracy of single-population prediction, while 
pruning WGS data and using GFBLUP based on prior 
information could yield higher accuracy than predic-
tion based on a SNP panel.
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