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Abstract 

Background: Whole-genome sequence (WGS) data could contain information on genetic variants at or in high link-
age disequilibrium with causative mutations that underlie the genetic variation of polygenic traits. Thus far, genomic 
prediction accuracy has shown limited increase when using such information in dairy cattle studies, in which one or 
few breeds with limited diversity predominate. The objective of our study was to evaluate the accuracy of genomic 
prediction in a multi-breed Australian sheep population of relatively less related target individuals, when using infor-
mation on imputed WGS genotypes.

Methods: Between 9626 and 26,657 animals with phenotypes were available for nine economically important sheep 
production traits and all had WGS imputed genotypes. About 30% of the data were used to discover predictive single 
nucleotide polymorphism (SNPs) based on a genome-wide association study (GWAS) and the remaining data were 
used for training and validation of genomic prediction. Prediction accuracy using selected variants from imputed 
sequence data was compared to that using a standard array of 50k SNP genotypes, thereby comparing genomic best 
linear prediction (GBLUP) and Bayesian methods (BayesR/BayesRC). Accuracy of genomic prediction was evaluated in 
two independent populations that were each lowly related to the training set, one being purebred Merino and the 
other crossbred Border Leicester x Merino sheep.

Results: A substantial improvement in prediction accuracy was observed when selected sequence variants were 
fitted alongside 50k genotypes as a separate variance component in GBLUP (2GBLUP) or in Bayesian analysis as a 
separate category of SNPs (BayesRC). From an average accuracy of 0.27 in both validation sets for the 50k array, the 
average absolute increase in accuracy across traits with 2GBLUP was 0.083 and 0.073 for purebred and crossbred 
animals, respectively, whereas with BayesRC it was 0.102 and 0.087. The average gain in accuracy was smaller when 
selected sequence variants were treated in the same category as 50k SNPs. Very little improvement over 50k predic-
tion was observed when using all WGS variants.

Conclusions: Accuracy of genomic prediction in diverse sheep populations increased substantially by using vari-
ants selected from whole-genome sequence data based on an independent multi-breed GWAS, when compared to 
genomic prediction using standard 50K genotypes.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Accuracy of genomic prediction of genetic merit of farm 
animals depends on factors such as heritability, the size 
of the reference population and the effective number of 
chromosome segments, which in turns depends on the 
effective population size ( Ne ) [1, 2] and the structure 
of the reference population used for prediction [3]. In 
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multi-breed/crossbred populations, such as in Australian 
sheep, it is difficult to achieve a sufficiently high genomic 
prediction accuracy for genetically diverse breeds with 
large Ne or for minor breeds with small reference popu-
lations. Prediction based on a set of reference animals 
from other breeds was shown to be of limited value [4, 
5], which could be mainly due to low linkage disequilib-
rium (LD) between genetic markers used in common 
marker genotype arrays and quantitative trait loci (QTL) 
affecting the traits. Low LD suggests that denser marker 
genotypes could improve genomic prediction accuracy. 
However, the use of high-density (500k) genotypes was 
shown to lead to only small improvements in prediction 
accuracy in multi-breed sheep data, compared to using a 
50k SNP array [6]. The relatively small difference may be 
due to the LD between genetic markers and QTL remain-
ing low when using common HD genotypes, especially 
across breeds. Whole-genome sequence data provide 
further opportunities and have the advantage of covering 
all causal mutations that are responsible for the genetic 
variation of a polygenic trait or genetic markers in suffi-
ciently high LD with causal mutations.

Genetic variants at or in high LD with causal muta-
tions are likely to be only a small subset of the whole set 
of sequence variants. This means that a large part of the 
whole-genome sequence data is in low LD with causal 
mutations and can be excluded from the prediction 
model. Earlier work in dairy cattle showed that WGS data 
used in genomic prediction gave no to limited improve-
ment in prediction accuracy when all variants were used 
[7–9] and only small improvements were found by using 
a subset of variants selected based on genome-wide asso-
ciation studies (GWAS) [9–12]. However, using selected 
variants can also lead to considerable bias, if the data 
used for detecting QTL was the same as the training data 
used to predict breeding values [11, 13].

Reasons for the limited improvement from using WGS 
data in previous studies may be the high levels of LD and 
relatively low genetic diversity in the dairy cattle popula-
tions used in these studies. With high LD, the difference 
in predictive ability between markers from standard 50k 
SNP-panels and other markers closer to the actual QTL 
is likely to be smaller. Indeed, it will be more difficult to 
distinguish between these when selecting variants from 
GWAS in such populations. Improvements in prediction 
accuracy were more notable when variants were selected 
from a multi-breed GWAS [14].

Another important aspect of genomic prediction is the 
genetic relatedness between the training set and the tar-
get animals for which we want to predict the breeding 
value. In efficient breeding programs, it is likely that most 
selection candidates have close relatives in the train-
ing set, i.e. animals with both genotype and phenotype 

information are often available from previous rounds of 
selection. Prediction from closer relatives is less likely to 
be improved by markers that are closer to the QTL, and 
therefore WGS data provides limited benefit. However, 
prediction of more distant target individuals is also rel-
evant, for example when applying genomic prediction to 
more diverse populations and populations of multi-breed 
nature, such as in beef cattle and sheep, or when special 
reference populations are formed for a limited set of indi-
viduals measured for traits that are not widely recorded, 
such as slaughter traits or feed efficiency. Relatedness 
between training and target individuals may vary consid-
erably in such cases. Another application of genomic pre-
diction could be for genetic benchmarking in commercial 
herds or flocks in which information on previous breed-
ing history is limited, and the target individuals may be 
less related to the reference population. Using markers 
that are closer to the actual QTL could make genomic 
prediction more robust and applicable to a wider range 
of individuals with lower genetic relatedness, including 
crossbreds.

The objective of our study was to evaluate the accuracy 
of genomic prediction in a multi-breed Australian sheep 
population for some key lamb production traits using 
variants from imputed WGS data. We used selected 
variants obtained via a multi-breed GWAS in a separate 
discovery dataset and compared best linear unbiased 
prediction (BLUP) and a Bayesian method to evaluate the 
potential change in accuracy and bias of genomic predic-
tion when adding these variants to a standard 50k SNP 
genotype array.

Methods
Animals and experimental design
Phenotypes for key meat and wool production traits were 
extracted for animals in the “Sheep Cooperative Research 
Centre” database (“Research data”), which includes the 
“Information Nucleus Flocks” (INF), “Resource Flocks” 
(RF) and “the Sheep Genomics Flock” (SGF). INF con-
sisted of eight flocks located across different regions 
of Australia that are linked to each other by the use of 
common sires through artificial insemination between 
2007 and 2011 [15] and the RF followed the same mating 
design (2012–2017) but only in two flocks. SGF was a sin-
gle research flock located in southern New South Wales, 
Australia, with data collected between 2005 and 2006 
[16]. Additional phenotypes for on-farm traits recorded 
in industry flocks (“Industry data”) were extracted from 
the Sheep Genetics database (http://www.sheep genet 
ics.org.au) for flocks with animals with genotypes. Both 
research and industry datasets were from a multi-breed/
crossbred sheep population. Most animals were either 
purebred Merino or crossbreds of Border Leicester (BL), 

http://www.sheepgenetics.org.au
http://www.sheepgenetics.org.au
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Poll Dorset (PD) or White Suffolk (WS) rams mated to 
Merino dams or BL × Merino dams.

For each trait, animals with both phenotype and 
genotype data were divided into three non-overlap-
ping groups: (1) a QTL discovery set for a GWAS with 
imputed WGS data to find variants at or very near puta-
tive causal mutations; (2) a reference or training set for 
genomic prediction based on estimated marker effects; 
and (3) a validation set to evaluate accuracy and bias 
of genomic prediction. These three sets were purpose-
fully chosen as being independent of each other to avoid 
bias in the evaluation of prediction accuracy. The data 
were divided into three subsets independently for each 
trait, because the numbers of animals recorded differed 
for each trait. The QTL discovery and training sets were 
selected to have a broad representation of breeds and 
crosses (Fig.  1). However, the validation set consisted 
of only two specific breed groups: (1) purebred Merino 
(MER) and (2) F1 cross of Border Leicester with Merino 
(BL × MER).

The animals in the validation set were selected such 
that they did not have high genetic relationships with ani-
mals in the training set. Thus, for each trait: (1) half-sibs 

families were not split across the training and validation 
sets and no sires of validation animals were included in 
the training set; and (2) relationships between the train-
ing and validation sets were further restricted at a fixed 
threshold using the genomic relationship matrix (GRM) 
constructed from 50k SNP-chip genotypes [17]. The 
applied GRM threshold ensured that the genomic rela-
tionship between each animal in the validation set with 
any animal in the training set was lower than 0.25 (meat 
traits) or lower than 0.125 (wool traits).

The contributions of the MER and BL × MER breeds in 
the discovery, training and validation sets for each trait 
are in Table  1 as well as the number of animals from 
other breeds or crosses available in these three sets for 
each trait. Proportions of each main breed represented 
as either purebreds or crosses were predicted using pedi-
gree information (Fig. 1).

Phenotypes
Phenotypic records of eight traits related to weight, car-
cass and meat quality and wool production were used in 
this study; post weaning weight (PWT), post weaning eye 
muscle depth (PEMD, mm) from ultrasound scanning of 

Fig. 1 Breed composition of the discovery, reference and validation datasets. Breed composition as number of animals multiplied by breed 
proportion for each trait in QTL discovery, and genomic selection reference and validation sets
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live animals, carcass eye muscle depth (CEMD, mm), car-
cass fat depth at the C site (CCFAT, mm), intra muscular 
fat (IMF, %) and shear force at 5 days after slaughter (SF5, 
Newton), yearling clean fleece weight (YCFW, kg) and 
yearling wool fiber diameter (YFD, µm).

First, phenotypes from the research data were edited 
for possible outliers (more than 4 standard deviations 
from the overall mean), for records with no pedigree or 
breed composition information or for records with miss-
ing age or weight at measurement. Phenotypes were then 
pre-corrected for fixed and random effects in a univari-
ate mixed model analysis, similar to the model used by 
Sheep Genetics [18]. The fixed effects of the model were a 
contemporary group effect (from a combination of flock, 
birth year and management group), gender, age at meas-
urement (days), age of the dam (years; fitted both as a 
first and second order terms), a combination of birth and 
rearing type (single, twin, triplet) and traits related to car-
cass were corrected for weight at measurement. Hence, 
PEMD was corrected for PWT, whereas CCFAT, CEMD, 
IMF and SF5 were corrected for carcass weight. For PWT 
and YCFW a random maternal effect was fitted.

Phenotypes from the industry dataset were taken from 
the national Sheep Genetics OVIS database [18], which 
is divided into six separate analyses: Merino, terminal 
breeds and maternal breeds and smaller runs for Meat 
Merino, Dohne and Corriedale sheep. These phenotypes 
were pre-adjusted within each of the six analyses for fixed 
effects of birth and rearing type, age of measurement in 
days, age of dam in years with both linear and quadratic 
adjustments and body weight adjustments for PEMD and 
carcass traits, as described in [18]. Then, pre-adjusted 
phenotypes were taken from all data in the national eval-
uation for each trait and residuals were calculated from 
fitting a model with a fixed contemporary group effect for 

PWT and YCFW. These residuals were used as corrected 
phenotypes for further analysis, but only for animals with 
genotype information. Animals from the research dataset 
that were also included in the national evaluation were 
excluded from the industry dataset. Additional file  1: 
Table S1 shows the summary statistics of the phenotypes 
of the combined datasets after editing.

Genotypes
There were 31,937 animals with genotypes that had 
either previously been imputed from 12k to the 50k SNP 
panel (about 35% of animals) or were real 50k genotypes 
(about 65% of animals) and the breed representation in 
these datasets was similar and relative to their occur-
rence in industry flocks (e.g. see Fig.  1). Genotypes on 
the X chromosome were excluded from the analysis. 
The imputation of WGS genotypes from 50k was per-
formed in two steps. First, for the animals that did not 
have real high-density (HD) genotypes (all but 2266 key 
animals), the 50k genotypes were imputed to HD and 
then in the second step, all imputed and real HD geno-
types were imputed to sequence data using a reference of 
726 sequenced animals representing multiple European 
breeds and crosses (further details in [19]). The num-
bers of sequenced animals from the Merino and Border 
Leicester breeds were 124 and 22, respectively.

The total number of variants that passed imputation 
quality controls and included in this study were: 45,670 
SNPs in the 50k panel, 485,617 SNPs in the HD panel and 
31,154,082 variants in WGS.

Selection of significant sequence variants
In the discovery population for each trait, we ran a 
GWAS using the WGS 31,154,082 imputed genotypes. 
The GWAS results were used to select the ‘top SNPs’ 

Table 1 Number of top SNPs and animals of different breeds in different datasets for different traits

Number of top-SNPs and animals of different breeds (MER pure Merino, BL pure Border Leicester, BL × MER crossbred Border Leicester × Merino and other breeds 
and crosses) in discovery, reference and validation sets for different traits: CCFAT carcass fat depth at C site, CEMD carcass eye muscle depth, PEMD post-weaning eye 
muscle depth, IMF intermuscular fat percentage, SF5 shear force measured at day 5 after slaughter, PWT post-weaning weight, YCFW yearling clean fleece weight, YFD 
yearling fiber diameter

Trait (unit) Number 
of top SNPs

Discovery (GWAS) set Reference set Validation set

MER BL BL × MER Other breeds 
and crosses

MER BL BL × MER Other breeds 
and crosses

MER BL × MER

CCFAT (mm) 3989 1157 37 365 3185 761 58 158 6658 912 478

CEMD (mm) 3997 1200 21 389 3215 738 74 161 6741 904 453

PEMD (mm) 3924 2835 860 742 4812 772 216 357 8370 1766 510

IMF (%) 4023 877 11 355 3018 185 25 174 5969 843 415

SF5 (N) 4268 1065 27 358 3291 722 67 143 6460 868 474

PWT (kg) 4287 4691 918 964 5446 1182 262 458 9165 3118 453

YCFW (kg) 3942 3935 41 381 872 1826 73 189 1709 600 –

YFD (µm) 8654 5083 44 62 746 2626 70 135 1432 600 –
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from those associated with variation in the traits of inter-
est. The “top SNPs” were defined as the most significant 
SNPs below an association threshold of p-value < 10−3 
within a 100-kb window. The windows started at the 
proximal end of each chromosome, then sliding 50  kb 
along to the next 100 kb window until reaching the end 
of each chromosome. After selection of the most signifi-
cant SNP per 100 kb window, one of any pair of these top 
SNPs in strong LD (with an  r2 > 0.95) was removed using 
the PLINK software [20]. Some of the selected SNPs were 
also removed if their MAF was lower than 0.005 in the 
reference population for a given trait. The final numbers 
of top SNPs used for each trait to improve the accuracy 
of genomic predictions are in Table 1. The small number 
of top SNPs that overlapped with those on the 50k SNP 
chip were treated as top SNPs in our genomic prediction 
models, i.e. they were removed from the 50k subset and 
retained with the top SNPs when fitting the latter set as a 
separate component to the 50k. However, these overlap-
ping SNPs were retained in the 50k set when only the 50k 
genotypes were used for prediction.

The model used in GWAS for each trait using Wombat 
software [21] is as follows:

where y∗ is a vector of corrected phenotypes; b is a vector 
of fixed effects, intercept and data source, (six industry 
data sources and one for research) si is a vector of geno-
types (coded 0, 1, and 2), αi is the effect of the i th 
sequence variant; q is a vector with random breed effects, 
q ∼ N

(

0, Iσ2q

)

 , Q is a matrix with breed proportion of 
each animal according to pedigree information, i.e. 
assigning animals to breeds, and σ2q is the variance 
explained by the breed proportion matrix; 
g ∼ N

(

0,Gσ2g

)

 , contains random additive genetic effects 
where G is the genomic relationship matrix (GRM) con-
structed with HD SNPs and σ2g is the variance explained 
by SNPs; e ∼ N

(

0, Iσ2e
)

 , is the vector of random residual 
effects; X and Z are design matrices connecting pheno-
types to fixed effects and to random additive genetic 
effects, respectively. The contributions of each breed are 
listed in Fig. 1, but for the Merino breed three sub-breed 
groups were defined because there is generally little 
intercrossing of these sub-breed groups, thus creating 
further population structure. The Merino sub-breed 
groups are largely defined on fiber diameter: ultrafine, 
fine-medium and broad (“strong”) wool, according to 
wool breeding objectives as defined by the breeders.

Genomic prediction
We applied genomic BLUP (GBLUP) [22] and the 
BayesR [23] and BayesRC methods [24] for prediction 

(1)y∗ = Xb+ siαi + ZQq + Zg + e,

of genomic breeding values (GBV). The same phe-
notypic data were used in the Bayesian and GBLUP 
models, and prior to these analyses, the corrected phe-
notypes for animals in the training and validation sets 
were further pre-adjusted for data source and genetic 
groups using estimates for those effects ( b and q ) based 
on the model in Eq. 1, but the individual SNP effect was 
not included in the model.

Five different genotype sets were tested in the mod-
els: (1) top sequence variants (top), (2) 50k panel, (3) 
50k plus top sequence variants (50k + top), and (4) 
HD panel and 5) WGS data. However, due to the large 
number of SNPs in WGS data, we did not run a Bayes-
ian model for that set. The SNPs with a minor allele 
frequency (MAF) lower than 0.005 in the genomic 
prediction training populations were excluded from 
the genotype sets. In the GBLUP models, top, 50k, 
50k + top, HD and WGS genotype sets were fitted in 
the model with the GRM as a covariance structure of 
one random additive genetic effect (Eq.  2). In addi-
tion, the 50k + top set was also fitted as two GRM con-
structed separately from the 50k and top SNP genotype 
sets (Eq. 3):

where y is a vector of pre-adjusted phenotypes; 1 is a vec-
tor with 1s, µ is the intercept; Z is a design matrix allocat-
ing records to individual additive genetic values in u1 
( u1 ∼ N

(

0,G1σ
2
g1

)

 ), which is a vector of GBV in which 
G1 is the GRM constructed from different sets of geno-
types (i.e. top, 50k, 50k + top, HD and WGS) and σ2g1 is 
the additive genetic variance; and e is a vector of random 
residual effects. When 50k + top genotypes were fitted as 
two components as in Eq.  (3), u1 ∼ N

(

0,G1σ
2
g1

)

 and 
u2 ∼ N

(

0,G2σ
2
g2

)

 are vectors of additive genetic values 
explained by the SNP sets that formed G1 and G2 from 
the 50k and top SNP genotype sets, respectively, and σ2g1 
and σ2g2 are the respective additive genetic variances of 
those effects. The overall GBV for each individual was 
formed from the sum of u1 and u2 . We used the MTG2 
software [25] for GBLUP of GBV and genomic residual 
maximum likelihood (GREML) for estimating variance 
components.

For Bayesian analysis, the genotypes were centered 
and standardized to a variance of 1. The SNP effects 
were fitted as a mixture of four normal distribu-
tions each with a mean of zero and variance: σ21 = 0 , 
σ
2
2 = 0.0001σ2g , σ23 = 0.001σ2g and σ24 = 0.01σ2g , where σ2g 

is the additive genetic variance. The BayesR method 

(2)y = 1µ+ Zu1 + e,

(3)y = 1µ+ Zu1 + Zu2 + e,
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was used to predict GBV using, top, 50k, 50k + top 
and HD genotype sets. The BayesRC method was only 
tested with 50k + top genotypes because this is a modi-
fied BayesR method that allows for different categories 
of variants that may be differentially enriched for QTL. 
Thus, the selected top SNPs were allocated to a sepa-
rate category from the remaining 50k SNP, allowing the 
possibility of a different mixture distribution of SNP 
effects in each of these two categories. Each Bayesian 
model (BayesR and BayesRC) was replicated with five 
MCMC chains to check for convergence, each with 
40,000 iterations (20,000 burn-in). Animal GBV were 
calculated by multiplying genotypes and corresponding 
SNP effects summed across the genome. The total pro-
portion of phenotypic variance explained by all SNPs 
was used to estimate trait heritabilities.

Evaluation of the accuracy of genomic prediction was 
calculated as the Pearson correlation coefficient between 
GBV and pre-adjusted phenotypes in the two validation 
subsets and then scaling this correlation by dividing it 
by the square root of the trait heritability (estimated in 
a GBLUP model using a 50k genotype set, Table 2). The 
bias of the prediction accuracy was assessed from the 
regression coefficient of the pre-adjusted phenotype on 
GBV in the validation subsets. The Bayesian heritability, 
accuracy and bias were assessed from each of the five 
MCMC chains and then averaged.

Results
Variance components and heritability estimates
Table  2 shows the heritability estimates of each trait 
in the prediction data for each of the five SNP subsets 
when using one of the Bayesian methods or genomic 
residual maximum likelihood (GREML) with either one 
or two GRM. Across all traits and SNP subsets, herit-
abilities estimated based on the Bayesian method were 
slightly lower (1.6% in relative terms) than those based 
on the GREML method using a GBLUP model. The her-
itability estimated by GREML, on average across traits, 
increased by ~ 15% when using all WGS variants com-
pared to 50k genotypes, but the increase was ~ 25% for 
CEMD, PEMD and SF5. Heritability estimates based on 
only selected sequence variants (3924 to 8654 variants) 
were more than 40% lower than those based on the 50k 
set, except for YFD where the top SNPs resulted in a 
higher heritability than the 50k set for both GREML 
and BayesR. The heritability based on fitting 50k geno-
types and selected sequence variants as one component 
was on average slightly higher than the heritability esti-
mate based on the sum of the two variance components 
estimated from the 50k and top SNPs sets. Again, YFD 
was an exception as it always gave a significantly higher 
heritability when top-SNPs were used.

Table 2 The estimated heritability for different traits in Bayesian and GBLUP models based on the reference dataset

CCFAT carcass fat depth at C site, CEMD carcass eye muscle depth, PEMD post-weaning eye muscle depth, IMF intermuscular fat percentage, SF5 shear force measured 
at day 5 after slaughter, PWT post-weaning weight, YCFW yearling clean fleece weight, YFD yearling fiber diameter
a The genetic variance explained by two GRM fitted in the model were divided to the phenotypic variance and then were added up to calculate the overal heritability. 
The first and the second value in the parentheses are the heritability estimates related to 50k and top SNPs, respectively

Model Trait

CCFAT CEMD PEMD IMF SF5 PWT YCFW YFD

Bayesian

 BayesR (top) 0.094 0.065 0.129 0.163 0.105 0.112 0.219 0.611

 BayesR (50k) 0.196 0.155 0.228 0.376 0.189 0.219 0.393 0.547

 BayesR 
(50k + top)

0.201 0.160 0.242 0.378 0.189 0.224 0.400 0.634

 BayesRC 
(50k + top)

0.190 0.159 0.230 0.359 0.161 0.217 0.384 0.672

 BayesR (HD) 0.224 0.185 0.274 0.409 0.222 0.242 0.433 0.596

GBLUP

 GBLUP (top) 0.102 0.070 0.134 0.166 0.108 0.116 0.234 0.619

 GBLUP (50k) 0.200 0.150 0.229 0.380 0.189 0.216 0.399 0.569

 GBLUP 
(50k + top 
[1GRM])

0.217 0.158 0.250 0.400 0.203 0.232 0.409 0.679

 GBLUP 
(50k + top 
[2GRMs])a

0.191 
(0.116 + 0.075)

0.152 
(0.111 + 0.041)

0.226 
(0.128 + 0.098)

0.356 
(0.252 + 0.105)

0.142 
(0.046 + 0.096)

0.212 
(0.152 + 0.060)

0.388 
(0.271 + 0.117)

0.681 
(0.154 + 0.527)

 GBLUP (HD) 0.232 0.182 0.275 0.423 0.233 0.250 0.439 0.620

 GBLUP (WGS) 0.231 0.191 0.285 0.439 0.240 0.254 0.453 0.643
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Genomic prediction
The accuracy of genomic prediction for each trait based 
on different SNP subsets and models is shown in Fig. 2 
for the purebred Merino validation set and in Fig. 3 for 
the crossbred validation set. Currently in the Australian 

sheep industry, genetic evaluation is based on GBLUP 
using a 50k SNP array, so we used the scenario GBLUP 
(50k) here as the benchmark. The average GBLUP (50k) 
accuracy across all traits was 0.27 for both validation 
sets, but it should be noted that the validation sets were 

Fig. 2 Accuracy of genomic predictions in purebred Merino for different traits and models

Fig. 3 Accuracy of genomic predictions in Merino × Border Leicester crossbreds for different traits and models



Page 8 of 14Moghaddar et al. Genet Sel Evol           (2019) 51:72 

selected to minimize relationships with the training 
set (as a more stringent test to differentiate between 
methods).

Accuracy of GBV based on the HD SNP genotypes 
and GBLUP was only slightly increased relative to 
GBLUP (50k) (0.028 accuracy increase for Merinos and 
no difference for the crossbreds when averaged across 
traits), but increases were higher and more consist-
ent with BayesR (0.081 for Merinos and 0.039 for the 
crossbreds). When using all the variants in WGS data 
(~ 31 × 106 variants) the accuracy of genomic predic-
tion increased in some cases compared to either the 
50k or HD GBLUP, but more often decreased with no 
clear pattern among traits. Compared to using 50k, the 
WGS set resulted in a change in accuracy, averaged 
across traits, of +  0.016 for Merinos and −  0.014 for 
the crossbreds.

A larger and more consistent increase in predic-
tion accuracy was observed when adding the selected 
sequence variants to the standard 50k set in the Bayesian 
and GBLUP prediction models. When using the GBLUP 
method and fitting selected sequence variants and 50k 
genotypes as one variance component, the average pre-
diction accuracy across traits improved in absolute value 
by 0.046 and 0.048 for Merinos and crossbreds, respec-
tively, and these improvements were 0.083 and 0.073 
when two separate variance components were fitted (one 
for 50K and one for the top SNPs). When including top 
SNPs using the BayesR method, the accuracy increase, 
when averaged across traits, was 0.079 for Merinos and 
0.059 for crossbreds, compared with GBLUP (50k), and 
these increases were 0.102 and 0.087 with the BayesRC 

method, in which top SNPs and the 50k set were treated, 
separately.

The increase in accuracy due to adding top SNPs to 
the 50k array varied among traits, between methods 
within traits, and also with the validation set (Fig.  4). 
With GBLUP in the Merino set, the increase from using 
top SNPs as an additional G matrix compared to using 
the standard 50k was lowest for CCFAT (0.01) and IMF 
(0.02), and highest for PEMD (0.16), SF5 (0.13) and PWT 
(0.12). When using BayesRC, the increases of using the 
top SNPs added to the standard 50k array, compared to 
using GBLUP (50k), were 0.09, 0.04, 0.20, 0.15 and 0.15 
for the same traits in the Merino set. However, in cross-
breds, these increases were quite different across traits. 
For both GBLUP and Bayesian prediction methods, most 
traits had an increase in accuracy of ~ 0.05 when adding 
information from the top SNPs, but CCFAT had a much 
higher increase of 0.28.

Using just the set of selected variants alone improved 
accuracy more compared with GBLUP (50k) when aver-
aged across all traits; 0.053 and 0.029 for GBLUP in 
Merino and crossbred validation sets and 0.069 and 0.043 
for BayesR in these two validation sets (Figs.  2 and 3). 
However, there was again a large variation among traits 
and validation populations, which was generally consist-
ent with the increase in accuracy when combining top 
SNPs with 50k panels. For example, in the Merino set, 
top SNPs alone had a much higher accuracy than GBLUP 
(50k) for PEMD and SF5 whereas for CCFAT and CEMD 
this accuracy was lower than the 50k array. On the other 
hand, for the crossbred validation population, CCFAT 
showed a much higher accuracy when using top SNPs 

Fig. 4 Accuracy increase for each trait when using top SNPs in GBLUP or BayesRC. Accuracy increase over a 50k GBLUP prediction for each of the 
traits in both validation populations when using top SNPs either as a second GRM in GBLUP or as a second class of predictors in BayesRC
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only (increase 0.36) compared to using GBLUP (50k), 
whereas for the other traits there was either a lower accu-
racy or only a slightly higher accuracy than that of the 
50k panel.

The regression coefficients of corrected phenotypes 
on estimated GBV for two validation sets across dif-
ferent traits are shown in Figs.  5 and 6. All methods 
and models showed some bias. Regression coefficients, 

Fig. 5 Bias of genomic predictions in purebred Merino for different traits and models

Fig. 6 Bias of genomic predictions in Merino × Border Leicester crossbreds for different traits and models
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when averaged across traits, varied between methods 
from 0.71 to 0.85 for the Merinos and from 0.76 to 0.91 
for the crossbred validation population. In the Merino 
set, the greatest deviation from 1 in the average regres-
sion coefficient (i.e. most bias) was found when using top 
SNPs alone (0.71), but this was only slightly lower than 
the average value for GBLUP (50k), which was 0.74. For 
the crossbreds, on average bias was not larger when top 
SNPs were used, but this average was affected by a strong 
upward bias for one trait (CCFAT). There was no differ-
ence in bias between GBLUP and BayesR. Generally, we 
found more bias for traits with lower prediction accuracy. 
This could be related to the smaller size of both training 
and validation data subsets for those traits.

Discussion
This study demonstrated that the use of selected vari-
ants from WGS increased the accuracy of genomic pre-
diction compared to standard 50k genotypes for eight 
economically important traits in sheep. Selection of the 
WGS variants (SNPs or InDels) was based on perform-
ing an association study on imputed sequence data in 
an independent set of animals to avoid probable bias of 
prediction [11, 13]. The accuracy of genomic prediction 
was assessed in independent training and validation data-
sets, chosen in such a way as to remove genetically high 
relationships between the validation and training ani-
mals. Thus, genomic prediction accuracies are expected 
to be lower and the benefit from using selected sequence 
variants is likely higher, e.g. compared with dairy cat-
tle studies where populations are less diverse and train-
ing populations often contain highly related individuals. 
However, in beef and sheep populations, individual breed 
numbers are small and therefore it is desirable to com-
bine multi-breed and crossbred populations to enlarge 
reference populations for genomic prediction. Therefore, 
in these more genetically diverse beef cattle or sheep 
populations, the prediction of more distant relatives is 
also important. The same holds for genomic prediction 
of commercial animals, e.g. for the purpose of genetic 
bench-marking and management decisions related to 
genetic merit. Furthermore, there is a trend towards 
highly accelerated breeding schemes using reproduc-
tive technologies, where selection candidates may be 
separated from the reference population by several gen-
erations. It is expected that genomic prediction based 
on predictive markers that are closer to actual causal 
variants are more widely applicable and depend less on 
the relatedness between the training set and the target 
individual. This is also important for difficult to meas-
ure traits for which it may not be possible to continually 
update reference populations with immediate relatives of 
test animals.

Compared to using 50k genotypes, using the complete 
set of sequence data (~ 31 million variants) resulted in 
a higher estimated additive genetic variance and her-
itability. We compared the sum of diagonal terms and 
off-diagonal terms from G-matrices derived from 50k, 
HD and WGS genotypes and both means and SD were 
nearly identical between these. Therefore, a higher 
heritability estimate could potentially be the result of 
stronger LD between sequence variants and polymor-
phisms responsible for trait variation. However, no or 
only a very small improvement in genomic prediction 
accuracy was observed when using all sequence vari-
ants compared to 50k genotypes. This finding is simi-
lar to previous studies in dairy cattle [7–9, 11, 12] that 
also found no to very small improvements in prediction 
accuracy from using all variants of WGS. WGS data 
provide a very large number of genetic variants across 
the genome, while only a small subset is expected to be, 
or in high LD with, the causative mutations underly-
ing the genetic variance of a polygenic trait. This means 
that the majority of the sequence variants are in low 
LD with causative mutations and do not capture the 
genetic variance of significant genomic regions when 
using a GBLUP approach. Thus, compared to the 50K 
genotypes, their contribution would be limited to the 
capture of more precise family relationships between 
animals. It is possible that the prediction accuracy for 
WGS showed little benefit in lowly related validation 
individuals because a large proportion of the markers 
are not linked to causal variants in the validation set 
and might hinder rather than help prediction accuracy. 
Furthermore, in WGS there is a much higher risk of 
false positives from for example, population structure, 
as well as imputation errors which can erode the accu-
racy of genomic prediction [9].

Estimation of heritability is mainly driven by (higher) 
relationships between training animals, in which case 
markers that are not linked to causal variants could still 
be helpful in estimating these more accurately. This argu-
ment can also be used to explain that the heritability 
based on using top SNPs alone was generally lower than 
the heritability based on the SNP sets with more mark-
ers, while prediction accuracies based on these selected 
marker sets were generally similar and sometimes even 
higher than the accuracy based on the 50k set. A similar 
result was found by Raymond et al. [26] who argue that 
the selected variants may explain only a small amount of 
the genetic variation due to their small effects, but they 
can contribute significantly to genomic prediction when 
relationships between training and target individuals are 
low, in their case across breed. Besides marker density 
and potential proximity of markers to causal variants, 
another potential factor that may influence estimates of 
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heritability across variant sets could be their difference in 
allele frequency spectrum.

Fitting the selected sequence variants (3924 to 8654 
for different traits) that were derived from the associa-
tion study along with the standard 50k genotypes often 
resulted in a notable increase in prediction accuracy 
in both purebred and crossbred animals, particularly if 
these selected markers were fitted as separately defined 
groups, either in GBLUP (2 G matrices) or in BayesRC. 
These methods allow more variance for the set of 
selected SNPs and therefore less shrinkage and effectively 
giving them more weight in the prediction. We expected 
an increase because these selected genetic variants are 
in stronger LD with QTL regions than randomly cho-
sen markers such as those on the 50k array. However, as 
shown in Fig. 4, the gain in accuracy varied among traits 
and validation sets. Variation between traits could exist 
due to the differences in the genetic architecture of each 
trait, i.e. there would be more benefit from using top 
SNPs if a trait is affected by relatively few QTL, each with 
a relatively large effect. However, our results varied also 
within traits and among validation sets, e.g. selected vari-
ants for CCFAT explained a small part of the genetic var-
iation in the Merino validation set and had only a small 
effect on prediction accuracy, while these two parameters 
were much larger in the crossbred validation set. This 
could be related to differences in QTL effects between 
populations that could be due to epistatic interactions, or 
simply due to differences in mean and variation of traits 
in different breeds. Allele frequency differences between 
breeds are likely to have a large impact on results, both 
for QTL and predictive markers. We examined further-
more the high accuracy and bias for CCFAT found in 
the crossbred validation when only fitting top SNPs. We 
noted that these results were quite sensitive to the MAF 
threshold applied, i.e. both accuracy and bias were lower 
in this case when the MAF threshold for the top SNPs to 
be included increased from 0.005 to 0.05. Evans et al. [27] 
recently demonstrated that low MAF WGS variants can 
have a considerable effect on the estimation of SNP herit-
ability. Further work is needed to systematically explore 
all these issues with larger datasets.

Besides finding a set of more predictive SNPs, it is also 
important to examine how these are optimally used in 
the genomic prediction model. Our study is the first to 
compare directly the single and two GRM GBLUP mod-
els vs. BayesR and BayesRC methods. The GBLUP linear 
model with two separate variance components allows for 
a larger genetic variance on average per marker for the 
set of selected SNPs, effectively giving more weight to 
these markers. In principle, more G-matrices could be fit-
ted to allow further differential weighting of markers into 
more subclasses, where marker selection would be based 

on statistical significance in a separate GWA analysis. 
Alternatively, it is possible to use a single G matrix that 
is weighted, for example, according to the estimated pre-
dictive value of each SNP from one or more independ-
ent studies [28]. This two-step approach is pragmatic 
and feasible in large datasets and with very many mark-
ers, such as from WGS data. A Bayesian model such as 
BayesR applies the concept of differentially weighing 
markers more formally, by assigning marker effects to 
one of the four normal distributions based on statisti-
cal evidence in a model selection approach in which all 
markers are fitted simultaneously, and allowing for a 
large proportion of markers to have no effect on the trait. 
The BayesRC model takes the standard BayesR model 
one step further by enabling the mixing proportions to 
vary across different variant sets, where based on prior 
information, the user defines one or more groups of vari-
ants that may be more enriched for QTL than another. 
In this study, the variant sets were the 50k and the top 
SNP set, and for many traits, this improved prediction 
accuracy over BayesR. However, although approaches for 
Bayesian analysis with the complete set of WGS markers 
have been developed [8, 9], these models did not result in 
increased accuracy for WGS compared to standard geno-
type sets using real dairy cattle data. Van den Berg et al. 
[14] found limited benefit over 2GBLUP from a Bayesian 
model fitting two mixture distributions. Our design was 
more favorable towards showing benefit of using selected 
variants, and the BayesR methods showed more clearly 
an advantage over GBLUP methods. However, Bayesian 
methods also become very computationally challenging 
in larger datasets with hundreds of thousands of indi-
viduals and dense genotype sets. However, large datasets 
are needed to obtain more accurate estimates of marker 
effects and to enable more accurate marker selection. 
Further development of model selection approaches is 
required, likely with a role for two-stage approaches, to 
optimize the selection of WGS variants and their best 
weighting for the purpose of genomic prediction of trait 
variation.

Our results were based on a multi-breed dataset and, 
generally, the improvement in prediction accuracy from 
using selected variants was larger than that obtained in 
studies using data on a single breed (mostly Holstein–
Friesian dairy cattle e.g. [7, 11, 12]. This is in line with 
other studies in dairy cattle, which used multi-breed 
datasets [10, 14]. Van den Berg et  al. [14] used vari-
ants derived from multi-breed GWAS (four dairy cattle 
breeds) in multi-breed genomic prediction and showed 
on average up to 7% higher genomic prediction reliabili-
ties (R2) across milk traits in different scenarios for select-
ing sequence variants. By including selected sequence 
variants from GWAS in GBLUP (with a separate variance 
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component to the 50k genotypes) Brøndum et  al. [10] 
reported on average a 5% improvement in genomic pre-
diction reliability on a range of production traits in a 
multi-breed dairy cattle dataset. Multi-breed datasets are 
particularly useful in GWAS for marker selection because 
long distance LD will be reduced across breeds, allow-
ing a more precise localization of predictive markers 
across breeds. We have not tested explicitly our ability to 
increase prediction accuracy from training data on differ-
ent breeds. The accuracy of prediction across breeds (i.e. 
the reference and the validation sets consist of individu-
als from different breeds) was found to be close to zero 
in our previous work with less dense marker panels [4, 5]. 
Some results from data in dairy cows showed promise for 
the use of information from other breeds and this might 
be mostly important for smaller breeds that often lack 
large numbers for training genomic predictions [29, 30].

Using multi-breed data for marker selection could also 
have a drawback if marker effects differ between popu-
lations. In our data, the number of purebred individu-
als from different breeds was not sufficient to test this 
hypothesis. In our validation sets, we observed on aver-
age a similar prediction accuracy for purebred Meri-
nos and for BL × Mer crosses, but the benefit of using 
selected variants was generally higher in the Merino 
validation set. This is likely due to the larger proportion 
of Merino haplotypes that were available in the training 
and SNP-discovery sets. Generally, Merino sheep are a 
lot more diverse than BL sheep and previous work has 
shown that a smaller training set for BL results in a simi-
lar accuracy to that for Merinos based on a large train-
ing set [5]. In other words, Merinos have a large effective 
population size, and as a result, a larger number of effec-
tive chromosome segments. This would also explain that 
the use of selected markers that are in higher LD with 
QTL is more advantageous for the Merino breed than the 
BL breed, which has less diversity and a larger effective 
number of chromosome segments.

We used a design in which the discovery set used for 
GWAS and SNP selection was separate from the train-
ing set used to estimate marker effects for the purpose 
of genomic prediction. Previous papers pointed out that 
using the same data for discovery and training leads to 
biased predictions [11, 13]. Our results show that predic-
tion based on top SNPs only were slightly more biased 
than prediction without these selected sets. This may be 
due to selected variants picking up some effects of the 
population structure that were not accounted for by the 
genetic groups that were derived from pedigree. Popula-
tion structure is pronounced in the Merino breed where 
various subpopulations exist that are quite distinct, and 
therefore more precise correction for population struc-
ture based on genomic relationships might have resulted 

in less bias. Differences in bias between using selected 
variants and all variants was found to be much larger in 
a single-breed study with Holstein–Friesian cattle [11], 
where QTL discovery and genomic prediction training 
sets were the same.

We used an arbitrary proportion of the total dataset 
for SNP discovery. A balance needs to be found between 
the accuracy of selecting top SNPs and the precision of 
establishing the accuracy of prediction. The process of 
allocating data to discovery, training and validation sets 
could also be repeated multiple times, so that results can 
be averaged over multiple samples. For larger datasets, a 
larger proportion of the data could be used perhaps for 
discovery. It is tempting to use the complete dataset to 
accurately establish QTL and markers to predict their 
effects. However, it would then be impossible to establish 
the improvement in prediction accuracy free of bias. In 
addition, in commercial genetic evaluations, where top 
SNPs are selected from the same data as those used for 
prediction, it is likely that genomic predictions of breed-
ing values are biased. Bias could be the result of selec-
tively using information from random occurrences, but 
also systematic biases could occur due to not accounting 
properly for population structure, or otherwise use of 
selective data. The extent of the problem may be smaller 
with larger datasets but some cautions and independent 
validation will be required. The ultimate goal is to gen-
erate custom SNP panels for genotyping that include 
highly predictive sequence SNPs for the entire range of 
economically important traits, so that these variants can 
be directly genotyped rather than rely on imputation to 
WGS that is more error prone.

The threshold for the p-value of marker effects in the 
selection of sequence variants to be used in genomic pre-
diction was set at p < 10−3. Other studies have varied the 
threshold and, generally, found no or a slight improve-
ment if more stringent thresholds were used [11, 14, 31]. 
An optimal threshold is part of the process of selecting 
variants to improve genomic prediction, and an optimal 
value might well differ between traits and datasets. For 
example, a more stringent threshold is easier to apply in 
large datasets, since the false discovery rate can be low 
without losing too much power. An important aspect of 
our approach was the relatively lenient p-value threshold 
combined with selection of only one “top SNP” per 100-
kb window along the entire genome. This enables repre-
sentation of many of the QTL with a smaller effect that 
would otherwise be missed and reduces redundancy of 
multiple markers tagging a single QTL.

This paper describes the first study in sheep to test 
the selection of WGS variants for improving predic-
tion accuracy. Compared with previous studies, results 
were relatively more consistent with larger accuracy 
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increases compared with those described in studies on 
dairy cattle. This may be partly due to the large diversity 
and multi-breed nature of the data used in sheep breed-
ing. However, a large part of the additional contribution 
is also likely the result of the lower accuracy overall, as 
achieved for the default scenario of 50k industry panel. 
Our training dataset is smaller than those used in most 
dairy studies, and we have tested the accuracy in rela-
tively unrelated animals, which is more difficult to 
achieve in populations that are less diverse. In the near 
future, we can expect that larger datasets will become 
available, which will be favorable towards more accurate 
SNP selection. Larger training datasets will of course 
also increase the prediction accuracy overall, even with 
standard SNP arrays. However, adding selected variants 
from WGS data to SNP arrays used in the industry will 
have a substantial benefit, especially for predicting GBV 
of animals that are not well connected to the industry ref-
erence population, provided suitable analytical methods 
are applied.

Conclusions
Use of selected variants from imputed whole-genome 
sequence data resulted in considerable improvement in 
genomic prediction accuracy in validation sets that had 
a relatively low relationship to individuals in the training 
set. These variants were selected from independent dis-
covery sets and larger increases in prediction accuracy 
were observed if they were given more weight in the pre-
diction model, either as a separate variance component 
in GBLUP, or by allocating them to a separate group 
when using a Bayesian approach that allows for different 
mixture models of SNP effects (BayesRC).
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